PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural, dielectric and AC conductivity studies on 0.8Ba0.2(Bi0.5K0.5)Ti1-xZrxO3 lead free ceramic system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zr substituted 0.8BaTiO30.2 Bi0,5 K0,5 TiO3 lead free ceramic materials with a composition 0.8Ba0.2(Bi0,5 K0,51-xZrxO3 (0.01 ≤x ≤0.06) were prepared by conventional solid state reaction method followed by high energy ball milling. The X-ray diffraction studies confirmed the tetragonal structure of the material at room temperature. Density was decreasing with the substitution of Zr. Microstructure studies were done by using scanning electron microscope. Temperature and frequency dependent dielectric studies were carried out and showed that the dielectric constant, dielectric loss and Curie temperature were decreasing with the substitution of Zr. Relaxor behavior was observed in all the Zr substituted samples. Degree of diffuseness was calculated from the modified Curie-Weiss law and it was found to increase with the substitution of Zr. Frequency and temperature dependent AC conductivity was calculated and it was found to obey Jonscher’s power law. Substitution of Zr decreased the conductivity of the material. Activation energy was calculated and it was decreasing with an increase in Zr substitution.
Słowa kluczowe
Wydawca
Rocznik
Strony
669--675
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Department of Physics, GIT, GITAM University, Visakhapatnam, A.P, India
autor
  • Department of Electronics and Physics, GIS, GITAM University, Visakhapatnam, A.P, India
Bibliografia
  • 1. Sawangwan N., Barrel J., Mackenzie K., Tunkasiri T., Appl. Phys A-Mater, 90 (2008), 723.
  • 2. James A.R., Chandra P., Prasad G., J. Phys. D Appl. Phys., 39 (2006), 1635.
  • 3. Su-wei Z., Hailong Z., Bo-ping Z., Gaolei Z., J. Eur. Ceram. Soc., 29 (2009), 3235.
  • 4. Cheng B.L., Wang C., Wang S.Y., Lu H.B., Zhou Y.L., Chen Z.H., J. Eur. Ceram. Soc., 25 (2005), 2295.
  • 5. Moura F., Simoes A.Z., Stojanvoic B.D., Zaghete M.A., Longo E., Varela J.A., J. Alloy. Compd., 462 (2008), 129.
  • 6. Sandeep M., Thakur O.P., Chandra P., Sreenivas K., B. Mater. Sci., 34 (2011), 1483.
  • 7. Yu Z., Ang C., Guo R., Bhalla A.S., Appl. Phys. Lett., 81 (2002), 1285.
  • 8. Yu Z., Ang C., Guo R., Bhalla A.S., Mater. Lett., 61 (2007), 326.
  • 9. Tang X.G, Chew K.H., Chan H.L.W., Acta Mater., 52 (2004), 5177.
  • 10. Yuji U., Kosuke T., Takashi K., Akihide K., Hiroki M., Jpn. J. Appl. Phys., 51 (2012), 09LE01.
  • 11. Sateesh P., Omprakash J., Kumar G.S., Prasad G., J. Adv. Dielec., 5 (2015), 1550002.
  • 12. Hiruma Y., Hajime N., Takenaka T., J. Ceram. Soc.Jpn, 112 (5) (2004), S1125.
  • 13. Ramesh M.N.V., Ramesh K.V., Int. J. Mod. Phys. B., 29 (2015), 1550119.
  • 14. Tetragonal BaTiO3JCPDS Card No. 05-0626.
  • 15. Ashcoft N.W., David Mermin N., Solid State Physic, Brooks Cole, California, 1976.
  • 16. Zhi J., Zhi Y., Chen A., J. Mater. Sci., 38 (2003), 1057.
  • 17. Dobal P.S., Dixit A., Katiyar R.S., Yu Z., Guo R., Bhalla A.S., J. Raman Spectrosc., 32 (2001), 69.
  • 18. Wanli Z., Ruzhong Z., Ceram. Int., 39 (2013), 9121.
  • 19. Yang J., Hou Y., Wang C., Zhu M., Yan H., Appl. Phys. Lett., 91 (2007), 023118.
  • 20. Uchino K., Nomura S., Ferroelectrics Lett., 44 (1982), 55.
  • 21. Jonscher A.K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1983.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0267680-56d5-4b47-b0f6-9a399de7c797
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.