Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Modelowanie występowania wód gruntowych pochodzenia krasowego w regionie Tepal w Iranie metodą badania sekwencyjnego dla potrzeb prac poszukiwawczych
Języki publikacji
Abstrakty
The purpose of this study is water prospectivity modeling (WPM) for recognizing karstic water-bearing zones by using analyses of geo-exploration data in Kal-Qorno valley, located in Tepal area, north of Iran. For this, a sequential exploration method applied on geo-evidential data to delineate target areas for further exploration. In this regard, two major exploration phases including regional and local scales were performed. In the first phase, indicator geological features, structures and lithological units, were used to model groundwater prospectivity as a regional scale. In this phase, for karstic WPM, fuzzy lithological and structural evidence layers were generated and combined using fuzzy operators. After generating target areas using WPM, in the second phase geophysical surveys including gravimetry and geoelectrical resistivity were carried out on the recognized high potential zones as a local scale exploration. Finally the results of geophysical analyses in the second phase were used to select suitable drilling locations to access and extract karstic groundwater in the study area.
W pracy modelowano przepływy wód gruntowych w celu rozpoznania warstw wodonośnych wód pochodzenia krasowego dla potrzeb prac poszukiwawczych, poprzez analizę danych geologicznych i poszukiwawczych z rejonu doliny Kal-Qorno w regionie Tepal, w północnej części Iranu. W oparciu o analizę sekwencyjną danych geologicznych wytyczono granice obszarów do dalszych badań poszukiwawczych. Analiza obejmuje dwa zasadnicze etapy, z uwzględnieniem skali regionalnej oraz lokalnej. W pierwszym etapie w oparciu o dane o strukturach geologicznych i właściwościach skał modelowano możliwości występowania wód w aspekcie skali regionalnej. Na tym etapie w ramach poszukiwań warstw wodonośnych pochodzenia krasowego zamodelowano warstwy struktur skalnych dowodzące występowania wód w oparciu o podejście logiki rozmytej. Po wytyczeniu obszarów docelowych, w drugim etapie badań przeprowadzono szczegółowe analizy geofizyczne z wykorzystanie grawimetrii i badań oporności geo-elektrycznej w strefach potencjalnego występowania wód, w aspekcie badania w skali lokalnej. W końcowym etapie, wyniki analiz geofizycznych otrzymane w drugim etapie procedury wykorzystane zostały do wyznaczenia miejsc wykonania odwiertów do uzyskania wód gruntowych pochodzenia krasowego w badanym terenie.
Wydawca
Czasopismo
Rocznik
Tom
Strony
509--530
Opis fizyczny
Bibliogr. 91 poz., rys., tab., wykr.
Twórcy
autor
- Shahrood University of Technology, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood, Iran
autor
- Shahrood University of Technology, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood, Iran
autor
- Shahrood University of Technology, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood, Iran
autor
- Malayer University, Faculty of Engineering, Malayer, Iran
autor
- Shahrood University of Technology, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood, Iran
Bibliografia
- [1] Afrasiabian A., 1998. Importance of study and research on karst water resources on Iran. Proceeding on the 2nd international symposium on karst water resources, Tehran, Kermanshah, Iran, 126-137.
- [2] Ahr W.M., 2011. Geology of carbonate reservoirs: the identification, description and characterization of hydrocarbon reservoirs in carbonate rocks. John Wiley & Sons.
- [3] Alammareen A.M., 2010. Groundwater Exploration in Karst.
- [4] Beucher A., Fröjdö S., Österholm P., Martinkauppi A., Edén P., 2014. Fuzzy logic for acid sulfate soil mapping: Application to the southern part of the Finnish coastal areas. Geoderma, 226, 21-30.
- [5] Bonham-Carter G.F., 1994. Geographic information systems for geoscientists: modeling with GIS. Pergamon Press, NewYork.
- [6] Bressan M.A., Anjos C.D., 2003. Techniques of remote sensing applied to the environmental analysis of part of an aquifer located in the São José Dos Campos region SP, Brazil. Environ. Monit. Assess. 84, 99-109.
- [7] Carranza E.J.M., 2008. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Handbook of Expration and Environmental Geochemistry. Elsevier, Amsterdam.
- [8] Carrière S.D., Chalikakis K., Sénéchal G., Danquigny C., Emblanch C., 2013. Combining Electrical Resistivity Tomography and Ground Penetrating Radar to study geological structuring of karst Unsaturated Zone. J. Appl. Geophys. 94, 31-41.
- [9] Chalikakis K., Plagnes V., Guerin R., Valois R., Bosch F.P., 2011. Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeol. J. 19 (6), 1169-1180.
- [10] Chang Parvathinathan G., Breeden J.B., 2008. Combining GIS with fuzzy muticriteria decision-makng for landfill siting in a fast-growing urban region. J. Environ. Manage. 87, 139-153.
- [11] Chenini I., Mammou A.B., Moufida E.M., 2010. Groundwater recharge zone mapping using GIS-based multi-criteria analysis: a case study in Central Tunisia (Maknassy Basin). Water Resour. Manage. 24 (5), 921-939.
- [12] Chowdhury A., Jha M.K., Chowdary V.M., Mal B.C., 2009. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int. J. Remote Sens. 30 (1), 231-250.
- [13] De Geoffroy J.G., Wignall T.K., 1985. designing optimal strategies for mineral exploration. Plenum press, New york and London.
- [14] Deceuster J., Delgranche J., Kaufmann O., 2006. 2D cross-borehole resistivity tomographies below foundations as a tool to design proper remedial actions in covered karst. J. Appl. Geophys. 60, 68-86.
- [15] Drury S.A., Pert R.J., Deller M.E., 2001. Hydrogeological potential of major fractures in Eritrea. J. Afr. Earth. Sci. 32, 163-177.
- [16] Edwards P., & Bowen P., 2013. Risk management in project organisations. Routledge.
- [17] Elez J., Cuezva S., Fernandez-Cortes A., Garcia-Anton E., Benavente D., Cañaveras J.C., Sanchez-Moral S., 2013. A GIS-based methodology to quantitatively define an Adjacent Protected Area in a shallow karst cavity: The case of Altamira cave. J. Environ. Manage. 118, 122-134.
- [18] Ford A., & Hart C.J., 2013. Mineral potential mapping in frontier regions: A Mongolian case study. Ore Geology Reviews 51, 15-26.
- [19] Ford D., Williams P., 2007. Karst Hydrogeology and Geomorphology. John Wiley & son Ltd, England.
- [20] Francese R., Mazzarini F., Bistacch, A., Morelli G., Pasquarè G., Praticelli N., Robain H., Wardell N., Zaja A., 2009. A structural and geophysical approach to the study of fractured aquifers in the Scansano-Magliano in Toscana Ridge, southern Tuscany, Italy. Hydrogeol. J. 17, 1233-1246.
- [21] Garcia-Moreno I., Mateos R.M., 2011. Sinkholes related to discontinuous pumping: susceptibility mapping based on geophysical studies, The case of Crestatx (Majorca, Spain). Environmental Earth Sciences 64, 523-537.
- [22] Gautam P., Pant S.R., Ando H., 2000. Mapping of subsurface karst structure with gamma ray and electrical resistivity profiles: a case study from pokharavally, centeral Nepal. J. Appl. Geophys. 45, 97-110.
- [23] Ghayoumian J., Mohseni Saravi M., Feiznia S., Nouri B., Malekian A., 2007. Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. J. Asian Earth Sci. 30 (2), 364-374.
- [24] Gibson P.J., Lyle P., George D.M., 2004. Application of resistivity and magnetometry geophysical techniques for near-surface investigations in Karstic terrains in Irland. Journal of cave and karst Studies 66, 35-38.
- [25] Goldscheider N., Drew D., 2007. Methods in Karst Hydrogeology. Taylor & Francis Group, London, UK.
- [26] Gupta M., Srivastava P.K., 2010. Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int. 35 (2), 233-245.
- [27] Hall G.B., Wang F., Subaryono, 1992. Comparison of Boolean and Fuzzy classification methods in land suitability analysis by using geographical information systems. Environment and Planning. 24, 497-516.
- [28] Hengl T., 2006. Finding the right pixel size. Comput. Geosci. 32, 1283-1298.
- [29] Hung L.Q., Batelaan O., De Smedt F., 2005. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Souimuoi tropical karst catchment, Vietnam. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology. 5983, 1-12.
- [30] Hung L.Q., Dinh N.Q., Batelaan O., Tam V.T., Lagrou D., 2002. Remote sensing and GIS-based analysis of cave development in the Suoimuoi catchment (Son La-NW Vietnam). Journal of Cave and Karst Studies 64 (1), 23-33.
- [31] Jaiswal R.K., Mukherjee S., Krishnamurthy J., Saxena R., 2003. Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development-an approach. Int. J. Remote Sens. 24, 993-1008.
- [32] Jardani A., Dupont J.P., Revil A., 2006a. Self-potential signals associated with preferential groundwater flow pathways in sinkholes. J. Geophys. Res. 111, 1-13.
- [33] Kann S.D., Glenn N.F., 2006. New strike-slip faults and litho-units mapped in Chitral (n. Pakistan) using field and ASTER data yield regionally significant results. Int. J. Remote Sens. 27 (20), 4495-4512.
- [34] Kaufmann G., Romanov 2009. Geophysical investigation of a sinkhole in the northern Harz foreland (North Germany). Environ. Geol. 58, 401-405.
- [35] Kaufmann O., Quinif Y., 2002. Geohazard map of cover-collapse sinkholes in the Tournaisis area, southern Belgium. Eng. Geol. 65, 117-124.
- [36] Kirsch R. 2006. Groundwater geophysics (Vol. 493). Heidelberg: Springer.
- [37] Kirsch R., 2006. Groundwater Geophysics-a Tool for Hydrogeology, Springer-Verlag Berlin Heidelberg p. 85-116.
- [38] Koch M., Mather P.M., 1997. Lineament mapping for groundwater resource assessment: a comparison of digital synthetic aperture (SAR) imagery and stereoscopic large format camera (LFC) photographs in the Red Sea Hills, Sudan. Int. J. Remote Sens. 18, 1465-1482.
- [39] Lattman L.H., Parizek R.R., 1964. Relationship Between Fracture Traces and the Occurrence of Ground Water in Carbonate Rocks. J. Hydrol. 2, 73-91.
- [40] Lee S., Kim Y.S., Oh H.J., 2012. Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J. Environ. Manage. 96 (1), 91-105.
- [41] Legtchenko A., 2013. Magnetic Resonance Imaging for Groundwater. Wiley-ISTE.
- [42] Loke M.H., 2001. Tutorial: 2-D and 3-D electrical imaging surveys. Course Notes for USGS Workshop.
- [43] Mabee S.B., Hardcastle K.C., Wise D.W., 1994. A method of collecting and analyzing lineaments for regionalscale fractured bedrock aquifer studies. Ground Water. 32, 884-894.
- [44] Mabee S.D., 1999, Factors Influencing Well Productivity in Glaciated Metamorphic Rocks. Ground Water. 37 (1), 88-97.
- [45] Maiti S., Erram V.C., Gupta G., Tiwari R.K., 2012. ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). Journal of Hydrology 464, 294-308.
- [46] Marcak H., Golebiowski T., Tomecka-Suchon S., 2008. Geotechnical analysis and 4D GPR measurements for the assessment of the risk of sinkholes occurring in a Polish mining area. Near Surface Geophysics 6(4), 233-243.
- [47] Margiotta S., Negri S., Parise M., Valloni R., 2012. Mapping the susceptibility to sinkholes in coastal areas, based on stratigraphy, geomorphology and geophysics. Natural Hazards. 62, 657-676.
- [48] Martínez-Moreno F.J., Galindo-Zaldívar J., Pedrera A., Teixido T., Ruano P., Peña J.A., Martín-Rosales W., 2014. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). Journal of Applied Geophysics.
- [49] Meijerink A.M.J., Bannert D., Batelaan O., Lubczynski M.W., Pointet T., 2007. Remote Sensing Applications to Groundwater. In IHP-VI, Series on Groundwater no. 16, United Nations Educational, Scientific and Cultural Organization, Paris, France.
- [50] Mogaji K.A., Aboyeji O.S., Omosuyi G.O., 2011. Mapping of lineaments for groundwater targeting in the basement complex region of Ondo State, Nigeria, using remote sensing and geographic information system (GIS) techniques. International Journal of Water Resources and Environmental Engineering 3 (7), 150-160.
- [51] Morelli M., Piana F., 2006. Comparison between remotely sensed lineaments and geological structures in intensively cultivated hills (Monferrato and Langhe domains, NW Italy). Int. J. Remote Sens. 27 (20), 4471-4493.
- [52] Moustafa S.S., Alarifi N., Naeem M., Jafri M. K., 2014. An integrated technique for delineating groundwater contaminated zones using geophysical and remote sensing techniques: a case study of Al-Quway’iyah, central Saudi Arabia. Canadian Journal of Earth Sciences 51 (8), 797-808.
- [53] Nag S.K., Saha, S., 2014. Integration of GIS and Remote Sensing in Groundwater Investigations: A Case Study in Gangajalghati Block, Bankura District, West Bengal, India. Arabian Journal for Science and Engineering 1-11.
- [54] Nampak H., Pradhan B., Abd Manap M. 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 513, 283-300.
- [55] Nguyen F., Garambois S., Chardon D., Hermitte D., Bellier O., Jongmans D., 2007. Subsurface electrical imaging of anisotropic formations affected by a slow active revers fault, Provence, France. J. Appl. Geophys. 62, 338-353.
- [56] Parizek R.P., 1976. On the nature and significance of fracture traces and lineaments in carbonate and other terrains. In: Yevejevich, V. karst hydrology and water resources, Water resources publications, Colorado, USA. 1, 47-100.
- [57] Park Y., Lee K., Kim S.H., 2000. Effects of Highly Permeable Geological Discontinuities upon Groundwater Productivity and Well Yield. Math. Geol. 32 (5), 605-615.
- [58] Perttu N., Person L., ErlstrÖm M., Elming S., 2012. Magnetic resonance sounding and radiomagnetotelluric measurements used to characterize a limestone aquifer in Gotland Sweden. J. Hydrol. 424, 184-195.
- [59], 2006. mineral potential mapping with Mathematical Geological Models. Ph.D. Thesis, University of Utrecht, The Netherlands, ITC (International Institute for Geo-Information Science and Earth Observation) Publication No. 130, Enschede.
- [60] Porwal A., Carranza E.J.M., Hale M., 2003. Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Nat. Resour. Res. 12, 1-25.
- [61] Qarqori K.H., Rouai M., Moreau F., Saracco G., Dauteuil O., Hermitte D., Boualoul M., Le Carlier de Veslud C., 2012. Geoelectrical Tomography Investigating and Modeling of Fractures Network around Bittit Spring (Middle Atlas, Morocco). International Journal of Geophysics.
- [62] Rather J.A., Zameer A.B., Andrabi R., 2012. Fuzzy Logic Based GIS Modeling for Identification of Ground Water Potential Zones in the Jhagrabaria Watershed of Allahabad District, Uttar Pradesh, India. International Journal of Advances in Remote Sensing and GIS 1 (2), 218-233.
- [63] Ravi Shankar M.N., Mohan G., 2006. Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan Volcanic Province of India. Journal of Environmental Geology 49, 990-998.
- [64] Reynolds J.M., 2011. An introduction to applied and environmental geophysics. John Wiley & Sons.
- [65] Riyadh R.Y., Ros Fatihah M., Samsudin H.T., 2013. Integrated Techniques To Identify Consequences Of Sinkhole Hazards For Constructing Housing Complexes On Carbonate Karst Terrains In Perak, Peninsular Malaysia. International Journal of Engineering Research & Technology (IJERT). 2 (7), 2292-2328.
- [66] Robert T., 2012. Geophysical identification, characterization, and monitoring of preferential groundwater flow paths in fractured media.
- [67] Robert T., Dassargues A., Brouyère S., Kaufmann O., Hallet V., Nguyen F., 2011. Assessing the contribution of electrical resistivity tomography (ERT) and self-potential (SP) methods for a water well drilling program in fractured/karstified limestones. Journal of Applied Geophysics 75 (1), 42-53.
- [68] Roberts R.G., Sheahan P., Cherry M.E., 1988. Ore Deposit Models. Geoscience Canada Reprint Series 3, Geological Association of Canada, Newfoundland.
- [69] Rodell M., Famiglietti J.S., 2002. the potential for satellite-based monitoring of groundwater storage changes using Grace: the High Land Plains aquifer, Central US. J. Hydrol. 263, 245-256.
- [70] Schowengerdt 1997. Remote Sensing 2nd Ed, Elsevier (Academic Press).
- [71] Sener E., Davraz A., Ozcelik M., 2005. An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeol. J. 13, 826-834.
- [72] Shahid S., Nath S.K., Kamal A.S.M.M., 2002. GIS integration of remote sensing and topographic data using fuzzy logic for ground water assessment in Midnapur District, India. Geocarto Int. 17 (3), 69-74.
- [73] Srinivasa Rao, Y., Jugran, D.K., 2003. Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrol. Sci. J. 48, 821-833.
- [74] Srivastava P.K., Bhatacharya A., 2006. Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int. J. Remote Sens. 27, 4599-4620.
- [75] Subba Rao N., 2006. Groundwater potential index in a crystalline terrain using remote sensing data. Journal of Environ. Geol. 50, 1067-1076.
- [76] Suski B., Lander F., Baron L., Vuataz F.D., Philippossian F., Holliger K., 2008. Detection and characterization of hydraulically active fractures in carbonate aquifer: results from self-potential, temperature and fluid electrical conductivity logging in the Combioula hydrothermal system in the southwestern Swiss Alps. Hydrogeol. J. 16, 1319-1328.
- [77] Suzen M.L., Toprak V., 1998. Filtering of satellite images in geological lineament analysis: an application to a fault zone in central Turkey. Int. J. Remote Sens. 6, 1101-1114.
- [78] Van Beynen P.E., Niedzielski M.A., Bialkowska-Jelinska E., Alsharif K., Matusick J., 2012. Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida. Appl. Geogr. 32 (2), 868-877.
- [79] Vasconcelos I., Grechka V., 2007. Seismic characterization of multiple fracture sets at Rulison Field, Colorado. Geophysics 72, B19-B30.
- [80] Vaziri S.H., Majidifard M.R., Saidi A., 2001. Geological map of Iran 1:100,000 sheet No. 6962, geological survey of Iran.
- [81] Yang Y.S., Li Y.Y., Cui D.H., 2013. Identification of karst features with spectral analysis on the seismic reflection data. Environmental Earth Sciences. Springer-Verlag Berlin Heidelberg.
- [82] Yeboah-Forson A., Comas X., Whitman D., 2014. Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer. Journal of Hydrology 515, 129-138.
- [83] Yousefi M., Kamkar-Rouhani A., Carranza E.J.M., 2014. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem. Explor. Environ. Anal. 14 (1), 45-58.
- [84] Yousefi M., Kamkar-Rouhani A., Carranza E.J.M., 2012. Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J. Geochem. Explor. 115, 24-35.
- [85] Yousefifar S., Khakzad A., Asadi Harooni H., Karami J., Jafari M.R., Vosoughi Abedin M., 2011. Prospecting of Au and Cu bearing targets by exploration data combination in southern part of Dalli Cu-Au porphyry deposit, central Iran. Archives of Mining Sciences 56, 21-34.
- [86] Youssef A.M., El-Kaliouby H.M., Zabramawi Y.A., 2012. Integration of remote sensing and electrical resistivity methods in sinkhole investigation in Saudi Arabia. J. Appl. Geophys. 87, 28-39.
- [87] Zadeh L.A., 1965. Fuzzy sets. IEEE Information and Control 8 (3), 338-353.
- [88] Zahiri H., Palamra D.R., Flentje P., Brassington G.M., Baafi E., 2006. A GIS-based Weights-of-Evidence model for mapping cliff instabilities associated with mine subsidence. Environ. Geol.
- [89] Zarroca, M., Bach, J., Linares, R., Pellicer, X. M., 2011. Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). Journal of Hydrology 409 (1), 407-422.
- [90] Zimmermann H.J., 1991. Fuzzy sets. IEEE Information and Control 8 (3), 338-353.
- [91] Zuo R., 2011. Exploring the effects of cell size in geochemical mapping. J. Geochem. Explor.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0241626-0e4f-497b-a164-e030d94f9f86