PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości mechaniczne i inżynierskie kompozytów cementowych zawerające dodatek dwóch rodzajów włókien

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Mechanical performance of engineered cementitious composites developed with different modulus fibers
Języki publikacji
PL EN
Abstrakty
PL
W niniejszej pracy podjęto próbę poprawy właściwości cementowych kompozytów konstrukcyjnych [CKK] stosując dodatek dwóch rodzajów włókien. Zbadano pięć różnych dodatków włókien, w tym trzy składy z pojedynczym rodzajem włókien o udziale objętościowym 2,0%, natomiast pozostałe dwie mieszanki hybrydowe zostały opracowane z dwoma rodzajami włókiem. Składy hybrydowych CKK ustalono stosując mieszaninę włókien o małym module - włókna z poli(alkoholu winylowego) i włókien o dużym module - stalowych i szklanych. Trzy warianty składu wykonano z włókien metalowych, szklanych i włókien z poli(alkoholu winylowego). Hybrydowe mieszanki włókien przygotowano mieszając 2/3 włókien z poli(alkoholu winylowego) i 1/3 włókna metalicznego w udziale łącznym wynoszącym 2,0% objętościowych oraz 2/3, włókien z poli(alkoholu winylowego) oraz 1/3 włókien szklanych. Ta metoda dała dobry wynik z punktu widzenia właściwości CKK, przy rozciąganiu i zginaniu. Na podstawie tych wyników stwierdzono, że włókno z poli(alkoholu winylowego) w udziale 2/3 i włókno szklane o udziale 1/3, z sumarycznym udziałem objętościowym 2,0%, wykazują korzystne właściwości.
EN
In this study, an effort was taken to progress the performance of Engineered Cementitious Composites [ECC] mix, by incorporating two different fibers. Five different proportions were subjected to investigation, in this three different proportions were developed with single fiber with 2.0% volume fraction, other two proportions were with two types of fibers. Hybrid ECC proportions were organized through the mixture of low-modulus fibers [poly(vinyl alcohol) fiber] and high-modulus fibers [steel and glass fibers]. Three proportions were made with metallic, glass fiber and poly vinyl alcohol fiber. The hybridation proportions were made with a 2/3 fraction of poly vinyl alcohol fiber and 1/3 fraction of the metal fiber in 2.0% of volume fraction and accompanied with poly vinyl alcohol fiber 2/3 fraction and 1/3 fraction of glass fiber. This procedure has a good rate of success in tensile and bending behavior of ECC mix. From this effort, it was concluded that poly(vinyl alcohol) fiber 2/3 fraction and 1/3 fraction of glass fiber in 2.0% volume fraction, displayed reasonable traits.
Czasopismo
Rocznik
Strony
493--502
Opis fizyczny
Bibliogr. 31 poz., il., tab.
Twórcy
  • Department of Civil Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
  • Department of Civil Engineering, Marri Laxman Reddy Institute of Technology and Management, Dundigal, Hyderabad, Telangana, India
  • Department of Civil Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
Bibliografia
  • 1. A. Hillerborg, Analysis of one single crack. Fracture Mechanics of Concrete (Developments in civil engineering), 223-249, (1983).
  • 2. Z. Lin and V. C. Li, Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. Journal of the Mechanics and Physics of Solids, 45(5), 763-787, (1997).
  • 3. V. C. Li, Engineered cementitious composites-tailored composites through micromechanical modeling, in Fiber Reinforced Concrete: Present and the Future. N. Banthia, A. Bentur, A. Mufti (Eds.), Canadian Society for Civil Engineering, Montreal, 64-97 (1998).
  • 4. R. Zhang, K. Matsumoto, T. Hirata, Y. Ishizeki, J. Niwa, Application of PP-ECC in beam-column joint connections of rigid-framed railway bridges to reduce transverse reinforcements. Eng. Struct. 86, 146-156, (2015).
  • 5. H. M. E.-D. Afefy M. H. Mahmoud, Structural performance of RC slabs provided by pre-cast ECC strips in tension cover zone. Constr. Build. Mater. 65, 103-113, (2014).
  • 6. Y. Y. Kim, G. Fischer, V. C. Li, Performance of bridge deck link slabs designed with ductile engineered cementitious composite. ACI Struct. J. 101(6), 792-801, (2004).
  • 7. Y. Y. Kim, G. Fischer, Y. M. Lim, V. C. Li, Mechanical performance of sprayed engineered cementitious composite using wet-mix shotcreting process for repair applications. ACI Mater. J. 101(1), 42-49, (2004).
  • 8. H. Inaguma, M. Seki, K. Suda, K. Rokugo. Experimental study on crack-bridging ability of ECC for repair under train loading, in Proceedings of International Workshop on HPFRCC in Structural Applications. Rilem Publications, PRO, (2006).
  • 9. S. Kojima, N. Sakata, T. Kanda, T. Hiraishi, Application of direct sprayed ECC for retrofitting dam structure surface-application for Mitaka-Dam. Concr. J. 42(5), 135-139, (2004).
  • 10. M. Maruta, T. Kanda, S. Nagai, Y. Yamamoto, New high-rise RC structure using pre-cast ECC coupling beam. Concr. J. 43(11), 18-26, (2005).
  • 11. H.-K. Choi, B.-I. Bae, C.-S. Choi, Lateral resistance of unreinforced masonry walls strengthened with engineered cementitious composite. Int. J. Civil Eng. 14(6), 411-424, (2016).
  • 12. Y. Zhang, W. Lv, H. Peng, Shear resistance evaluation of strain-hardening cementitious composites member. Int. J. Civil Eng. 16, 255-261, (2018).
  • 13. E. B. Pereira, G. Fischer, J. A. Barros, Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites. Cem. Concr. Comp. 34(10), 1114-1123, (2012).
  • 14. G. A. Krishnaraja. A.R., Hari Prasath.T., Meianbesh. S., Study on New Hydrid Engineered Cementitious Composites for Structural Application. Int. J. Sci. Eng. Techn. 6(4), 132-134, (2017).
  • 15. A. Krishnaraja, N. Sathishkumar, T. S. Kumar, P. D. Kumar, Mechanical behaviour of geopolymer concrete under ambient curing. Int. J. Sci. Eng. Techn. 3(2), 130-132, (2014).
  • 16. S. Somasundaram, K. A. Ramasamy, G. S. Mallika. Development of light weight engineered cementitious composites. in: AIP Conference Proceedings. AIP Publishing LLC, (2020).
  • 17. A. Krishnaraja K. Guru. 3D Printing Concrete: A Review. in: IOP Conference Series: Materials Science and Engineering. IOP Publishing (2021).
  • 18. M. K. C. Varthi, M. Sivaraja, A. Krishnaraja, M. Jegan, Flexural Performance of Hybrid Fiber Reinforced Concrete Beams using Textile and Steel Fiber (2020).
  • 19. K. Benish, O. Inderyas, and M. Tufail, Performance evaluation of high performance concrete in non-destructive & destructive testing. Ciencia e Tecnica, 31(1), 111-123.
  • 20. S. M. Hama, Effective of chicken wire as a steel fibers on some properties of concrete comparison with commercial steel fibers. Ciencia e Tecnica, 31(2), 227-236, (2016).
  • 21. P. Vignesh, A. Krishnaraja, and N. Nandhini, Study on Mechanical properties of Geo Polymer Concrete Using M-Sand and Glass Fibers. Int. J. Innovative Res. Sci. Eng. Techn. 3(2), 110-116, (2014).
  • 22. IS 9103: Concrete Admixtures. Indian Standard, New Delhi, (1999).
  • 23. H. K. R. Fiaq M. Sarhan Alzwainy, Rana I. K. Zaki, Meta-analysis of fiber impact on mechanical properties of ultra-high performance concrete. Ciência e Técnica, 31(6), 101-113, (2016).
  • 24. IS 4031- Part 6: Methods of physical tests for hydraulic cement. Indian Standard, New Delhi, (1988).
  • 25. J. W. Bang, G. Ganesh Prabhu, Y. I. Jang, Y. Y. Kim, Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate. Int. J. Polym. Sci. 2015, 12, (2015).
  • 26. S.-J. Jang, D.-H. Kang, K.-L. Ahn, H.-D. Yun, S.-W. Kim, W.-S. Park, Strain-Hardening and Cracking Behavior of Fiber-Reinforced Sustainable Cement Composites under Direct Tension (2015).
  • 27. Z. Pan, C. Wu, J. Liu, W. Wang, J. Liu, Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater. 78, 397-404, (2015).
  • 28. A. Krishnaraja, S. Anandakumar, and M. Jegan, Mechanical performance of hybrid engineered cementitious composites. Cem. Wapno Beton, 23(6), 479-486, (2018).
  • 29. A. Krishnaraja, S. Kandasamy, and M. Kowsalya, Influence of polymeric and non-polymeric fibers in hybrid engineered cementitious composites. Revista Romana Mater. 48(4), 507, (2018).
  • 30. A. R. Krishnaraja, S. Anandakumar, M. Jegan, T. S. Mukesh, K. S. Kumar, Study on impact of fiber hybridization in material properties of engineered cementitious composites. Matéria (Rio de Janeiro), 24(2) (2019).
  • 31. V. Li, Engineered Cementitious Composites (ECC) Material, Structural, and Durability Performance. Concrete Construction Engineering Handbook, Chapter 24 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b01e13e6-5ede-4571-a9f8-dda43fde0589
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.