PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Can microorganisms play a beneficial role in oil spill clean-up?

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Czy mikroorganizmy mogą odgrywać korzystną rolę w usuwaniu wycieków ropy?
Języki publikacji
EN
Abstrakty
EN
Flourishing petroleum industry is the main cause of environmental pollution. According to the estimates, annually from 3 up to 6 million metric tons of crude oil are released into the world's water reservoirs due to oil seepage and spills. Supertanker accidents and oil rig disasters are the cause of major oil spills in the ocean, the oil slick while floating on the water surface can spread out by wind and currents to disrupt the ecosystem at long distances from the source of the spill. To limit the scale of environmental damage some oil spill clean-up techniques have been implemented, like for example skimming - physical separation of oil from water, use of sorbents such as, for example, volcanic ash and shavings of polyester-derived plastic to absorb oil hydrocarbons or application of surfactants to disperse oil plume in a water column and thus make it available for bacterial degradation. Recently, more attention is being paid to bioremediation process employing indigenous and exogenous hydrocarbon degrading bacteria to remove spilled oil fractions. This approach seems most promising and beneficial as ecosystem clean-up and recultivation method, since based on activity of naturally occurring microorganisms it is safer, more sustainable and providing diminished human impact on environment in comparison with other techniques.
PL
Rozwijający się przemysł naftowy jest główną przyczyną zanieczyszczenia środowiska. Według szacunków do światowych zbiorników wodnych trafia od 3 do 6 milionów ton ropy naftowej rocznie w wyniku wycieków. Wypadki supertankowców i katastrofy na platformach wiertniczych są przyczyną dużych wycieków ropy do oceanów. Plamy ropy unoszące się na powierzchni wody mogą rozprzestrzeniać się przez wiatr i prądy zakłócając ekosystem na duże odległości od źródła wycieku. Aby ograniczyć skalę szkód środowiskowych wdrożono techniki usuwania wycieków ropy, takie jak np. skimming - fizyczne oddzielenie ropy od wody, stosowanie sorbentów, takich jak np. popioły lub pyły wulkaniczne, lub tworzyw sztucznych na bazie poliestrów w celu sorpcji smug ropnych na powierzchni wody, a tym samym umożliwiania ich degradacji bakteryjnej. Ostatnio coraz więcej uwagi poświęca się procesowi bioremediacji z wykorzystaniem rodzimych i egzogennych bakterii rozkładających węglowodory do usuwania rozlanych frakcji ropy naftowej. Podejście to wydaje się najbardziej obiecujące i korzystne jako metody oczyszczania i rekultywacji ekosystemów ponieważ oparte są na aktywności naturalnie występujących mikroorganizmów. Techniki to są bezpieczniejsze i bardziej ekologiczne zapewniając mniejszy wpływ człowieka na środowisko w porównaniu z innymi technikami.
Rocznik
Tom
Strony
13--16
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Warszawski Uniwersytet Medyczny, Wydział Nauk o Zdrowiu
Bibliografia
  • [1] Cordes E., Jones D., Schlacher T., Amon D., Bernardino A., Brooke S., Carney R., DeLeoD., Dunlop C., Escobar-Briones E., Gates E., Génio L., Gobin J., Henry L-A., Herrera S., Hoyt S., Joye M., Kark S., Mestre N., Metaxas A., Pfeifer S., Sink K., Sweetman A., Witte U., 2016, Environmental Impacts of the Deep-Water Oil and Gas Industry: A Review to Guide Management Strategies; Frontiers of Environmental Science, 4:58.
  • [2] https://aoghs.org/ American Oil and Historical society.
  • [3] https://markleen.com/oil-spill-response/major-oil-spill-disasters-at-seal.
  • [4] Doyle S., Whitaker E., De Pascuale V., Wade T., Knap A., Santschi P., Quigg A., Sylvan J., 2018, Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit, Frontiers in Microbiology, 9:689.
  • [5] Kujawinski E., Reddy Ch., Rodgers R., Thrash C., Valentine D., White H., 2020, The first decade of scientific insights from the Deepwater Horizon oil release, Nature Reviews Earth and Environment, 1, pages 237-250.
  • [6] CORDI (EU research results), September 2009 - August 2011, project: Soil remediation techniques for in situ cleaning soils contaminated with heavy hydrocarbons mixtures.
  • [7] Fisher C., Demopoulos A., Cordes E., Baums I., White H., Bourque J., 2014, Coral Communities as Indicators Ecosystem Impacts of Deepwater Horizon Spill, BioScience, 64, 9, 796-807.
  • [8] Yergeau E., Maynard C., Sanschagrin S., Champagne J., Juck D., Lee K., Greer C., 2015, Microbial Community Composition, Functions, and Activities. in the Gulf of Mexico l Year after the Deepwater Horizon Accident, Applied and Environmental Microbiology, 81, 17, 5855-5866.
  • [9] Rodrigues E., Totola M., 2015, Petroleum: from Basic Features to Hydrocarbons Biodegradation in Oceans, Open Access Library Journal, 2: e2136.
  • [10] Bartha R., 1986, Biotechnology of Petroleum Pollutant Biodegradation, Microbial Ecology, 12:155-172.
  • [11] National Research Council (US) Committee on Oil in the Sea, Inputs, Fates, and Effects, 2003, Oil in the Sea III, Inputs, Fates, and Effects, Washington (DC): National Academies Press (US).
  • [12] Speight J., 2004, Petroleum Asphaltenes Part 1, Asphaltenes, Resins and the Structure of Petroleum, Oil and Gas Science and Technology Rev. IFP, 59, 5, 467-477.
  • [13] Xingjian Xu, Wenming Liu, Shuhua Tian, Wei Wang, Qige Qi, Pan Jiang, Xinmei Gao, Fengjiao Li, Haiyan Li, Hongwen Yu, 2018, Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions: A Perspective Analysis, Frontiers in Microbiology, 9:2885.
  • [14] Al-Hawash A., Dragh M., Li S., Alhujali A., Abbood A., Zhang X., Ma F., 2018, Principles of microbial degradation of hydrocarbons in the environment, Egyptian Journal of Aquatic Research, 44, 71-76.
  • [15] Leahy J., Colwell R., 1990, Microbial Degradation of Hydrocarbons in the Environment, Microbiological Reviews, 54, 3, 305-315.
  • [16] Ron E., Rosenberg E., 2014, Enhanced bioremediation of oil spills in the sea, Current Opinion in Biotechnology, 27, 191-194.
  • [17] Ribicic D., McFarlin M., Netzer R., Brakstad O., Winkler A., Throne-Hoist M., Storseth T., 2018, Oil type and temperature dependent bio-degradation dynamics - Combining chemical and microbial community data through multivariate analysis, BMC Microbiology, 18:83.
  • [18] Peixoto R., Vermelho A., Rosado A., 2011, Petroleum-Degrading Enzymes: Bioremediation and New Prospects, Article ID 475193, 1-7.
  • [19] Chicca I., Becarelli S., Di Gregorio S., 2022, Microbial Involvement in Bioremediation of Total Petroleum Hydrocarbon Polluted Soils: Challenges and Perspectives, Environments, 9:52.
  • [20] Kim S., Kweon O., Sutherland J., Kim H., Jones R., Burback B., Graves S., Psurny E., Cerniglia C., 2015, Dynamic Response of Mycobacterium vanbaalenii PYR-1 to BP Deepwater Horizon Crude Oil, Applied and Environmental Microbiology, 81, 13, 4263-4276.
  • [21] Gutierrez T., Biddle J., Teske A., Aitken M., 2016, Enrichment of Flow-bacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spil, Microorganisms, 4:24.
  • [22] Dombrowski N., Donaho J., Gutierrez T., Seitz K., Teske A., Baker B., 2016, Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill, Nature Microbiology, 1, 16057.
  • [23] Overholt W., Marks W., Romero I., Hollander D., Snell T., Kostka J., 2016, Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity, Applied and Environmental Microbiology, 82, 2, 518-527.
  • [24] Doyle M., Whitaker E., De Pascuale V., Wade T., Knap A., Santschi P., Quigg A., Sylvan J., 2018, Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit, Frontiers in Microbiology, 9:689.
  • [25] Kostka J., Prakash O., Overholt W., Green S., Freyer G., Can ion A., De-Igardio J., Norton N., Hazen T., Huettel M., 2011, Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill, Applied and Environmental Microbiology, 77, 22, 7962-7974.
  • [26] Bhandari S., Kumar Poudel D., Marahatha R., Dawadi S., Khadayat K., Phuyal S., Shrestha S., Gaire S., Basnet K., Khadka U., Parajuli N., 2021, Microbial Enzymes used in Bioremediation, Hindawi Journal of Chemistry, 2021, Article ID 8849512.
  • [27] Wang L., Tan Y., Sun S. , Zhou L., Wu G., Shao Y., Wang M., Xin Z., 2022, Improving degradation of Polycyclic Aromatic' Hydrocarbons by Bacillus atrophaeus Laccase Fused with Vitreoscilia Hemoglobin and a Novel Strong Promoter Replacement. Biology, 11, 1129.
  • [28] Austin R., Callaghan A., 2013, Microbial enzymes that oxidize hydrocarbons, Frontiers in Microbiology, 4:338.
  • [29] Van Ham me J., Singh A., Ward O., 2003, Recent Advances in Petroleum Microbiology, Microbiology and Molecular Biology Reviews, 67, 4, 503¬549.
  • [30] Rolling W., Milner M., Jones M., Fratepietro F., Swannell R.. Daniel F., Head I., 2004, Bacterial Community Dynamics and Hydrocarbon Degradation during a Field-Scale Evaluation of Remediation of Mudflat Beach Contaminated with Buried Oil, Applied and Environmental Microbiology, 70:5.
  • [31] Varjani S., Rana D., Jain A., Bateja S., Upasani V., 2015, Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat. India, International Biodeterioration and Biodegradation Journal, 103, 116-124.
  • [32] Tao K., Liu X., Chen X., Hu X., Cao L., Yuan X. 2017, Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis, Bioresource Technology Journal, 224, 327-31
  • [33] Szulc A., Ambroziewicz D., Sydow M., Ławniczak L., Piotrowska-Cyplik A., Marecik, R., et al. 2014, The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies, Journal of Environmental Management, 132, 121-128.
  • [34] Chandran H., Meena M., Sharma K., 2020, Microbial Biodiversity and Bioremediation Assessment Through Omics Approaches, Frontiers in Environmental Chemistry, 1:570326.
  • [35] Ndubuisi-Nnaji Uu., John Ou., Ofon Ua, 2015, Population dynamics and distribution of hydrocarbon utilizing bacteria in automobile workshops within Uyo metropolis, Akwa Ibom State, Journal of Applied Science and Environmental Management, 19, 4, 585-589.
  • [36] Kanzi A., Benjamin Chimukangara S., Wilkinson E., Fish M., Ramsuran V., de Oliveira T., 2020, Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance, Frontiers in genetics, 11:544162.
  • [37] Bukin Yu., Galachyants Yu., Morozov I., Bukin S., Zakharenko A., Zemskaya T., 2019, Data Descriptor: The effect of 16S rRNA region choice on bacterial community metabarcoding results, Scientific Data, 6:190007.
  • [38] Pacwa-Płociniczak M., Biniecka P., Bondarczuk K., Piotrowska-Seget Z., 2020, Metagenomic Functional Profilinf Reveals Differences in Bacterial Composition and Function During Bioaugmentation of Aged Petroleum-Contaminated Soil, Frontiers in Microbiology, 11:2106.
  • [39] Ummara U., Noreen S., Afzal M., Ahmad P., 2020, Bacterial bioaugmentation enhances hydrocarbon degradation, plant colonization and gene expression in diesel-contaminated soil, Physiologia Plantarum, 173,1,58-66
  • [40] Woźniak-Karczewska M., Lisiecki P., Bialas W., Owsianiak M., Piotrowska-Cyplik A., Wolko L., Ławniczak L., Heipieper H., Gutierrez T., Chrzanowski Ł., 2019, Effect of bioaugmentation on a long-term biodegradation of a diesel/biodiesel blends in soil microcosmos, Science of the Total Environment, 671,948-958.
  • [41] Kumari B., Kriti, Singh G., Sinam G., Singh D., 2020, Microbial Remediation of Crude Oil-Contaminated Site, Environmental Concerns and sustainable development, Chapter 17, 333-351, https://www.researchgate.net/publication/334232301_Microbial_Remediation_of_Crude_Oil-Contaminated_Sites.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b029b05e-303d-4897-b02a-5127da8e9d86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.