PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical studies on the natural smoke venting of atria

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of numerical fluid mechanics to model smoke flow in buildings where a fire develops is common. It allows to check the effectiveness of ventilation systems at the design stage. It also gives the opportunity to determine the conditions that will be on escape routes. Numerical analyzes of smoke flow in buildings are most often performed using Fire Dynamics Simulator (FDS). The paper presents numerical analyzes performed for the atrium building. The purpose of the calculations was to build a numerical model that corresponds to the real object located in the laboratory in Murcia, Spain. The analyzes consisted of fitting a numerical model based on the temperature distribution at selected points of the atrium. The model mapped the geometry of the real building and assumed the same fire power. Calculations showed high temperature compliance throughout the atrium, except for the vicinity of the fire source itself.
Słowa kluczowe
Rocznik
Strony
135--144
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • MSc.; Department of Heating, Ventilation and Dust Removal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland
  • PhD Eng.; Department of Heating, Ventilation and Dust Removal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland
Bibliografia
  • [1] Klote, J.H., Milke, J.A., Turnbull, P.G., Kashef, A., Ferreira, M.J. (2012). Handbook of Smoke Control Engineering. ASHRAE, Atlanta, GA.
  • [2] Mowrer, F.W. (2009). Driving forces for smoke movement and management. Fire Technology 45, 147-162.
  • [3] Król, M., Król, A. (2017). Wind influence on a building with the natural smoke removal system. Architecture Civil Engineering Environment 3(10), 119-126.
  • [4] McGrattan, K. Hostikka, S. McDermott, R. Floyd, J. Weinschenk C., Overholt, K. (2015). NIST Special Publication 1019 Fire Dynamics Simulator User’s Guide Version 6, National Institute of Standards and Technology.
  • [5] Ayala, P., Cantizano, A., Gutierrez-Montes, C., Rein, G. (2013). Influence of atrium roof geometries on the numerical predictions of fire tests under natural ventilation conditions. Energy and Buildings 65, 382-390.
  • [6] Capote, J.A., Alvear, D., Abreu, O.V., Lazaro, M., Espina, P. (2009). Scale tests of smoke filling in large atria. Fire Technology 45, 201-220.
  • [7] Ray, S.D., Gong, N.-W., Glicksman, L.R., Paradiso, J.A. (2014). Experimental characterization of fullscale naturally ventilated atrium and validation of CFD simulations. Energy and Buildings 69, 285-291. doi:10.1016/j.enbuild.2013.11.018
  • [8] Rundle, C.A., Lightstone, M.F., Oosthuizen, P., Mouriki, E., (2011). Validation of computational fluid dynamics simulations for atria geometries. Building and Environment 46, 1343-1353.
  • [9] Tilley, N., Merci, B. (2009). Application of FDS to adhered spill plumes in atria. Fire Technology 45, 179-188.
  • [10] Tilley, N., Merci, B. (2013). Numerical study of smoke extraction for adhered spill plumes in atria: impact of extraction rate and geometrical parameters. Fire Safety Journal 55, 106-115.
  • [11] Tilley, N., Rauwoens, P., Merci, B. (2011). Verification of the accuracy of CFD simulation in small-scale tunnel and atrium fire configurations. Fire Safety Journal 46, 186-193.
  • [12] Yang, P., Tan, X., Xin, W. (2011). Experimental study and numerical simulation for a storehouse fire accident. Building and Environment 46, 1445-1459.
  • [13] Xiao, B. (2012). Comparison of numerical and experimental results of fire induced doorway flows. Fire Technology 48, 595-614.
  • [14] Król M. (2016). Numerical studies on the wind effects on natural smoke venting of atria. International Journal of Ventilation 15, 67-78.
  • [15] Król M., Król A. (2017). Multi-criteria numerical analysis of factors influencing the efficiency of natural smoke venting of atria. Journal of Wind Engineering & Industrial Aerodynamics 170, 149-161.
  • [16] Węgrzyński W., Krajewski G. (2017). Combined Wind Engineering, Smoke Flow and Evacuation Analysis for a Design of a Natural Smoke and Heat Ventilation System. Procedia Engineering 172, 1243-1251.
  • [17] Alaya P., Cantizano A., Rien G., Vigne G., GutierrezMontes C. (2016). Fire Experiments and Simulations in a Full-Scale Atrium Under Transient and Asymmetric Venting Conditions. Fire Technology 52, 51-78.
  • [18] Gutierrez-Montes C., Sanmiguel-Rojas E., Burgos M.A., Viedma A. (2012). On the fluid dynamics of the make-up inlet air and the prediction of anomalous fire dynamics in a large-scale facility. Fire Safety Journal 51, 27-41.
  • [19] Gutierrez-Montes C., Sanmiguel-Rojas E., Kaiser A.S., Viedma A. (2008). Numerical model and validation experiments of atrium enclosure fire in a new fire test facility. Building and Environment 43, 1912-1928.
  • [20] Gutierrez-Montes C., Sanmiguel-Rojas E., Viedma A. (2010). Influence of different makeup air configurations on the fire-induced conditions in an atrium. Building and Environment 45, 2458-2472.
  • [21] Gutierrez-Montes C., Sanmiguel-Rojas E., Viedma A., Rien G. (2009). Experimental data and numerical modeling of 1.3 and 2.3 MW fires in a 20 cubic atrium. Building and Environment 44, 1827-1839.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0251e71-0925-4e5d-ba6f-3a80e9a27110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.