PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aimed to study the induction in-situ heated hybrid friction stir welding (IAFSW) method to join AA5052 aluminium alloy with X12Cr13 stainless steel (SS) to enhance joint strength. The potency of this method on the mechanical properties and microstructural characterizations were also investigated. The results show that the transverse tensile strength gained was 94% of the AA5052 base metal that is 229.5 MPa. This superior strength was achieved due to the annealing that happened to the AA 5052 region and elevated plastic flow in the weld zone by the in-situ induction heating, which resulted in the elongation of the weld region. The microstructure characterization indicates that a refined grain structure was gained in the nugget zone without defects.
Rocznik
Strony
17--30
Opis fizyczny
Bibliogr. 40 poz., tab., fot., il. wykr.
Twórcy
  • Institute of Materials Joining, Shandong University, Jinan, China
  • Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Poland
autor
  • Department of Production Engineering, Government College of Technology, Coimbatore, India
Bibliografia
  • 1. Mohan D G, Gopi S: Influence of In-situ induction heated friction stir welding on tensile, microhardness, corrosion resistance and microstructural properties of martensitic steel. Engineering Research Express, 3(2), 2021, 025023.
  • 2. Janeczek A, Tomków J, Fydrych D: The influence of tool shape and process parameters on the mechanical properties of AW-3004 aluminium alloy friction stir welded joints. Materials, 14(12), 2021, 3244.
  • 3. Abd Elnabi M M, Osman T A, El Mokadem A, Elshalakany A B: Evaluation of the formation of intermetallic compounds at the intermixing lines and in the nugget of dissimilar steel/aluminum friction stir welds. Journal of Materials Research and Technology, 9(5), 2020, 10209–10222.
  • 4. Anaman S Y, Cho H H, Das H, Lee J S, Hong S T: Microstructure and mechanical/electrochemical properties of friction stir butt welded joint of dissimilar aluminum and steel alloys. Materials Characterization, 154, 2019, 67–79.
  • 5. Wang T, Komarasamy M, Liu K, Mishra R S: Friction stir butt welding of strain-hardened aluminum alloy with high strength steel. Materials Science and Engineering A, 737, 2018, 85–89.
  • 6. Joo S: Joining of dissimilar AZ31B magnesium alloy and SS400 mild steel by hybrid gas tungsten arc friction stir welding. Metals and Materials International, 19, 2013, 1251-1257.
  • 7. Fei X, Jin X, Ye Y, Xiu T, Yang H: Effect of pre-hole offset on the property of the joint during laser-assisted friction stir welding of dissimilar metals steel and aluminum alloys. Materials Science and Engineering A, 653, 2016, 43-52.
  • 8. Campanelli S L, Casalino G, Casavola C, Moramarco V: Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy. Materials, 6(12), 2013, 5923-5941.
  • 9. Ma Z, Shang Q, Ni D, Xiao B: Friction Stir Welding of magnesium alloys: A review. In Jinshu Xuebao/Acta Metallurgica Sinica, 54(11), 2018, 238-253.
  • 10. Bucior M, Kluz R, Kubit A, Ochał K: Analysis of the possibilities of improving the selected properties surface layer of butt joints made using the FSW method. Advances in Science and Technology Research Journal, 14(1), 2020, 1–9.
  • 11. Bang H S, Jeon G H, Oh I H, Ro C S: Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Materials and Design, 37, 2012, 48–55.
  • 12. Sasikumar A, Gopi S, Mohan D G: Effect of magnesium and chromium fillers on the microstructure and tensile strength of friction stir welded dissimilar aluminium alloys. Materials Research Express, 6(8), 2019, 086580.
  • 13. Kravcov A, Kosturek R, Śnieżek L, Kluczyński J, Franek O, Morozov N, Maciejewski P: The influence of friction stir welded process parameters of AA2519-T62 on joint quality defined by non-destructive laser amplified ultrasonic method and by microstructure analysis. Acta Polytechnica 60(5), 2020, 415-19.
  • 14. Gopi S, Mohan D G: Evaluating the welding pulses of various tool profiles in single-pass Friction Stir Welding of 6082-T6 aluminium alloy. Journal of Welding and Joining, 2232, 2021, 1–11.
  • 15. Dehghani M, Akbari Mousavi S A A, Amadeh A: Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld. Transactions of Nonferrous Metals Society of China, 23, 2013, 1957–1965.
  • 16. Sasikumar A, Gopi S, Mohan D G: Effect of welding speed on mechanical properties and corrosion resistance rates of filler induced friction stir welded AA6082 and AA5052 joints. Materials Research Express, 8(6), 2021, 066531.
  • 17. Mohan D G, Gopi S: Optimized parameters prediction for single-pass Friction Stir Welding on dissimilar aluminium alloys T-joint. International Journal of Emerging Technologies, 12(2), 2021, 22–27.
  • 18. Makeshkumar M, Surender S R, Arunprakash S, Madesh R, Sasi Kumar M, Sudharsan K: Microstructural and mechanical properties evaluation of dissimilar aluminum alloy and bronze joints using friction stir welding, Materials Today: Proceedings, 8, 2021, 4 –21.
  • 19. Mohan D G, Gopi S: Induction assisted friction stir welding: a review, Australian Journal of Mechanical Engineering, 18:1, 2020, 119–123.
  • 20. Kosturek R, Śnieżek L, Torzewski J, Ślęzak T, Wachowski M, Szachogłuchowicz I: Research on the properties and low cycle fatigue of Sc-modified AA2519-T62 FSW joint. Materials, 13(22), 2020, 2–18.
  • 21. Mohan D G, Gopi S, Rajasekar V: Effect of induction heated friction stir welding on corrosive behaviour, mechanical properties and microstructure of AISI 410 stainless steel. Indian Journal of Engineering and Materials Sciences, 2(1), 2018, 203–208.
  • 22. Florence P L, Narayanaswamy K S, Sesha P H, Sai T, Devaraj S: Impact of friction stir welding tool profile on the strength of dissimilar aluminium and stainless steel welded joints. Materials Today: Proceedings 8(2), 2021, 1127–1136.
  • 23. Kravcova A, Kosturek R, Śnieżek L, Kluczyński J, Franek O, Morozov N, Maciejewski P: The influence of friction stir welded process parameters of AA2519-T62 on joint quality defined by non-destructive laser amplified ultrasonic method and by microstructure analysis. Acta Polytechnica 60(5), 2020, 415–419.
  • 24. Tamadon A, Pons D J., Sued K and Clucas D: Internal flow behaviour and microstructural evolution of the Bobbin-FSW welds: thermomechanical comparison between 1xxx and 3xxx aluminium grades. Advances in Materials Science, 21(2), 2021, 40–64.
  • 25. Mohan DG, Gopi S: Study on the mechanical behaviour of friction stir welded aluminium alloys 6061 with 5052. 2017 8th Industrial Automation and Electromechanical Engineering Conference, IEMECON, 2017, 147–152.
  • 26. Padhy G K, Wu C S, Gao S: Friction stir based welding and processing technologies – processes, parameters, microstructures and applications. A review. Journal of Materials Science & Technology, 34(1), 2018, 1–38.
  • 27. Mohan D G, Gopi S, Sasikumar A: Examining the mechanical and metallurgical properties of single pass friction stir welded dissimilar aluminium alloys tee joints, SVOA Materials Science &Technology, 3(1), 2021, 6–12.
  • 28. Wang W, Deng D, Mao Z, Tong Y, Ran Y: Influence of tool rotation rates on temperature profiles and mechanical properties of friction stir welded AZ31 magnesium alloy. International Journal of Advanced Manufacturing Technology, 88, 2017, 2191–2200.
  • 29. Mohan D G, Gopi S: A Review on friction stir welded T-joint. IJSTE - International Journal of Science Technology & Engineering, 2(07), 2016, 40–45.
  • 30. Dong H, Yang J, Li Y, Xia Y, Hao X, Li P, Sun D, Hu J, Zhou W, Lei M: Evolution of interface and tensile properties in 5052 aluminum alloy/304 stainless steel rotary friction welded joint after post-weld heat treatment. Journal of Manufacturing Processes. 51, 2020, 142–150.
  • 31. Mohan D G, Gopi S, Rajasekar V: Mechanical and corrosion-resistant properties of hybrid-welded stainless steel. Materials Performance, 57(1), 2018, 53–56.
  • 32. Yang J, Hu A, Li Y, Zhang P, Chandra Saha D, Yu Z: Heat input, intermetallic compounds and mechanical properties of Al/steel cold metal transfer joints. Journal of Materials Processing Technology, 272, 2019, 40–46.
  • 33. Kimura M, Suzuki K, Kusaka M, Kaizu K: Effect of friction welding condition on joining phenomena, tensile strength, and bend ductility of friction welded joint between pure aluminium and AISI 304 stainless steel. Journal of Manufacturing Processes, 25, 2017, 116–125.
  • 34. Pan L, Li P, Hao X, Zhou J, Dong H: Inhomogeneity of microstructure and mechanical properties in radial direction of aluminum/copper friction welded joints. Journal of Materials Processing Technology, 255, 2018, 308–318.
  • 35. Dong H, Li Y, Li P, Hao X, Xia Y, Yang G: Inhomogeneous microstructure and mechanical properties of rotary friction welded joints between 5052 aluminum alloy and 304 stainless steel. Journal of Materials Processing Technology, 272, 2019, 17–27.
  • 36. Jagadeesha C: Flow analysis of materials in friction stir welding. Journal of the Mechanical Behavior of Materials, 27(3-4), 2018, 20180020.
  • 37. Zhai M, Wu C, Su H: Influence of tool tilt angle on heat transfer and material flow in friction stir welding. Journal of Manufacturing Processes, 59, 2020, 98–112.
  • 38. Chen S, Han Y, Jiang X, Li X, Yuan T, Jiang W, Wang X: Study on in-situ material flow behaviour during friction stir welding via a novel material tracing technology. Journal of Materials Processing Technology, 297, 2021, 117205.
  • 39. Memon S, Tomków J, Derazkola H A: Thermo-mechanical simulation underwater friction stir welding of low carbon steel. Materials, 2021, 14(17), 2021, 4953.
  • 40. Memon S, Fydrych D, Fernandez A C, Derazkola H A, Derazkola H A: Effects of FSW tool plunge depth on properties of an Al-Mg-Si alloy T-joint: Thermomechanical modeling and experimental evaluation. Materials, 14(16), 2021, 4754.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b025ecbb-9990-4ecc-b571-641ec5971dac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.