PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of quenching temperature on distortions during the individual quenching method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this paper, the impact of hardening temperature on the quenching distortions which occur during low-pressure carburizing with gas quenching - using the individual quenching method - was analysed. Design/methodology/approach: The reference elements were subjected to carburizing at 980°C, followed by gas quenching at temperatures of 860°C, 920°C and 980°C. The geometrical measurements of the elements were made before and after the chemical treatment and the size of the quenching distortions of their geometrical parameters was determined. Findings: It was demonstrated that a high temperature of quenching has an unfavourable effect on changes in cylindricity and roundness parameters but, at the same time, reduces the size of distortion of outer parameters. Low temperature quenching reduces quenching distortions of cylindricity and roundness parameters while increasing the distortion of outer dimensions. Research limitations/implications: Based on the research and analysis carried out in this work, it was found that the use of lower quenching temperature is justified in economic and quality terms. Practical implications: In the case of the aviation or automotive industry, very high quality of manufactured elements along with a simultaneous reduction of their production costs is extremely important. Maintaining the dimensions of the elements during heat treatment is extremely difficult. The tests allowed to determine the optimal hardening temperature, which brings with it acceptable deformations. Since it is easier to “repair” the outer geometrical dimensions (diameter, thickness), it seems that quenching from lower temperatures is a more favourable process. Originality/value: The conducted tests allowed to determine the most favourable conditions for hardening elements from the automotive industry, taking into account the occurring deformations and their subsequent processing
Rocznik
Strony
80--85
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
  • Institute of Machine Tools and Production Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Institute of Machine Tools and Production Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Seco/Warwick SA, ul. Sobieskiego 8, 66-200 Świebodzin, Poland
autor
  • Seco/Warwick SA, ul. Sobieskiego 8, 66-200 Świebodzin, Poland
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] B.W. Kruszyński, Z. Gawroński, J. Sawicki, P. Zgórniak, Enhancement of gears fatigue properties by modern termo-chemical treatment and griding processes, Mechanics and Mechanical Engineering 12/4 (2008) 387-395.
  • [2] S. Pawęta, R. Pietrasik, Quality-cost analysis of modern carburising technology implementation in the production cycle of cog elements for the aviation industry, Archives of Materials Science and Engineering 87/2 (2017) 75-84. DOI: https://doi.org/10.5604/01.3001.0010.7448
  • [3] L.A. Dobrzański. Metals and their alloys. Academic handbook for the study of metal science and materials engineering, Open Access Library VII/2, International OCSCO World Press, Gliwice, 2017 (in Polish).
  • [4] Z. Gawroński, A. Malasiński, J. Sawicki, Elimination of galvanic copper plating process used in hardening of conventionally carburized gear wheels, International Journal of Automotive Technology 11/1 (2010) 127-131. DOI: https://doi.org/10.1007/s12239-010-0017-1
  • [5] Z. Gawroński, A. Malasiński, J. Sawicki, A selection of the protective atmosphere eliminating the inter- operational copper plating step in the processing of gear wheels, Archives of Materials Science and Engineering 44/1 (2010) 51-57.
  • [6] K. Dybowski, J. Sawicki, P. Kula, B. Januszewicz, R. Atraszkiewicz, S. Lipa, The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing, Archives of Metallurgy and Materials 61/2 (2016) 1057-1062. DOI: https://doi.org/10.1515/amm-2016-0178
  • [7] K. Dybowski, P. Kula, R. Atraszkiewicz, B. Januszewicz, A. Rzepkowski, K. Jakubowski, Impact of the hardening method on the amount of deformation of details made of 16MnCr5 steel low-pressure carburized, Material Engineering 35 (2014) 367-369 (in Polish).
  • [8] K. Dybowski, R. Niewiedzielski, Distortion of 16MnCr5 steel parts during low-pressure carburizing. Advances in Science & Technology Research Journal 11/1 (2017) 201-2017. DOI: https://doi.org/10.12913/22998624/67674
  • [9] W. Stachurski, P. Zgórniak, J. Sawicki, M. Przybysz, Hardening-related deformations of gear wheels after vacuum carburizing and quenching in gas, Advances in Science and Technology Research Journal 11 (2017) 237-245. DOI: https://doi.org/10.12913/22998624/67673
  • [10] R. Atraszkiewicz, B. Januszewicz, Ł. Kaczmarek, W. Stachurski, K. Dybowski, A. Rzepkowski, High pressure gas quenching: Distortion analysis in gears after heat treatment, Materials Science and Engineering: A 558 (2012) 550-557. DOI: https://doi.org/10.1016/j.msea.2012.08.047
  • [11] S. Pawęta, R. Pietrasik, The influence of hardening medium in the vacuum carburizing process on the distortion of machine elements used in the automotive industry, Journal of Achievements in Materials and Manufacturing Engineering 94/1-2 (2019) 32-40. DOI: https://doi.org/10.5604/01.3001.0013.5119
  • [12] D.-W. Kim, H.-W. Cho, W.-B. Lee, K.-T. Cho, Y.-G. Cho, S.-J. Kim, H.N. Han, A finite element simulation for carburizing heat treatment of automotive gear ring incorporating transformation plasticity, Materials & Design 99 (2016) 243-253. DOI: https://doi.Org/10.1016/j.matdes.2016.03.047
  • [13] K. Krupanek, J. Sawicki, V. Buzalski, Numerical simulation of phase transformation during gas quenching after low pressure carburizing, IOP Conference Series: Materials Science and Engineering 743 (2020) 012047. DOI: https://doi.org/10.1088/1757-899X/743/1/012047
  • [14] S. Lipa, J. Sawicki, E. Wołowiec-Korecka, K. Dybowski, P. Kula, Method of determining the strain hardening of carburized elements in Ansys environ- ment, Solid State Phenomena 240 (2016) 74-80. DOI: https://doi.org/10.4028/www.scientific.net/SSP.240.74
  • [15] J. Sawicki, K. Krupanek, W. Stachurski, V. Buzalski, Algorithm scheme to simulate the distortions during gas quenching in a single-piece flow technology, Coatings 10/7 (2020) 694. DOI: https://doi.org/10.3390/coatings10070694
  • [16] Z. Gawroński, J. Sawicki, Technological surface layer selection for small module pitches of gear wheels working under cyclic contact loads, Materials Science Forum 513 (2006) 69-74. DOI: https://doi.org/10.4028/www.scientific.net/MSF.513.69
  • [17] Z. Gawroński, J. Sawicki, Toothed wheel optimization by means of the finite element analysis, Mechanics and Mechanical Engineering 4/2 (2000) 183-189.
  • [18] M. Korecki, E. Wołowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgórniak, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM Journal of Heat Treatment and Materials 72/3 (2017) 175-183. DOI: https://doi.org/10.3139/105.110325
  • [19] M. Korecki, E. Wolowiec-Korecka, A. Brewka. Unicase Master-In-line, high-volume, low-distortion, precision case hardening for automotive, transmission and bearing industry, Proceedings of the 3rd International Conference on Heat Treatment and Surface Engineering in Automotive Applications, Prague, 2016.
  • [20] E. Wołowiec-Korecka, M. Korecki, W. Stachurski, P. Zgórniak, J. Sawicki, A. Brewka, M. Sut, M. Bazel, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering 79/1 (2016) 37-44. DOI: https://doi.org/10.5604/18972764.1227661
  • [21] K. Krupanek, A. Staszczyk, J. Sawicki, P. Byczkowska, The impact of nozzle configuration on the heat transfer coefficient, Archives of Materials Science and Engineering 90/1 (2018) 16-24. DOI: https://doi.org/10.5604/01.3001.0012.0609
  • [22] M. Korecki, W. Fujak, J. Olejnik, M. Stankiewicz, E. Wołowiec-Korecka, Multi-chamber furnace from vacuum carburizing and quenching of gears, shafts, rings and similar workpieces, Patent US 9 989 311, USA, 2018.
  • [23] M. Korecki, W. Fujak, J. Olejnik, M. Stankiewicz, E. Wołowiec-Korecka. Device for individual quench hardening of technical equipment components, Patent US 10 072 315, USA, 2018.
  • [24] M. Korecki, E. Wołowiec-Korecka, D. Glenn, Single- piece, high-volume, and low-distortion case hardening of gears, Thermal Processing for Gear Solutions 5 (2016) 32-39.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b02b0a8d-4bdb-4110-abb9-ed1919e5cc31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.