Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Badania numeryczne belek zespolonych stalowo-drewnianych z dźwigarami zimnogiętymi o przekroju w kształcie litery omega, część 1: belki bez modyfikacji
Języki publikacji
Abstrakty
This paper presents a preliminary evaluation of the load-bearing capacity of steel-timber composite beams with cold-formed omega girders and laminated veneer lumber slabs. These structural elements may be used as ceiling beams. The finite element models of the analysed composite beams were created in ADINA and Abaqus. The theoretical estimations of the resistance to bending were based on the elastic analysis (elastic resistance to bending) and the rigid-plastic theory (plastic resistance to bending). The elastic load-bearing capacity obtained in the numerical simulation in ADINA was identical to the one from the theoretical analysis. The elastic load-bearing capacity from the numerical analysis in Abaqus was 1.02 times higher than the one from the theoretical analysis. The plastic bending resistance obtained from the theoretical analysis was 1.08 times higher than the one from the numerical simulation in ADINA and 1.03 times higher than the one from the numerical simulation in Abaqus. In part 2 of the paper, a modification to the cross-section and a reinforcing method were proposed.
Artykuł przedstawia wstępną analizę nośności belek zespolonych stalowo-drewnianych z dźwigarami zimnogiętymi o przekroju w kształcie litery omega oraz z płytami z drewna klejonego warstwowo z fornirów. Elementy te mogą być wykorzystywane jako belki stropowe. Modele numeryczne analizowanych belek zespolonych zostały wykonane w programach ADINA oraz Abaqus. Teoretyczna nośność na zginanie w zakresie sprężystym została wyznaczona na podstawie analizy sprężystej, a teoretyczna nośność na zginanie w zakresie plastycznym została obliczona na podstawie analizy sztywno-plastycznej. Nośność na zginanie w zakresie sprężystym wyznaczona na podstawie analizy numerycznej w programie ADINA była taka sama jak nośność teoretyczna, a nośność na zginanie w zakresie sprężystym wyznaczona w programie Abaqus była 1,02 razy większa niż nośność otrzymana na podstawie analizy teoretycznej. Nośność na zginanie w zakresie plastycznym otrzymana z analizy teoretycznej była 1,08 razy większa niż nośność otrzymana na podstawie symulacji w programie ADINA oraz 1,03 razy większa niż nośność z analizy numerycznej w programie Abaqus. W 2 części pracy zaproponowano modyfikację przekroju belki oraz sposób jej wzmacniania.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
523--537
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
autor
- Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Building Engineering, Poznan, Poland
autor
- Czestochowa University of Technology, Department of Civil Engineering, Czestochowa, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Civil and Environmental Engineering, Szczecin, Poland
autor
- Czestochowa University of Technology, Department of Civil Engineering, Czestochowa, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Civil and Environmental Engineering, Szczecin, Poland
autor
- Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of Building Engineering, Poznan, Poland
Bibliografia
- [1] A. Romero and C. Odenbreit, “Experimental investigation on novel shear connections for demountable steeltimber composite (STC) beams and flooring systems”, Engineering Structures, vol. 304, art. no. 117620, 2024, doi: 10.1016/j.engstruct.2024.117620.
- [2] A.A. Chiniforush, A. Akbarnezhad, H. Valipour, and J. Xiao, “Energy implications of using steel-timber composite (STC) elements in buildings”, Energy and Buildings, vol. 176, pp. 203-215, 2018, doi: 10.1016/j.enbuild.2018.07.038.
- [3] X. Song, L. Zhao, Y. Liu, and M. Gong, “Experimental and nonlinear analytical of the flexural performance of timber-filled steel tubular composite beams”, Engineering Structures, vol. 301, art. no. 117312, 2024, doi: 10.1016/j.engstruct.2023.117312.
- [4] A. Ataei, A.A. Chiniforush, M. Bradford, and H. Valipour, “Cyclic behaviour of bolt and screw shear connectors in steel-timber composite (STC) beams”, Journal of Constructional Steel Research, vol. 161, pp. 328-340, 2019, doi: 10.1016/j.jcsr.2019.05.048.
- [5] M. Abramowicz, M. Chybiński, Ł. Polus, P. Szewczyk, and T.Wróblewski, “Dynamic Response of Steel–Timber Composite Beams with Varying Screw Spacing”, Sustainability, vol. 16, no. 9, art. no. 3654, 2024, doi: 10.3390/su16093654.
- [6] M.A. Bradford, A. Hassanieh, H.R. Valipour, and S.J. Foster, “Sustainable Steel-timber Joints for Framed Structures”, Procedia Engineering, vol. 172, pp. 2-12, 2017, doi: 10.1016/j.proeng.2017.02.011.
- [7] B. Bakht and R. Krisciunas, “Testing a Prototype Steel-Wood Composite Bridge”, Structural Engineering International, vol. 7, no. 1, pp. 35-41, 1997, doi: 10.2749/101686697780495391.
- [8] D.J. Odeh and P. Kuehnel, “The Hybrid CLT Steel Residence Hall”, Structure, 2019. [Online]. Available: https://www.structuremag.org/article/the-hybrid-clt-steel-residence-hall/.
- [9] D. Barber, D. Blount, J.J. Hand, M. Roelofs, L. Wingo, J. Woodson, and F. Yang, Design Guide 37: Hybrid Steel Frames with Wood Floors. American Institute of Steel Construction, 2022.
- [10] P. Hamm, A. Richter, and S. Winter, “Floor vibrations–new results”, in 11th World Conference on Timber Engineering (WCTE 2010), A. Ceccotti, Ed. Trentino, 2010.
- [11] B. Chocholaty, N.B. Roozen, M. Maeder, and S. Marburg, “Vibroacoustic response of steel–timber composite elements”, Engineering Structures, vol. 271, art. no. 114911, 2022, doi: 10.1016/j.engstruct.2022.114911.
- [12] A. Chiniforush, M. Makki Alamdari, U. Dackermann, H.R. Valipour, and A. Akbarnezhad, “Vibration behaviour of steel-timber composite floors, part (1): Experimental & numerical investigation”, Journal of Constructional Steel Research, vol. 161, pp. 244-257, 2019, doi: 10.1016/j.jcsr.2019.07.007.
- [13] A. Hassanieh, H.R. Valipour, and M.A. Bradford, “Load-slip behaviour of steel-cross laminated timber (CLT) composite connections”, Journal of Constructional Steel Research, vol. 122, pp. 110-121, 2016, doi: 10.1016/j.jcsr.2016.03.008.
- [14] A. Romero, J. Yang, F. Hanus, and C. Odenbreit, “Numerical Investigation of Steel-LVL Timber Composite Beams”, ce papers, vol. 5, no. 2, pp. 21-30, 2022, doi: 10.1002/cepa.1694.
- [15] Y. Zhao, Y. Yuan, C.-L. Wang, and S. Meng, “Experimental and finite element analysis of flexural performance of steel-timber composite beams connected by hybrid-anchored screws”, Engineering Structures, vol. 292, art. no. 116503, 2023, doi: 10.1016/j.engstruct.2023.116503.
- [16] P. Kyvelou, L. Gardner, and D.A. Nethercot, “Design of Composite Cold-Formed Steel Flooring Systems”, Structures, vol. 12, pp. 242-252, 2017, doi: 10.1016/j.istruc.2017.09.006.
- [17] A. Hassanieh, H.R. Valipour, and M.A. Bradford, “Experimental and analytical behaviour of steeltimber composite connections”, Construction and Building Materials, vol. 118, pp. 63-75, 2016, doi: 10.1016/j.conbuildmat.2016.05.052.
- [18] P. Kyvelou, L. Gardner, and D.A. Nethercot, “Testing and Analysis of Composite Cold-Formed Steel and Wood-Based Flooring Systems”, Journal of Structural Engineering, vol. 143, no. 11, 2017, doi: 10.1061/(ASCE)ST.1943-541X.0001885.
- [19] R. Liu, J. Liu, Z. Wu, L. Chen, and J. Wang, “A Study on the Influence of Bolt Arrangement Parameters on the Bending Behavior of Timber–Steel Composite (TSC) Beams”, Buildings, vol. 12, no. 11, art. no. 2013, 2022, doi: 10.3390/buildings12112013.
- [20] P. Kyvelou, L. Gardner, and D.A. Nethercot, “Finite element modelling of composite cold-formed steel flooring systems”, Engineering Structures, vol. 158, pp. 28-42, 2018, doi: 10.1016/j.engstruct.2017.12.024.
- [21] A. Hassanieh, H.R. Valipour, and M.A. Bradford, “Experimental and numerical study of steel-timber composite (STC) beams”, Journal of Constructional Steel Research, vol. 122, pp. 367-378, 2016, doi: 10.1016/j.jcsr.2016.04.005.
- [22] M. Chybiński and Ł. Polus, “Theoretical, experimental and numerical study of aluminium-timber composite beams with screwed connections”, Construction and Building Materials, vol. 226, pp. 317-330, 2019, doi: 10.1016/j.conbuildmat.2019.07.101.
- [23] C. Loss and B. Davison, “Innovative composite steel-timber floors with prefabricated modular components”, Engineering Structures, vol. 132, pp. 695-713, 2017, doi: 10.1016/j.engstruct.2016.11.062.
- [24] C. Loss and A. Frangi, “Experimental investigation on in-plane stiffness and strength of innovative steel-timber hybrid floor diaphragms”, Engineering Structures, vol. 138, pp. 229-244, 2017, doi: 10.1016/j.engstruct.2017.02.032.
- [25] D. Owolabi and C. Loss, “Experimental and numerical study on the bending response of a prefabricated composite CLT-steel floor module”, Engineering Structures, vol. 260, art. no. 114278, 2022, doi: 10.1016/j.engstruct.2022.114278.
- [26] M. Komorowski, Podręcznik Projektowania i Budowania w Systemie STEICO. Podstawy. Fizyka Budowli. Zalecenia Wykonawcze. Warsaw: Forestor Communication, 2020.
- [27] J. Porteous and A. Kermani, Structural Timber Design to Eurocode 5, 2nd ed. Chichester: Wiley-Blackwell, 2013.
- [28] M.W. Hammad, H.R. Valipour, T. Ghanbari-Ghazijahani, and M.A. Bradford, “Timber-timber composite (TTC) beams subjected to hogging moment”, Construction and Building Materials, vol. 321, art. no. 126295, 2022, doi: 10.1016/j.conbuildmat.2021.126295.
- [29] M. Bakalarz, “Load bearing capacity of laminated veneer lumber beams strengthened with CFRP strips”, Archives of Civil Engineering, vol. 67, no. 3, pp. 139-155, 2021, doi: 10.24425/ace.2021.138048.
- [30] M.M. Bakalarz and P.G. Kossakowski, “Strengthening of Laminated Veneer Lumber Slabs with Fiber-Reinforced Polymer Sheets – Preliminary Study”, Fibers, vol. 12, no. 3, 2024, doi: 10.3390/fib12030022.
- [31] Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. European Committee For Standardization, 2006.
- [32] N. Staszak, T. Gajewski, and T. Garbowski, “Effective Stiffness of Thin-Walled Beams with Local Imperfections”, Materials, vol. 15, no. 21, art. no. 7665, 2022, doi: 10.3390/ma15217665.
- [33] T. Gajewski, N. Staszak, and T. Garbowski, “Parametric Optimization of Thin-Walled 3D Beams with Perforation Based on Homogenization and Soft Computing”, Materials, vol. 15, no. 7, art. no. 2520, 2022, doi: 10.3390/ma15072520.
- [34] K. Ciesielczyk and R. Studziński, “Experimental investigation of sandwich panels supported by thin-walled beams under various load arrangements and number of connectors”, Archives of Civil Engineering, vol. 68, no. 4, pp. 389-402, 2022, doi: 10.24425/ace.2022.143045.
- [35] Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. European Committee For Standardization, 2008.
- [36] M. Chybiński and Ł. Polus, “Experimental and numerical investigations of aluminium-timber composite beams with bolted connections”, Structures, vol. 34, pp. 1942-1960, 2021, doi: 10.1016/j.istruc.2021.08.111.
- [37] J. Strzelecka, Ł. Polus, and M. Chybiński, “Theoretical and Numerical Analyses of Steel-timber Composite Beams with LVL Slabs”, Civil and Environmental Engineering Reports, vol. 33, no. 2, pp. 64-84, 2023, doi: 10.59440/ceer/172510.
- [38] Product Information: Card Sika®CarboDur®S. [Online]. Available: www.sika.com/dam/dms/plcon/s/sika_carbodur_s.pdf.
- [39] Product Information: Card Sika®CarboDur®M. [Online]. Available: www.sika.com/dam/dms/plcon/5/sika_carbodur_m.pdf.
- [40] M. Chybiński and Ł. Polus, “Experimental and numerical investigations of laminated veneer lumber panels”, Archives of Civil Engineering, vol. 67, no. 3, pp. 351-372, 2021, doi: 10.24425/ace.2021.138060.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b02a2d78-92c8-4f0d-8d8b-93f8ed2f65d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.