PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektrotermiczna synteza nanorurek węglowych pod ciśnieniem atmosferycznym

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W rozprawie przedstawiono wybrane zagadnienia związane z termicznym procesem syntezy nanorurek węglowych w reaktorach pod ciśnieniem atmosferycznym. Po wstępie, w rozdziale pierwszym zostały przedstawione zagadnienia I podstawowe dotyczące syntezy i wzrostu nanorurek węglowych oraz możliwości zastosowania nanorurek węglowych w różnych gałęziach przemysłu. Kolejny rozdział zawiera przegląd metod syntezy nanorurek węglowych w reaktorach pracujących pod obniżonym ciśnieniem. W rozdziale tym zawarto przegląd kilku wybranych metod syntezy, w tym metodę elektrołukową, która była etapem pierwszych prac autora i dała mu w tym zakresie niezbędne doświadczenie. Kolejnych sześć rozdziałów to główna część pracy. W rozdziale trzecim są opisane nowo opracowane i zbudowane reaktory do syntezy nanorurek węglowych metodami elektrotermicznymi pod ciśnieniem atmosferycznym. Powstały one w znacznej większości z udziałem autora pracy. Rozdział ten zawiera również opisy konstrukcji reaktorów i obliczenia termiczne komory reakcyjnej, a także przebieg procesu termodynamicznego i analizę doboru reagentów. Skupiono się głównie na reaktorach z rezystancyjnym wytwarzaniem ciepła oraz na reaktorach wykorzystujących plazmę mikrofalową. W końcowej części rozdziału przedstawiono reaktor do syntezy nanorurek węglowych na podłożu ruchomym. Kolejne rozdziały zawierają wyniki prac nad syntezą nanorurek węglowych oraz analizę tych wyników. W rozdziale czwartym przedstawione zostały wyniki badań wykonanych w nowatorskim układzie syntezy nanorurek węglowych w przestrzeni gazowej. Wykorzystywana w nim plazma mikrofalowa jest źródłem energii niezbędnej do aktywacji katalizatora, a także do syntezy nanorurek węglowych, która zachodzi w przestrzeni gazowej. Kolejny rozdział zawiera wyniki badań syntezy i osadzania nanorurek na różnych podłożach. Zaprezentowano w nim badania termicznej syntezy nanorurek węglowych na podłożach wykonanych z krzemu, folii stalowej (stal nierdzewna) oraz na podłożach nieprzewodzących prądu elektrycznego (materiały włókiennicze). W odrębnych podrozdziałach opisane są również możliwości zastosowania dodatkowych czynników zewnętrznych wpływających na dynamikę termicznego procesu syntezy nanorurek węglowych. Analizowano, między innymi, wpływ wody i wodoru na efektywność procesu. W pracy zawarto syntetyczny opis stosowanych podłoży oraz sposobu ich przygotowania do nanoszenia nanorurek węglowych. Kolejna część pracy stanowi kompendium doboru katalizatorów umożliwiających termiczne przyśpieszenie opisywanych procesów. Przedstawiono metody charakteryzacji nanorurek węglowych oraz służące ich oczyszczaniu. W tej części pracy przedstawiono także metody mogące służyć diagnostyce nanorurek węglowych. W kolejnym rozdziale są zawarte informacje dotyczące funkcjonalizacji nanorurek węglowych. Dodatkowo, zostały zawarte przykładowe testy podłoży uzyskanych w badaniach, mogących służyć do otrzymywania elektrod superkondensatorów.
EN
The dissertation discusses selected topics related to the thermal processes of carbon nanotubes synthesis at atmospheric pressure reactors. The first part presents basics of the synthesis, growth and most popular targeting of carbon nanotubes including application in various industries. This part also provides an overview of a few selected synthesis methods including the arc method, which was the first step in the author’s researches and allowed him to gain the necessary experience. The second part consists of six chapters, which state the main section of this dissertation. The third chapter describes the newly developed and built reactors for the synthesis of CNTs by electrothermal methods at atmospheric pressure. The author made a large contribution to the development of the mentioned reactors. This chapter also contains descriptions of the construction of reactors, descriptions of the thermodynamic process, thermal chamber reaction calculations and analysis of selected reagents. Author focused in his work mainly on resistive heating reactors and those using microwave plasma. The reactor for the synthesis of carbon nanotubes on a moving substrate is also presented in the end of this section. Next chapters contain results of research on CNTs synthesis and the analysis of these results. The fourth chapter presents results of tests carried out in innovatory synthesis system of carbon nanotubes in the vapour space. The microwave plasma was used as a source of energy required to activate the catalyst, as well as for the carbon nanotubes synthesis. This process occurs in the gas space. The next chapter contains synthesis results and deposition of carbon nanotubes on different substrates made of: silicon, steel foil (stainless steel), non-conductive surfaces of electrical current (textiles). The separate sections describe the possibility of applying additional external factors affecting the thermal dynamics of the CNTs synthesis. The author also analyzes the effects of water and hydrogen on the effectiveness of the process. The further part of this dissertation contains a synthetic description of appropriate substrate and the way of preparation for the application of carbon nanotubes. The next part of this work is a compendium of catalysts selection, which allows thermal acceleration of described processes. In this section, author presents ways of purifying of CNTs used during his research, as well as the ways of making characteristics and diagnostics of carbon nanotubes. The last section provides information about functionalization of carbon nanotubes. It additionally includes sample tests obtained in research of substrates, which can be used to obtain supercapacitors electrodes.
Rocznik
Tom
Strony
1--169
Opis fizyczny
Bibliogr. 377 poz., il. kolor., wykr.
Twórcy
  • Instytut Mechatroniki i Systemów Informatycznych Politechniki Łódzkiej
Bibliografia
  • [1] Afolabi A.S., Abdulkareem A.S., Iyuke S.E., Van Zyl Pienaar, H.C., Continous production of carbon nanotubes and diamond films by swirled floating catalyst chemical vapor deposition method., South Africa Journal of Science, 105, 7-8, 278-281, 2009.
  • [2] Afre R.A., Soga T., Jimbo T., Kumar M., Ando Y., Sharon M., Somani P.R., Umeno m., Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies, Microp.Mesop. Matter, 96, 190, 2006.
  • [3] Ago H., Immamura S., Okazahi T., Saito T., Yumura M., Tsui M., CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy, Journal Phys. Chem. B, 109, (20), 10035-10041, 2005.
  • [4] Ajayan P. M., Zhou O. Z., Applications of carbon nanotubes, Carbon Nanotubes, vol. 80, pp. 391-425, 2001.
  • [5] Akita S., Nakayama Y., Mizooka S., Takano Y., Okawa T., Miyatake Y., Yamanaka S., Tsuji M., Nosaka T., Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope Appl. Phys. Lett. 79, 1691-3, 2001.
  • [6] Alberty R., Gehring C., Standard Chemical Thermodynamic Properties of Alkenes Isomer Group, Journal of Physical and Chemical Reference Data, Vol. 14, No. 3, pp. 803-820, 1985.
  • [7] Alizadeh R., Jamshidi, Ebrahim H., Kinetic Study of Nickel Oxide Reduction by Methane,Chem. Eng. Technol., 30, 8, 1123-1128, 2007.
  • [8] Alvarez W.E., Kitiyanan B., Borgna A., Resasco D. E., Synergism of Co and Mo in the catalytic production of single wall carbon nanotubes by decomposition of CO, Carbon 39 547-558, 2001.
  • [9] Amama P.B., Pint C.L., McJilton L., Kim S.M., Stach E.A., Murray P.T., Hauge R.H., Maruyama B., Role of water in super growth of single-walled carbon nanotube carpets, Nano Letters, 9,(1), 44-49, 2009.
  • [10] An L., Owens J.M., McNeil L.E., Liu J., Synthesis of nearly uniform single walled carbon nanotubes using identical metal containing molecular nanoclusters as catalyst, J. Am. Chem. Soc. 124 13688-9, 2002.
  • [11] Anazawa K., Shimotani K., Manabe C., Watanabe H., Shimizu M., High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field, Applied Physics Letters Volume 81, Number 4, 2002.
  • [12] Ansys Fluent 14.5, Theory Guide 2012.
  • [13] Armitage N.P, Gabriel J-C P., Groner G., Langmuir-Blodgett Nanotube Films, Journal of Appl. Phys., 95, (6), 3228-3230, 2003.
  • [14] Aslam Z., Rand B., Brydson R., Brown A., Li X., Growth of Carbon Nanotubes from Supported Metal Catalysts Microsc.Microanal., 11 (Suppl.2), 2005.
  • [15] Atiyah M.R., Awang Black D.R., Achamadun F., Achamad I.S., Mohd Yasin F., Yusoff H.M., Low temperature growth of vertically aligned carbon nanotubes via floating catalyst chemical vapor depositon method., Journal Material Science Technology, 2011, 27, (4), 290-300, 2011.
  • [16] Azira A.A., Zainal N.F.A., Nik S.F., Rusop M., Intern. Conference on Nanscience and Nanotechnology, AIP Conf. Proc., 1136, 745-749, 2008.
  • [17] Azira A.A., Rusop M., Surface Study of Carbon Nanotubes Prepared by Thermal- CVD of Camphor Precursor, Intern. Conference on Advancement of Materials and Nanotechnology, AIP Conf. Prpc., 1217, 100-105, 2010.
  • [18] Baddour C., Fadlallah F., Nasuhoglu D., Mitra R., Vandsburger L., Meunier J., A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst, Carbon, 47 313-347, 2008.
  • [19] Bae Y. S., Lee W.C., Ko K.B., Lee Y.H., Namkung W., Cho M. H., Characteristics of a Microwave Plasma Torch with a Coaxial Field-Structure at Atmospheric Pressure J. Korean Phys. Society 48. 1, 67, 2006.
  • [20] Bae. J.H., Shanmugharaj. A.M., Noli W.H., Clioi W.S., Ryu S.H., Surface Chemical Functionalized Single-Walled Carbon Nanotube with Anchored Phenol Structures, Physical and Chemical Characterization. Appl. Surf. Sci. 253, 4150- 4155, 2007.
  • [21] Bajoun W., Riguang Z., Lixia L., Yajun T., Mexican Congress on Chemical Reaction Egineering, Mexico City, 2006.
  • [22] Baker R.T.K., Barber M.A., Harris P.S., Feates F. S., Waite R.J., Nucleation and growth of carbon deposits from the nickel catalysed decomposition of acetylene, Catalysis, 26 (1972) 51, 1972.
  • [23] Baker R.T. K., Waite R.J., Formation of the carbonaceous deposits from the platinum iron catalyst decomposition of acetylene, Catalysis 37, 101, 1975.
  • [24] Bando Y., Nanotube nano thermometer and method for producing the same, US Patent 7291299 B2, 6/2007.
  • [25] Bandow, S., Asaka, S., Zhao, X., Ando, Y., Purification and magnetic properties of carbon nanotubes, Appl.Phys.A, 67, 29-37, 1998.
  • [26] Banerjee S., Kaim M.G.C., Wong S.S., Rational Chemical Strategies for Carbon Nanotube Functionalization. Chem. Eur. Journal9, 1898-1908, 2003.
  • [27] Banerjee. S., Wong S. Functionalization of Carbon Nanotubes with a Meta l- Conta in ing Molecular Complex. Nano Lett. 2, 49-53, 2002.
  • [28] Banerjee. S., Wong S., Rational Sidewall Functionalization and Purification of Single-Walled Carbon Nanotubes by Solution-Phase Ozonolysis. Journal Phys. Chem. B 106, 12144-12151, 2002.
  • [29] Baolin H., Zhang H., Li Hong Zhong, Zhu Q., Study on kinetics of reduction of iron oxide by hydrogen, Chin. Journal Chem. Eng., 20, (1), 10-17, 2012.
  • [30] Barreiro A., Hampel S., Ruemmeli M. H., Kramberger C., Grueneis A., Biedermann K., Leonhardt A., Gemming T., Buechner B., Bachtold A., Pichler T., Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources, Journal of Physical Chemistry B 110 (2006) Nr. 42, S. 20973-20977, 2006.
  • [31] Baїri A., Transient natural 2D convection in a cylindrical cavity with the upper face cooled by thermoelectric Peltier effect following an exponential law, Applied Thermal Engineering, vol. 23, pp. 432-447, 2003.
  • [32] Benito A.M., Maniette Y., Munoz E., Martinez M.T., Carbon nanotubes production bu catalytic pyrolysis of benzene., Carbon, 36, 5-6, 683-687, 1998.
  • [33] Bennett D., Hart A.J., Cohen R.E., Controlling the Morphology of Carbon Nanotube Films by Varying the Areal Density of Catalyst Nanoclusters Using Block- Copolymer Micellar Thin Films, Adv. Mater., 18, 2274-2279, 2006.
  • [34] Bernier P., Laplaze D., Auriol J., Barbedette L., Flamant G., Lebrun M., Brunelle A., Della-Negra, S. Production of fullerenes from solar energy. Synth. Met., 70 (1-3), 1455-1456, 1995.
  • [35] Bielska S., Ciupa E., Lisik Z., Raj E., Sibiński M., Walczak J., Comparison of flexible temperature sensors, based on polymeric and carbon nanotube paste, Int. Conf. Microtechnology and Thermal Problems in Electronics Microtherm, 28.06.- 01-07.2009, Łódź: 2009, s. 177-181, 2009.
  • [36] Biro L.P., Horvath Z.E., Koos A.A., Osvath z., Vertesy Z., Darabont A., Kertesz K., Neamtu C., Sarkozi Z., Tapaszto L., Direct synthesis of multi-walled and singlewalled carbon nanotubes by spray pyrolysis, J.of Optoelectronic and Advanced Materials, 5, 3, 6610666, 2003.
  • [37] Biró L.P., Horváth Z.E., Koós A.A., Direct synthesis of multi-walled and singlewalled carbon nanotubes by spray-pyrolysis, Journal of Optoelectronics and Advanced Materials, vol. 5, no. 3, pp. 661-666, 2003.
  • [38] Bladh K., Rohmund F.F., On the Iron Catalysed Growth of Single-Walled Carbon Nanotubes and Encapsulated Metal Particles in the Gas Phase, Appl. Phys. A, 70 (2000) 317-322, 2000.
  • [39] Blase X., Charlier J.C., De Vita A., Car R., Redlich P., Terrones M., Hsu W.K., Terrones H., Carroll D.L., Ajayan P.M., Boron-mediated growth of long helicityselected carbon nanotubes. Phys. Rev. Lett. 1999, 83 (24), 5078-5081, 1999.
  • [40] Bonard J.M., Stora T., Salvetat J.P., Maier F., Stockli T., Duschl C., Forro L., Heer W.A., Chatelain A., Purification and Size-Selection of Carbon Nanotubes, Advanced Materials 9, 827-831, 1997.
  • [41] Borisienko D.N., Kolesnikow N.N., Kulakov M.P., Kreder V.V., Growth of carbon nanotubes (CNTs) in electric arc discharge in argon, Int. Journal of Nanoscience, 1, (3-4), 235-246, 2002.
  • [42] Borowiak-Palen E., Pichler T., Liu X., Knupfer M., Graff A., Jost O., Pompe W., Kalenczuk R.J, Fink J., Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation, Chem.Phys.Letters, 363, (5-6), 567-572, 2002.
  • [43] Boul P.J, Liu J., Michelson E.T., Hoffman CB., Ericsson L.M., Cliiang I.W., Smith K.A., Colbert D.T., Margrave J.L., Smalley R.E., Reversible Sidewall Functionalization of Buckytubes. Chem. Phys. Lett. 310, 367-372, 1999.
  • [44] Bourlon B., Glattli D. C., Miko C., Forro L., Bachtold A. Carbon Nano- tube Based Bearing for Rotational Motions. Nano Letters, 4:709, 2004.
  • [45] Brady-Estévez A.S., Schnoor M.H., Vecitis C.D., Saleh N.B, Elimelech M., Multiwalled Carbon Nanotube Filter, Improving Viral Removal at Low Pressure, Langmuir, 2010, 26 (18), pp. 14975-14982, 2010.
  • [46] Brockner W., Erhardt C., Gjikaj M., Thermal decomposition of nickel nitrate hexahydrate Ni(NO3)2 x 6 H2O in composition to Co(NO3)2 x 6 H2O and Ca(NO3)2 x 4 H2O, 456, (1), 64-68, 2007.
  • [47] Bronikowski M. J., Willis P. A., Colbert D. T., Smith K. A., Smalley R. E., Gasphase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, Journal of Vacuum Science & Technology A-Vacuum Surfaces & Films, 19, 1800-1805, 2001.
  • [48] Brzózka J., Regulatory i układy automatyki, Mikom, 2004.
  • [49] Bult J.B., Sawyer W.G., Ajayan P.M., Schadler L.S., Passivation oxide controlled selective carbon nanotube growth on metal substrates, Nanotechnology, 20, 8, 2009.
  • [50] Bungwoo Kim, Chung H., Chu K.S., Yoon H.G., Lee Ch.J., Kim W., Synthesis of vertically aligned carbon nanotubes on stainless steel by water assisted chemical vapor deposition and characterization of their electrochemical properties, Synthetic Metals, 160, 7-8, 584-587, 2010.
  • [51] Bystrzejewski M., Huczko A., Carbon Nanotubes Purification Processes, Wiadomości Chemiczne, 59, (5-6), 537-555, 2005.
  • [52] Camili L.,Sarselli M., DelGobbo S., Castrucci P., Gautron E., Crescenzi M., Structural electronic and photovoltaic characterization of multiwall carbon nanotubes grown directly on stainless steel, Carbon, 49, 3307-33015, 2011.
  • [53] Cao P., Zhu D., Liu W., Ma X., High aligned carbon nanotube film with netlike bulges, Vacuum, 81,(8), 953-957, 2007.
  • [54] Carotto G., Garella D., Calcio-Gaudino E., Turci F., Bertarione S., Agostini G., Cesano F., Scarano D., Rapid purification of multiwalled carbon nanotubes under 300 kHz ultrasound and microwave irradiation, New Journ. Chem., 35, 915-919, 2011.
  • [55] Cassell A.M., Raymakers J.A., Kong J., Dai H., Large scale chemical vapor deposition synthesis of single walled carbon nanotubes., Journal Phys. Chem. B 103 6484–92, 1999.
  • [56] Çengel Y.A., Heat transfer: a practical approach, McGraw-Hill, 2003.
  • [57] Charan Masarapu., Bingging Wei, Direct growth of aligned multiwalled carbon nanotubes on the treated stainless steel substrates, Journal of Surfaces and Colloid, 23, 17, 9046-49, 2007.
  • [58] Charinpanitikul T., Naphtalene as alternative carbon source for pyrolytic synthesis of carbon nanotubes, Journal of Anal. and Appl. Pyrolysis, 86, (2), 386-390, 2009.
  • [59] Chen J., Hamon M.H., Chen Hu. Y., Rao A.M., Eklund P.C., Hadron R.C., Solution Properties of Single-Walled Carbon Nanotubes. Science 282, 95-98, 1998.
  • [60] Chen. Y., Haddon. R.C., Fang S., Rao. A.M., Eklund. P.C., Lee, W.H., Dickey E. Grule C. Pendergrass. J.C., Charan A., Haley B.E., Smalley R.E. Chemical Attachment of Organie Functional Groups to a Single-Walled Carbon Nanotube Materiał. JournalMater. Res. 13, 2423-2431, 1998.
  • [61] Cheng H.M., Li F., Sun X., Brown S.D.M., Pimenta M.A., Marucci A., Dresselhaus G., Dresselhaus M. S., Bulk morphology and diameter distribution of single walled carbon nanotubes synthetized by catalyst decomposition of hydrocarbons., Chem. Phys. Lett. 289, 602, 1998.
  • [62] Cheol Lin Lee, Seng Chul Lyu, Hyoun Wo Kim, Chong Yun Park, Wong Yang., Large scale production of aligned carbon nanotubes by the vapor phase growt method, Chem.Phys.Letters, 359,109-114, 2002.
  • [63] Cheung C.L., Kurtz A., Park H., Lieber C.M., Diameter controlling synthesis of carbon nanotubes, Journal Phys. Chem. B 106 2429-33, 2002.
  • [64] Chibante, L.P.F., Thess, A., Alford, J.M., Diener, M.D., Smalley, R.E. Solar generation of the fullerenes. Journal Phys. Chem., 97 (34), 8696-8700, 1993.
  • [65] Cho W.S., Hamada E., Kondo Y., Takayanagi K. Synthesis of carbon nanotubes from bulk polymer. Appl. Phys. Lett., 69 (2), 278-279, 1996.
  • [66] Choi H.C., Kim W., Wang D., Dai H., Delivery of catalytic meyhal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution, Journal Phys. Chem. B 106 12361-5, 2002.
  • [67] Choi H.C., Kundaria S., Wang D., Javey A., Wang Q., Rolandi M., Dai H., Efficient formation of iron nanoparticles catalyst on silicon oxide by hydroxyloamine for carbon nanotube stnthesis and electronics, Nano Lett. 3 157-61, 2003.
  • [68] Choi W.B., Chung D.S., Kang J.H., Kim H.Y., Jin Y.W., Han I.T., Lee Y.H., Jung J.E., Lee N.S., Park G.S., Kim J.M., Fully sealed, high-brightness carbonnanotube field-emission display, Appl. Phys. Lett. 75, 20 (1999), 1999.
  • [69] Chuc N ., Dung N., H ong P ., Quang L ., K hoi P ., Minh P ., Synthesis of C arbon Nanotubes on Steel Foils, Journal of Korean Phys.Soc, 52, 5, 1368-1371, 2008.
  • [70] Chung U., Effect of H2 on Formation Behavior of Carbon Nanotubes, Bull. Korean Chem. Soc, Vol. 25, No. 10 1521, 2004.
  • [71] Chungchamroenkit P., Chavadej S., Yanatatsaneejit U., Kitiyanan B., Residue catalyst support removal and purification of car bon nanotubes by NaOH leaching and froth flotation, Separation and Purification Technology, 60, 206-214, 2008.
  • [72] Coiinell M.J., Boni P., Ericsson L.M., Hoffman C., Wang Y., Harz E, Kuper C., Tour J., Ausman K.D., Smalley R.E.,. Reversible Water-Solubilization of Single- Walled Carbon Nanotubes by Poły mer Wrapping. Chem. Phys. Lett. 342, 265-271, 2001.
  • [73] Colomer J., Bister G., Willems I., K´onya Z., Fonseca A., Van Tendeloo G., Nagy J.B., Synthesis of single walled carbon nanotubes by catalytic decomposition of hydrocarbons, Chem. Commun. 1343-4, 1999.
  • [74] Costa S., Borowiak-Palen E., Kruszyńska M., Bachmatiuk A., Kaleńczuk R.J., Characterization of carbon nanotubes by Raman spectroscopy, Materials Science- Poland, 2 (26), 433-441, 2008.
  • [75] Dai H., Rinzler A.G., Nikolaev P., Thess A., Colbert D.T., Smalley R.E., Single walled carbon nanotubes produced by metal-catalysed disproportionation of carbon monoxide., 1996, Chem. Phys. Lett. 260, 471-5, 1996.
  • [76] De Jesus J.C., Gonzales J., Quevedo A., Puerta A., Thermal decomposition of nickel acetate tetrahydrate an integrated study by TGA, GMS and XPS, Journal of Molecular Catalysis A, 228,(1-2), 283-291, 2006.
  • [77] Deck C.P., Vecchio K, Prediction of carbon nanotubes growth success by the analisis of carbon-catalyst binary phase diagrams, Carbon, 44, (2), 267-275, 2006.
  • [78] Dekker C., Carbon Nanotubes as Molecular Quantum Wires, Physics Today 52 (5), 22 (1999), 1999.
  • [79] Dementev N ., O sswald S ., G ogotsi Y ., B orguet E ., P urification o f C arbon Nanotubes by Dynamic Oxidation in Air, Journal of. Material Chemistry, 19, 7904-7908, 2009.
  • [80] Djordjevic V., Djustebek J., Cveticanin J., Velickovic S., Veljkovic M., Bokorov M., Babic Stojic B., Neskovic O., Methods of purification and Characterization of Carbon Nanotubes, Journal of Optoelectronics and Advanced Materials 8(4), 1631-1634, 2006.
  • [81] Do Yoon Kim, Beom Y.J., Berdinsky A.S., Park A.S., Chong Yun, Taek H.I., Jae Eun J., Jong Wan J., Jong Min K., Preparation of uniformly dispersed iron acetate nanoparticles using freeze drying method for the growth of carbon nanotubes., Diamond and Related Materials, 14, 810-814, 2005.
  • [82] Dörfler S., Meier A., Thieme S., Németh P., Althues H., Kaskel S., Wet-chemical catalyst deposition for scalable synthesis of vertical aligned carbon nanotubes on metal substrates, Chem. Phys. Letters, 511, 4-6, 288-293, 2011.
  • [83] Dresselhaus M., Dresselhaus G., Avouris P., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, ISBN 978-3-540-41086-7, Springer, 2001.
  • [84] Dresselhaus M.S., Dresselhaus G. Saito R., Jorio A., Raman spectroskopy of carbon nanotubes, Physics Reports, 449, 47-99, 2005.
  • [85] Dubey P., Muthukumaran D., Dash S., Mukhopadhyay R., Sarkar S., Synthesis and characterization of water-soluble carbon nanotubes from mustard soot., Pramana - Journal of Physics, vol. 65, no. 4, pp. 681-697, 2005.
  • [86] Ducati C., Alexandrou I., Chhowalla M., Amaratunga G. A. J., Robert J., Temperature selective growth of carbon nanotubes by chemical vapor deposition, Journal Of Applied Physics, 92, 3299, 2002.
  • [87] Duesberg G. S., Burghard M., Muster J., Philipp G., Separation of carbon nanotubes by size exclusion chromatography, Chem. Commun., 435-436, 1998.
  • [88] Ebbesen T. W., Carbon Nanotubes: Preparation and Properties, CRC Press, 1997.
  • [89] Eftekhari A., Jafarkhani P., Moztarzadeh F., High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition, Carbon, vol. 44, no. 7, pp. 1343-1345, 2006.
  • [90] Elhissi A.M.A., Ahmed W., Hasssan I.U.I., Dhanak V.R., D'Emanuele A., Carbon Nanotubes in Cancer Therapy and Drug Delivery, Journal of Drug Delivery 2012, 2012,837327. Epub 2011 Oct 18, 2011.
  • [91] Elmasry M.A.A., Gaber A., Khater E.M.H., Thermal decomposition of Ni (II) and Fe (III) nitrates and their mixture, Journal of Thermal Analysis and Calorymetry, 52, (2),489-485, 1998.
  • [92] Erhard C., Gjikaj., Brockner W., Thermal decomposition of cobalt nitrate compounds, Thermochimica Acta, 432, (1), 36-40, 2005.
  • [93] Esconjauregui S., Whelana C., Maexb K., The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies, Carbon 47(2009), 659-669, 2009.
  • [94] Fantini C., Jorio A., Souza M., Strano M.S., Dresselhaus M.S., Pimenta M.A., Phys. Rev. Lett. 93, 147406, 2004.
  • [95] Fejes D., Forró L., Hernadi K., Catalyst preparation with ball milling for catalytic synthesis of coiled carbon nanotubes, Phys. Status Solid B, 247, 11-12, 2713- 2716, 2010.
  • [96] Feng L., Li H., Li F., Sili Z., Gu Z., Functionalization of Carbon Nanotubes with Amphiphilic Molecules and their Langmuir-Blodgett Films. Carbon 41, 2385- 2391, 2003.
  • [97] Feng Y., Zhang H., Hou Y., McNicholas T.P., Yuan D., Yang S., Ding L., Feng W., Liu J., Room Temperature Purification of Few-Walled Carbon Nanotubes with High Yield, ACS Nano, 2, (8), 1634-1640, 2008.
  • [98] Fields, C.L., Pitts, J.R., Hale, M.J., Bingham, C., Lewandowski, A., King, D.E. Formation of fullerenes in highly concentrated solar flux. Journal Phys. Chem., 97 (34), 8701-8702, 1993.
  • [99] Fields, C.L.P., J.R., Mischler, D., Bingham, C., Lewandowski, A., Schultz, D.L., Bekkedahl, T.A., Jones, K.M., Heben, M.J., In Proceedings of the 8th International Symposium on Solar Thermal Concentrating Technologies, Ko¨ln, Germany, 1996.
  • [100] Flahaut E., Govindaraj A., Peigney A., Laurent Ch., Rousset A., Rao C.N.R., Synthesis of single walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions, Chem. Phys. Lett. 300 236-42, 1999.
  • [101] Flahaut E., Peigney A., Laurent Ch., Rousset A., Synthesis of single walled carbon nanotubes-Co-MgO composite powders and extraction of the nanotubes, Journal Materials Chem. 10 249-52, 2000.
  • [102] Gaillard J., Skove M., Raoa A.M., Mechanical properties of chemical vapor deposition-grown multiwalled carbon nanotubes, Applied Physics Letters, 86,233109, 2005.
  • [103] Gao B., Kelinhammes A., Tang X. P., Bower C., Wu Y., Zhou O., Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett. 307, 153, 1999.
  • [104] Gao H.J., Kona Y. Simulation of DNA-Nanotube Interactions. Ann. Rev. Mater. Res. 34, 123-150, 2004.
  • [105] Georgakilas V., Kordatos K., Prato M., Guldi D.M., Holzinger M., Hirsch. A., Organie Functionalization of Carbon Nanotubes. JournalAm. Chem. Soc. 124, 760-761, 2002.
  • [106] Ghosh P., Afre R.A., Soga T., Jimbo T., A simple method of producing single-walled carbon nanotubes from a natural precursor, Eucalyptus oil., Mater Lett., 61:3768, 2007.
  • [107] Gohier A ., E wels C .P., Minea T.M., Djouadi M.A., Carbon nanotube growth mechanism switches from tip- to base-growth with decreasing catalyst particle size, Carbon, 46, 1331-1338.
  • [108] Gorbunov A., Jost O., Pompe W., Graff A., Solid-liquid-solid growth mechanism of single-wall carbon nanotubes, Carbon, 40, 113-118, 2002.
  • [109] Gromov A., Dittmer S., Svensson J., Nerushev O.A., Perez-Garcia S.A., Licea- Jimenez L., Rychwalski R., Campbell E.E.B., Journal. Mater. Chem., 15, 3334, 2005.
  • [110] Gruenberger T.M., Gonzalez-Aguilar J ., F abry F ., F ulchieri L ., G rivei E ., Probst N., Flamand G., Okuno H., Charlier J.C., Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing, Fuller. Nanotub. Carbon Nanostruct. 12, 571-581, 2004.
  • [111] Gryboś R., Podstawy mechaniki płynów, cz. 1, PWN, Warszawa 1998.
  • [112] Gueret C., Daroux M., Billaud F., Methane pyrolysis: thermodynamics., Chem. Eng. Sci. 1997, 52, 815-827, 1997.
  • [113] Gulfen I. Nasuf, Praca doktorska, Istanbul Technical University, 2005.
  • [114] Guo T., Nikolaev P., Rinzler A.G., Tomanek D., Colbert D.T., Smalley R.E., Self assembly of tubular fullerenes., Journal Phys. Chem., 99 (1995)10694, 1995.
  • [115] Guo T., Nikolaev P., Thess A., Colbert D.T., Smalley R.E., Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995, 243 (1, 2), 49-54, 1995.
  • [116] Guzman de Villoria R, Hart A.J., Wardle B.L., Continous high yield production of vertically aligned carbon nanotubes on 2D and 3D substrates, ACS Nano, 5, (6), 4850-4857, 2011.
  • [117] Gyo W., Woo Lee, Jong Soo, Jung Jugho Hwang, Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame, Carbon 42, 682-685, 2004.
  • [118] H. Dai, Carbon nanotubes: opportunities and challenges, Surface Science, 500, (1-3), 218-241, 2002.
  • [119] Hafner I., Chin-Li Cheng, Tjerk H., Oosterkamp Ch., Lieber M.,High Yield assemblyof individual carbon nanotubes tips for scanning probe microscopes., Journal Phys. Chem. B,105,743-746, 2001.
  • [120] Hafner J.H., Bronikowski M.J., Azamian B.R., Nikolaev P., Rinzler A.G., Colbert D.T., Smith K. A., Smalley R. E., Catalytic growth of single walled carbon nanotubes from metal particles, Chem. Phys. Lett. 296 195-202, 1998.
  • [121] Halonen N., Sápi A., Nagy L., Puskás R., Leino A., Mäklin J., Kukkola J., Tóth G., Wu M., Liao H., Su W., Shchukarev A., Mikkola J., Kukovecz A., Kónya Z., Kordás K., Low-temperature growth of multi-walled carbon nanotubes by thermal CVD, Physical Statut Solidi (b), 248, (11), 2500-2503, 2011.
  • [122] Harutyunyan A.R., Pradhan B.K., Kim U.J., Chen G., Eklund P.E., CVD synthesis of single wall carbon nanotubes under “soft” condition nanoparticles prepared in situ by the reduction, Nano Lett. 2 525-30, 2002.
  • [123] Hasegawa K., Noda S., Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water, ACS Nano, 5, (2),975-984, 2011.
  • [124] Hata K., Futaba D., Mizuno K., Namai T., Yumura Y., Iijima S., Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, 306, 5700, 1362-1364, 2004.
  • [125] Hata K., SPIE Digital Library, From highly efficient impurity-free CNT synthesis to DWNT forest CNT solids and supercapacitors, 6479, 64791L, 2009.
  • [126] He M., Fedotov P., Obraztsova E., Viitanen V., Sainio J., Jiang H., Kauppinen E., Niemela M., Lehtonen J., Chiral-selective growth of single-walled carbon nanotubes on stainless steel wires., Carbon 50 4291-4301, 2012.
  • [127] Heben, M.J., Bekkedahl, T.A., Schultz, D.L., Jones, K.M., Dillon, A.C., Curtis, C.J., Bingham, C., Pitts, J.R., Lewandowski, A., Fields C.L., In Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, The Electrochemical Society Inc, 1996.
  • [128] Hering M., Termokinetyka dla elektryków, WNT, 1980.
  • [129] Hernadi K., Fonseca A., Nagy J.B., Bernaerts D., Lucas A.A., Fe catalysed carbon nanotubes formation., Carbon 34, 1249, 1996.
  • [130] Hernadi, K., Siska A., Thiên-Nga L., Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes, Solid State Jonics, 141-142, 205, 2001.
  • [131] Hernadi K., Thiên-Nga L., Forró L., Growth and Microstructure of Catalytically Produced Coiled Carbon Nanotubes (2001) Journal Phys. Chem. B 105, 12464- 12468.
  • [132] Hernandez E., Ordejon P., Boustani I., Rubio A., Alonso J.A., Tight binding molecular dynamics studies of boron assisted nanotube growth. Journal Chem. Phys. 2000, 113 (9), 3814–3821, 2000.
  • [133] Hiraoka T., Yamada T., Hata K., Futaba D.N., Kurachi H., Uemura S., Yumura M., Iijima S., Synthesis of single and double walled carbon nanotubes forests on conducting metal foils, Journ. Amer.Chem. Soc. Communication, 128,13338-39, 2006.
  • [134] Hirsch A., Vostrowsky O., Functionalization of Carbon Nanotubes, Top Curr. Chem. 245: 193-237, 2005.
  • [135] Hofmann S., Kleinsorge B., Ducati C., Ferrari AC., Robertson J., Lowtemperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diam. Rel. Mater. 2004, 13(4-8):1171-6, 2004.
  • [136] Hong C ., U hm H .S., Abatement of CF4 by atmospheric pressure microwave plasma torch., Phys. Plasmas 10, 3410, 2003.
  • [137] Hong Y.C., Kim J.H., Uhm H.S., Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma., Phys. Plasmas 11, 830, 2004.
  • [138] Hong Y.Ch., Uhm H.S., Air plasma jet with hollow electrodes at atmospheric pressure., Physics of Plasmas 12, 53504, 2005.
  • [139] Hongjie D., Carbon Nanotubes Opportunities and Challenges, Surface Science, 500, (1-3), 218-241, 2002.
  • [140] Hornyak G.L., Grigorian L., Dillon A.C., Parilla A., Jones K. Mand Heben M.J., A temperature window for chemical vapor decomposition growth of single walled carbon nanotubes, Journal Phys. Chem. B 106 2821–5, 2002.
  • [141] Hrycak B., Jasiński M., Mizeraczyk J., Mikrofalowy generator mikrowyładowania w azocie, Przegląd Elektrotechniczny, 07/2010, 86, 7, ss. 115-117, 2010.
  • [142] Hrycak B., Jasiński M., Mizeraczyk J., Spectroscopic Investigations of Microwave Microplasmas in Various Gases at Atmospheric Pressure, European Physical Journal D, 60, 3, 609-619, 2010.
  • [143] Hsu W.K., Hare J.P., Terrones M., Kroto H.W., Walton D.R.M., Harris P.J.F. Condensed-phase nanotubes. Nature (London), 377 (6551), 687, 1995.
  • [144] Hsu W.K., Terrones M., Hare J.P., Terrones H., Kroto H.W., Walton D.R.M., Electrolytic formation of carbon nanostructures. Chem. Phys. Lett., 262 (1,2), 161-166, 1996.
  • [145] Huang J. H., Chen S., Wang Z. Q., Kempa K., Wang Y. M., Jo S. H., Chen G., Dresselhaus M. S., Ren. Z. F. Superplastic carbon nanotubes. Nature, 439:281, 2006.
  • [146] Huang S., Cai X., Liu J., Growth of millimeter long and horizontally aligned single walled carbon nanotubes on flat substrates, Journal Phys.Chem.B, 107, (48), 13252-13257, 2003.
  • [147] Huczko A., Nanorurki Węglowe. Czarne diamenty XXI wieku, BEL Studio, Warszawa 2004.
  • [148] Hulicova D., Hosoi K., Kuroda S.-I., Abe H., Oya A., Carbon nanotubes prepared by spinning and carbonizing fine core-shell polymer microspheres. Adv. Mater. (Weinheim, Germany), 14 (6), 452-455, 2002.
  • [149] Iijima S., Carbon nanotubes: past, present, and future. Physica B, 323:1, 2002.
  • [150] Indarto A., Soot growth mechanism from polyynes., Envir.Eng.Sci., 26, 12, 1685-1691, 2009.
  • [151] Islam M.F., Rojas E., Bergey D., Johnson A., Yodhi A., High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water, Nano Letters, 3, (2), 269-273, 2003.
  • [152] Jakubowska M., Sibiński M., Słoma M., Młożniak A., Jańczak D., Printed electronic sensors fabricated from polymer composites containing carbon nanotubes. Kompozyty, rocznik 10, nr 4, ss. 392-397, 2010.
  • [153] Jašek O., Eliáš M., Zajícková L., Kucerová Z., Matejková J., Rek A., Buršík J., Carbon nanostructures synthesis in microwave plasma torch at atmospheric pressure. In Book of Abstracts 3rd International conference on microwave chemistry. Vyd. 1 . B rno: M asaryk U niversity, I SBN 8 0-210-4070-X, p. PO-7. 2006.
  • [154] Jasiński M., Dors M., Mizeraczyk J., Lubański M., Zakrzewski Z., Decomposition of Hydrocarbons in a Microwave Torch Plasma, Journal of Technical Physics, 40, 1, 197-200, 1999.
  • [155] Jeong S.H., Ko Y.H., Park J.B., Park W., Sonochemical route to single walled carbon nanotubes under ambient conditions., Journal Amer. Chem. Soc., 126, 49, 15982-15983, 2004.
  • [156] Jeong, S.-H., Lee, O.-J., Lee, K.-H., Oh, S.H., Park, C.-G. Preparation of aligned carbon nanotubes with prescribed dimensions, template synthesis and sonication cutting approach. Chem. Mater., 14 (4), 1859-1862, 2002.
  • [157] Jiang J., Feng T., Cheng X., Dai L., Cao G., Jiang B., Wang X., Liu X., Zou S., Synthesis and growth mechanism of Fe-catalyzed carbon nanotubes by plasmaenhanced chemical vapor deposition, Nuclear Instruments and Methods in Physics Research, B244, 327-332, 2006.
  • [158] Josè-Yacamàn M., Miki-Yoshida M., Rendon L., Santiesteban J.G., Catalytic growth of carbon nanotubes with fullerene structure., Appl. Phys. Lett. 62, 657, 1993.
  • [159] Journet C., Maser W.K., Bernier P., Loiseau A., De La Chapelle M. L., Lefrant S., Deniart P., Lee R., Fisher J. E., Large scale production of single walled carbon nanotubes by electric arc discharge, Nature 388, 756, 1997.
  • [160] Jozwiak W.K., Kaczmarek E., Reaction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Applied Catalysis A,General, 326, (1), 17-27, 2007.
  • [161] Jozwiak W.K., Kaczmarek E., Maniecki T.P., Ignaczak W., Maniukiewicz W., Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres, Applied Catalysis A, 326, 1, 17-27, 2007.
  • [162] Matzinger K., Praca doktorska, Univ. Freiburg, 2006.
  • [163] Karapetjanc M. Ch., Wstęp do teorii procesów chemicznych, PWN, Warszawa 1983, ISBN 83-01-02388-0.
  • [164] Katoh R., Tasaka Y., Sekreta E., Yumura M., Ikazaki F., Kakudate,Y., Fujiwara, S. Sonochemical production of a carbon nanotube. Ultrason. Sonochem., 6 (4), 185-187, 1999.
  • [165] Kazimierski Z., Podstawy mechaniki płynów i metod komputerowej symulacji przepływów, Wydawnictwo Politechniki Łódzkiej, Łódź 2004.
  • [166] Keidar M., Levchenko I., Arbel T., Alexander M., Waas A.M., Ostrikov K., Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge, Applied Physics Letters 92, 043129, 2008.
  • [167] Ki-Ho L., Pawel K., Sinnott S. B., Detection of Nanotubes in Response to External Atomic Collisions. Nano Letters, 5:263, 2005.
  • [168] Kim H., Kang J., Kim Y., Hong B. H., Choi J., Iijima S., Synthesis of Ultra-Long Super-Aligned Double-Walled Carbon Nanotube Forests, Journal of Nanoscience and Nanotechnology Vol. 11, 470-473, 2011.
  • [169] Kim P., Lieber C. M., Nanotube nanotweezers, Science 286 2148–50, 1999.
  • [170] Kim W., Choi H.C., Shim M., Li Y., Wang D. Dai H., Synthesis of ultra long and high percentage of semiconducting carbon nanotubes., Nano Lett. 2 703-8, 2002.
  • [171] Kirk-Othmer Encyclopedia of Chemical Technology, Wydawnictwo Wiley Online ISBN: 9780471238966.
  • [172] Kitiyanan B., Alvarez W.E., Harwell J.H., Resasco D.E., Controlled production of single-walled carbon nanotubes by catalytic decomposition of CO on bimetalic Co-Mo catalyst, Chem. Phys. Lett. 317 497-503, 2000.
  • [173] Kolacinski Z., Szymanski Ł., Raniszewski G., LTE plasma reactors for materials conversion, The European Physical Journal Applied Physics/Volume 61/Issue 02 2013, 24314, 2013.
  • [174] Kołaciński Z., Raniszewski G., Druri M., Szymański Ł., Hybridized continuous depositing of carbon nanotubes, EuroNanoForum 2009, Nanotechnology for Sustainable Economy, European and International Forum on Nanotechnology, Prague (Czech Republic), ISBN 978-92-79-11109-9, 2009.
  • [175] Kołaciński Z., Raniszewski G., Szymański Ł., Synteza nanorurek węglowych metodą CVD z wykorzystaniem plazmy mikrofalowej, Conf. Proc., V Krajowa Konferencja Nanotechnologii NANO 2011, ISBN 978-83-930549-3-0, 2011.
  • [176] Kolaciński Z., Raniszewski G., Szymański Ł., Zastosowanie miedzi jako pierwiastka charakterystycznego przy pomiarach temperatury metodą Ornsteina, Przegląd Elektrotechniczny (Electrical Review), ISSN 0033-2097, R. 85 NR 5/2009, 2009.
  • [177] Kołaciński Z., Szymański Ł., Raniszewski G., Anode plasma jet behavior in CNTs deposit growth, 17th International Collegium on Plasma Processes, Marseille, Conf. Proc., 2009.
  • [178] Kołaciński Z., Szymański Ł., R aniszewski G ., D ruri M ., I n-flow continuous CNTs deposition; 2nd International Conference from Nanoparticles & Nanomaterials to Nanodevices & Nanosystems, Rhodes, Greece, 23 June-3July, Conf. Proc. 2009.
  • [179] Kołaciński Z., Szymański Ł., Raniszewski G., Microwave Plasma for Nanomaterials Synthesis, Conf. Proc. The 18th International Conference on Advanced Oxidation Technologies for Treatment of Water, Air and Soil, USA, ss. 83-84., 2012.
  • [180] Kołaciński Z., Szymański Ł., Raniszewski G., Wiak S., Plasma synthesis of carbon nanotubes for electrical and electronic engineering, Przegląd Elektrotechniczny (Electrical Review), ISSN 0033-2097, R. 88 NR 10b/2012, ss. 149-152, 2012.
  • [181] Kołaciński Z., Szymański Ł., Raniszewski G., Wiak S., Plazmowa synteza nanorurkowych podłoży węglowych dla układów elektronicznych, Elektronika – konstrukcje − technologie − zastosowania 10/2011, ss. 122-124, 2011.
  • [182] Kondo H., Fukuoka F., Maruyama T ., Low Temperature Growth of Single-Walled Carbon Nanotubes from Pt Catalysts under Low Ethanol Pressure by Alcohol Gas Source Metod, Journal of Nanotechn., ID 690304, 2012.
  • [183] Kong H., Gao C., Yan D., Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. Journal Am. Chem. Soc. 126, 412-413, 2004.
  • [184] Kong J., Cassell A. M., Dai H., Chemical vapor depositin of methane for single walled carbon nanotubes, Chem. Phys. Lett. 292 567-74, 1998.
  • [185] Kowalska E., Radomska J., Morphology and electronic properties of carbon nanotubes grown with Fe catalyst, Journal Mater. Research, 18, 10, 1421, 2003.
  • [186] Kozhuharova-Koseva R., Hofmann M., Leonhardt A., Moench I., Muehl T., Ritschel M., Buechner B., Relation between growth parameters and morphology of vertically aligned Fe-filled carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures 15, Nr. 2, S. 135-143, 2007.
  • [187] Krätschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R., Solid C60: a new form of carbon. Nature 1990, 347: 354-356, 1990.
  • [188] Krestinin A.V., Kislov M.B., Ryabenko A.G., Endofullerenes with metal atoms inside as precursors of nuclei of single-wall carbon nanotubes, Journal Nanosci. Nanotech., v. 4(4), 1-8, 2004.
  • [189] Kumar M., Carbon nanotubes from camphor, An environmental friendly nanotechnology, Journal of Physics, Conference series,, 61, 643-646, 2009.
  • [190] Kuo Dong-Han, Su M.Y.,Chen W.R., Fast rate growth organized carbon nanotubes by CVD using iron pentacarbonyl as gas phase catalyst., Chem.Vapor Deposition, 12, (6), 395-402, 2006.
  • [191] Kuwana K., Saito K., Modeling CVD synthesis of carbon nanotubes: Nanoparticle formation from ferrocene, Carbon 43, 2088-2095, 2005.
  • [192] Laplaze D., Bernier P., Barbedette L., Lambert J.M., Flamant G., Lebrun M., Brunelle A., Della-Negra S., Production of fullerenes from solar energy: The Odeillo experiment. C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Astron., 318 (6), 733-738, 1994.
  • [193] Laplaze D., Bernier P., Flamant G., Lebrun M., Brunelle A., Della-Negra S., Preparation of fullerenes using a solar furnace. Synth. Met., 77 (1-3), 67-71, 1996.
  • [194] Laplaze D., Bernier P., Journet C., Sauvajol J.L., Bormann D., Flamant G., Lebrun M., The use of solar energy for the production of fullerenes and porous silicon. Journal Phys., 7 (3), 463-472, 1997.
  • [195] Laplaze D., Bernier P., Journet C., Vie V., Flamant G., Lebrun M. Carbon sublimation using a solar furnace. Synthetic Met., 86 (1-3), 2295-2296, 1997.
  • [196] Laplaze D., Bernies J., Journet C.P., Vie V., Flamant G., Philippot E., Lebrun M., In Proceedings of the 8th International Symposium on Solar Thermal Concentrating Technologies, Ko¨ ln, Germany, 1996.
  • [197] Lee S.W., Lee D.S, Morjan R.E., Jhang S.H., Sveningsson M., Nerushev O.A., Park Y.W., C ampbell E . E . B . A T hree-Terminal Carbon Nanorelay. Nano Letters, 4:2027, 2004.
  • [198] Lee W.H., Kim S.J., Lee W.J., Lee J.G., Haddon R.C., Reucroft P.J., X-Ray Photoelectron Spectroscopic Studies ofSurface Modified Single- Walled Carbon Nanotube Materiał. Appl. Surf. Science 181, 121-127, 2001.
  • [199] Lee C.J., Park J., Kim, J.M., Huh. Y., Lee J.Y., No K.S., Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd Cr and Pt as co-catalyst, Chem. Phys. Letters, 327, 277-283, 2000.
  • [200] Lee I., Kim J., Yu C., Chang C., Joo M., Lee Y., Hur T., Kim H., Morphological and structural characterization of epitaxial α-Fe2O3 (0001) deposited on Al2O3 (0001) by dc sputter deposition, Journal Vac. Sci. Technol. A 23, 1450, 2005.
  • [201] Lefik M., Praca doktorska, Łódź, 2011.
  • [202] Legoas S.B., Coluci V.R., Braga S.F., Coura P.Z., Dantas S.O., Galvao D.S., Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators, Physical Review Letters, 90, 055504, 2003.
  • [203] Lepro X., Lima M.D., Baughman R.H., Spinnable carbon nanotubes forest grown on thin flexible metallic substrate, Carbon, 48, 3621-27, 2010.
  • [204] Leszczyński J., Handbook of Computational Chemistry, Springer, 2012 edition (December 1, 2011), 796, 2012.
  • [205] Li A., Norinaga K., Zhang W., Deutschmann O., Modeling and simulation of materials synthesis: Chemical vapor deposition and infiltration of pyrolytic carbon, Composites Science and Technology, 2007.
  • [206] Li S.-Z., Hong Y. C., Uhm H. S., Li Z.-K., Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure Jpn. Journal Appl. Phys., Part 1 43, 7714, 2004.
  • [207] Li Y., Kim W., Zhang Y., Rolandi M., Wang D., Dai H., Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various size, Journal Phys. Chem. B, 105, 11424-31, 2001.
  • [208] Li Y ., L iu J ., W ang Y ., W ang Z. L ., P reparation o f m onodispersed F e-Mo particles as the catalyst for CVD synthesis of carbon nanotubes., Chem. Mater. 13 1008-14, 2001.
  • [209] Li Y., Zhang X.B., Xu J.M., Chen F., Shen L.H., Yang X.F., Van Tendeloo G., Geise H.J., Single phase Mg,Mo,Cu as a catalyst for the synthesis of bundled multi walled carbon nanotubes by CVD., Carbon, 43, 1317-1339, 2005.
  • [210] Li, Y.L., Yu, Y.D., Liang, Y. A novel method for synthesis of carbon nanotubes: Low temp. solid pyrolysis. Journal Mater. Res., 12 (7), 1678-1680, 1997.
  • [211] Lijun G., Aiping P., Zhi Y. W., Hao Z., Zujin S., Zhennan G., Gaoping C., Bangzhu D., Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors, Solid State Communications, 146, 380-383, 2008.
  • [212] Lin H., Chen Y., Li C., The mechanism of reduction of iron oxide by hydrogen, Thermochimica Acta, 400, 1-2, 61-67, 2003.
  • [213] Lipiec W., Mazurek B., Paściak G., Szubzda B., Orłowski E., Patent Application: Method of fabrication magnetic nanovires, EPO 12460070.1/EP12460070, 2012.
  • [214] Lipiec W., Mazurek B., Paściak G., Szubzda B., Orłowski E., Zgłoszenie Patentowe, pt. Sposób wytwarzania nanodrutów magnetycznych, UPRP, P.400689, 2012.
  • [215] Liu L., Qiii Y., Guo Z-X., Zhu D., Reduction of Solubilized Multi-Walled Carbon Nanotubes. Carbon 41, 331-335, 2003.
  • [216] Lu R., Shi J.J., Baca F.J., Wu J.Z., High performance multiwall carbon nanotube bolometers, Journal Appl. Phys. 108, 084305, 2010.
  • [217] Lui P., Modification of Carbon Nanotubes with Polymers. Europ. Polym. Journal 41, 2693-2707, 2005.
  • [218] Luisetto I., Franco P., Edoardo B., Preparation and characterization of nano cobalt oxide, Journal of Nanoparticle Research vol. 10 issue 1, pp. 59-67, 2008.
  • [219] Łaskowiec J., Michalik R., Zagadnienia teoretyczne i aplikacyjne w implantach. Gliwice, Wydawnictwo Politechniki Śląskiej, 2002.
  • [220] Magrez A., Jin Wen Seo, Smajda R., Mionic M., Forro L., Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth, Materials, 3, (11), 4871-4891, 2010.
  • [221] Magrez A., Seo J., Smajda R., Korbely B., Andresen J., Mionic M., Casimirius S., Forró L., Low-temperature, highly efficient growth of carbon nanotubes on functional materials by an oxidative dehydrogenation reaction, ACS Nano, 4 (7), 3702-3708, 2010.
  • [222] Marques M.A.L., Troiani H.E., Miki-Yoshida M., Jose-Yacaman M., Rubio A., On the Breaking of Carbon Nanotubes under Tension, Nano Letters, 4:811, 2004.
  • [223] Maruyama S., Kojima R., Miyauchi Y. Chiashi S., Kohno M., Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Letters, 360, 229-234, 2002.
  • [224] Matsui J., Simple fabrication of carbon nanotube monolayer film, Chemistry Letters, 35, (1), 42-43, 2006.
  • [225] Matsuura T., Watanabe T., A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes, Journal, Thin Solid Films, vol. 515, no. 9, pp. 4240-4246, 2007.
  • [226] Matzinger K., Evolution of Me Catalyst During CVD Synthesis of Carbon Nanotubes, Dissertation, Univ. Freiburg, 2006.
  • [227] Menon M., Andriotis A.N., Srivastava D., Ponomarevax I., Chernozatonskiik C.A., Carbon Nanotube "T Junctions": Formation Pathways and Conductivity, Physical Review Letters, 91:145501, 2003.
  • [228] Meshot E.R., Harta A.J., Abrupt self-termination of vertically aligned carbon nanotube growth, Applied Physics Letters 92, 113107, 2008.
  • [229] Meyyappan M., Delzeit L., Cassell A. Hash D., Carbon nanotube growth by PECVD: a review, Plasma Sources Science and Technology, 12, 205-216, 2003.
  • [230] Mhlanga S.D., Mondal K.C., Naidov N., Kunjuzwa N., Witcomb M.J., Coville N.J., Synthesis and study of carbon microspheres for use as catalyst support for cobalt, South African J. of Science, 105, 3040308, 2009.
  • [231] Mielcarek J., Skupin P., Funcjonalization of carbon nanotubes for multimodal drug delivery, Przegląd Lekarski, 68, (3), 167-170, 2011.
  • [232] Minea T.M., Point S., Gohier A., Granier A., Godon C., Alvarez F., Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth, Surface & Coatings Technology, 200, 1101-1105, 2005.
  • [233] Mohamed M.A., Halawy S.A, Ebrahim M.M, Non-isothermal decomposition of nickel acetate tetrahydrate, Journal of Analytical and Applied Pyrolysis vol. 27 issue 2 December, pp. 109-110, 1993.
  • [234] Moisala A., Nasibulin A.G., Kauppinen E.I., The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes-a review. Journal Of Physics: Condensed Matter, 15:3011, 2003.
  • [235] Moisala A., Nasibulin A., Brown D., Jiang H., Khriachtchev L., Kauppinen E., Single-walled carbonna notube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reaktor, Chem.Eng.Sci.,61, (13), 4393-4402, 2006.
  • [236] Moisala A., praca doktorska, Uniwersytet Helsinki, 2006.
  • [237] Moon S.Y., Choe W., Uhm H.S., Hwang Y.S., Choi J.J., Characteristic of an atmospheric microwave induced plasma generated in ambient air by an argon discharge excited in an open ended discharge tube., Physics of Plasmas 9, 4045, 2002.
  • [238] Moraes R.A., Matos C.F., Castro E.G., Schreiner W.H., Oliviera M.M., Zarbin A.J.G., The Effect of differential chemical treatment on the structure and stability of aqueous dispersion of iron and iron oxide filled multiwalled carbon nanotubes, Journal Braz. Chem. Soc., 22, (11), 2011.
  • [239] Mukul K., Yoshinori A., Chemical Vapor deposition of carbon nanotubes: a review on growth mechanism and mass production., Journal of Nanoscience and Nanotechnology, 10,3739-3758, 2010.
  • [240] Murakami Y., Miyauchi Y., Chiashi S., Maruyama S., Chem. Phys. Lett., 374 (2003) 53, 2003.
  • [241] Murugesan S., Park T., Yang H., Mousa S., Linhardt R.J. Blood Compatible Carbon Nanotubes-Nano-based Neoproteoglycans, Langmuir, 22, 3461-3463, 2006.
  • [242] Nagy J.B., Bister G., Fonseca A., Mehn D., Konya Z., Kiricsi I., Horvath Z.E., Biro L.P, On the Growth Mechanism of Single-Walled Carbon Nanotubes by Catalytic Carbon Vapor Deposition on Supported Metal Catalysts, Journal of Nanoscience and Nanotechnology, 4:326, 2004.
  • [243] Namiko Y amamoto, A . J ohn H arta, E nrique J . G arcia, S unny S .Wicks, Hai M. Duong, Alexander H. Slocum, Brian L. Wardle, High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites, Carbon 47, 551-560, 2009.
  • [244] Nasibulin A.G., Anisimov A.S., Pikhitsa P.V., Jiang H., Brown D.P., Choi M., Kauppinen E.I., Investigations of NanoBud formation. Chemical Physics Letters, 446, 109-114, 2007.
  • [245] Naydenowa J., Vlasov D.A., Warnatz J., Detailed kinetic modeling of soot formation in pyrolysis benzene/acetylene/argon mixtures., Proceedings of the European Combustion Meeting, 2005.
  • [246] Nerushev O., Sveningsson M., Falk L., Rohmund F., Carbon nanotube films obtained by thermal chemicalvapour deposition, Journal of Material Chemistry, 11, 1122-1132, 2001.
  • [247] Nessim G.D., Hart A.J., Kim J.S., Acquaviva D., Oh J., Morgan C.D., Seita M., Leib J.S., Thompson C.V., Tuning of Vertically-Aligned Carbon Nanotube Diameter and Areal Density through Catalyst Pre-Treatment, Nano Letters, Vol. 8, No. 11, 3587-3593, 2008.
  • [248] Nessim G.D., Seita M., Plata D.L., O’Brien K.P., Hart A.J., Meshot E.R., Reddy Ch.M., Gshwend P.M., Precursor gas chemistry determines the crystallinity of carbon nanotubes synthetized at low temperature, Carbon, 49, 804-810, 2011.
  • [249] Nikolaev P., Bronikowski M.J., Bradley R.K., Rohmund F., Colbert D.T., Smith K.A., Smalley R. E., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, 313, 91-97, 1999.
  • [250] Nishino H., Yasuda S., Namai T., Futaba D., Yamada T., Yumura M., Iijima S., Hata K., Water-Assisted Highly Efficient Synthesis of Single-Walled Carbon Nanotubes Forests from Colloidal Nanoparticle Catalysts, Journal Phys.Chem., C, 111, (48) 17961-17965, 2007.
  • [251] Nishio M., Sawaya S., Akitaa S., Nakayama Y., Carbon nanotube oscillators toward zeptogram detection. Applied Physics Letters, 86:133111, 2005.
  • [252] Norinaga K., Deutschman O., Huttinger J., Analysis of gas phase compound in chemical vapor deposition of carbon from light hydrocarbons, Carbon 44, 9, 1790-1800, 2006.
  • [253] Norinaga K., Deutschman O., Saegusa N., Hayashi J., Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry, J. Anal. Appl. Pyrolysis, 86, 158-160, 2009.
  • [254] Norinaga K., Deutschmann O., Detailet kinetic modeling gas phase reaction in the CVD of carbon from light hydrocarbons, Ind. Eng. Chem. Res. 46 (2007) 3547- 3557, 2007.
  • [255] Norinaga K., Janardhanan V.M., Deutschmann O., Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073-1373 K with a plug-flow reactor model, International Journal of Chemical Kinetics 40, 199, 2008.
  • [256] Nowakowska H., Dębicki P., Mizeraczek J., Obwód zastępczy kolumny plazmy w falowodzie prostokątnym: wpływ koncentracji elektronów i średnicy kolumny plazmy, Przegląd Elektrotechniczny, 01/2010, 86(11a): 275-278, 2010.
  • [257] Okuno H., Grivel E., Fabry F., Gruenberger T.M., Gonzalez-Aguilar J.J., Palnichenko A., Fulchieri L., Probst N., Chalier J.C., Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process, Carbon 42, 2543-2549, 2004.
  • [258] Oncel C., Yurum J., Carbon nanotube synthesis via the catalytic CVD method: rewiev of the effect of reaction parameters., Fullurenes, Nanotubes and Carbon Structures, 14, 17-37, 2006.
  • [259] Ondrej J., Petr S., Lenka Z., Marek E., Vit K., Synthesis of Carbon Nanostructures by Plasma Enhanced Chemical Vapour Deposition at Atmospheric Pressure, Journal of Electrical Engineering, Vol. 61, No. 5, 311-313, 2010.
  • [260] Orimo S., Majer G., Fukunaga T., Züttel A., Schlapbach L., Fujii H., Hydrogen in the mechanically prepared nanostructured graphite. Appl. Phys. Lett., 75 (20), 3093 23, 1999.
  • [261] Oshima H., Shimazu T., Siry M. Mibu K. Analysis of Fe Catalyst during Carbon Nanotube Synthesis by Mössbauer Spectroscopy, Journal Phys. Chem.,113, (43), 18523-18526, 2009.
  • [262] Otsuka K., Kobayashi S., Takenaka S., Catalytic decomposition of light alkanes, alkenes and acetylene over Ni/SiO2, Appl. Catalysis A, General, 210, 371-379, 2001.
  • [263] Pan Ajayan M, Patent Carbon nanotube filter, US Patent 2006/0027499 A1, 9/2006.
  • [264] Pan H., Li J., Feng Y.P., Carbon Nanotubes for Supercapacitor, Nanoscale Res Lett. 2010, 5(3), 654-668, 2010.
  • [265] Park D., Kim Y.H., Lee J.K., Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD, Carbon, 41, 1025- 1029, 2003.
  • [266] Parosa R., Procesy generacji i stabilizacji plazmy za pomocą mikrofal, Wydawnictwo Politechniki Wrocławskiej, 1987.
  • [267] Parthangal P.M., Cavicchi R.E., Zachariah M.R., A generic process of growing aligned carbon nanotubes arrays on metal and metal alloys, Nanotechnology, 18, 185605, 2007.
  • [268] Patole S.P., Alegaonkar P.S., Lee H.C., Yoo J.B., Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon, 46,1987-93, 2008.
  • [269] Pełech I., Narkiewicz U., The Kinetics of Ethylene Decomposition on Iron Catalyst, Acta Physica Polonica A, Vol. 116 (2009) S 146-149, 2009.
  • [270] Phengjinda P., Sano N., Tanthapanichakoon W., Charinpanitkul T., Selective synthesis of carbon nanotubes and nanocapsules using naphthalene pyrolysis assisted with ferrocene, Journal of Ind. Eng. Chem.,15, (3), 375-380, 2009.
  • [271] Philips J., Method for producting of carbon nanotubes., United States Patent US 6,998,103B1.
  • [272] Pinault M., Maine-l’Hermite M., Reynaurd C., Pichot V., Lannois P., Ballutared D., Growth of Multi-walled carbon nanotubes during the initial stages of aerosol assisted CCVD, Carbon, 43, 2968, 2005.
  • [273] Pineau A., Kanari N., Gaballah I., Kinetics of reduction of iron oxides by H2 Part I: Low temperature reduction of hematite, Thermochimica Acta 447 (1): 89-100, 2006.
  • [274] Pirard S.L., Douven S., Pirard J.P., Analysis of kinetic models of multi-walled CNT synthesis, Letters to the Editor / Carbon 45 (2007) 3042-3059, 2007.
  • [275] Plata D.L., Meshot E.R., Reddy C.M., Hart A.J., Gschwend P. M., Multiple Alkynes React with Ethylene To Enhance Carbon Nanotube Synthesis, Suggesting a Polymerization-like Formation Mechanism, A CS Nano, 4 (12), pp. 7185-7192, 2010.
  • [276] Poulsen P.R., Borggreen J., Nygard J., Cobden D.H., Andreasen M.M., Lindelof P.E., Single walled carbon nanotubes devices prepared by chemical vapor deposition Proceedings of the International Winterschool on Electronic Properties of of Novel Materials - Molecular Nanostructures, H.Kuzmany, J.Fink, M.Mehring, S.Roth (eds.), AIP Conference Proceedings 544, 504, 2000.
  • [277] Prabhakaran K. Shafik V.P.M., Ulman A., Ajayan A, Homma Y., Ogino T., Low temperature carbon free reduction of iron oxide, Surface Science, 506, (1-2), L-250-L-254, 2002.
  • [278] Prato M., Kostarelos K., Bianco A., Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res., 1, 60, 2008.
  • [279] Przygocki W., Łochowicz A., Fulereny i nanorurki – Właściwości i zastosowanie, Wydawnictwo Naukowo – Techniczne, Warszawa 2001.
  • [280] Raniszewski G., Szymański Ł., Z. Kolaciński, Carbon nanotubes synthesis by electric arc plasma with external magnetic field, Conference proceedings 4th International Conference Nanocon, 2012.
  • [281] Raniszewski G., Szymański Ł., Z. Kolaciński, Diagnostic of electric arc for carbon nanotubes synthesis for medical applications, Conference proceedings 4th International Conference Nanocon, 2012.
  • [282] Rao C.N.R., Govindaraj A., Sen R., Satishkumar B.C., Synthesis of multi-walled and single-walled nanotubes, aligned-nanotube bundles and nanorods by employing organometallic precursors, Mat. Res. Innovat., 2, 128-141, 1998.
  • [283] Rege K., Raravikar N.R., Kim D.Y. et al., Enzymepolymer- single walled carbon nanotubes composites as biocatalytic films. Nano Lett., 3, 829, 03.
  • [284] Reich S., Thomsen C., Maultzsch J., Carbon Nanotubes. Wiley-Vch, First reprint edition, 2004.
  • [285] Richardson J.T., Scates R., Twigg M.V., X-ray diffraction study of nickel oxide reduction by hydrogen, Appl.Catalysis, A, 246, (1), 137-150, 2003.
  • [286] Rinzler A.G., Liu J., Dai H., Nikolaev P., Huffman C.B., Rodriguez-Macias E.J., Boul P.J., Lu A.H., Heyman D., Colbert D.T., Lee R., Fischer J.E., Rao A.M., Eklund P.C., Smalley R.E., Large scale purification of single Wall carbon nanotubes: process, product and characterization, Appl. Phys. A, 29-37, 1998.
  • [287] Rivera J.L., McCabe C., Cummings P.T., Oscillatory Behavior of Double-Walled Nano-tubes under Extension, A Simple Nanoscale Damped Spring, Nano Letters, 3:1001, 2003.
  • [288] Rotkin S., Subramoney S., Applied Physiks of Carbon Nanotubes, Fundamentals of Theory, Optics and Transport Devices, ISBN 978-3-540-28075-0, Springer, 2005.
  • [289] Ruitao L.V., Feiyu K., Wenxiang W., Xianteng Z., Zhenghong H., Jialin G., Kunlin W., Dehai W., Soft magnetic performance improvement of Fe-filled carbon nanotubes by water assisted pyrolysis route., Phys.Stat. Sol (a), 204, 3, 867-873, 2007.
  • [290] Samant K.M., Haram S.K., Korpoor S., Synthesis of carbon nanotubes by catalytic vapor deposition (CVA) method: optymisation of various parameter for the Maxima field, Pramana, Journal of Physics Indian Academia of Science, 68, 1, 51-60, 2007.
  • [291] Samanth K.M., Haram S.K., Kapoor S., Synthesis of single walled carbon nanotubes by catalytic vapor deposition method: optimalization of various parameter for the maximum field,Pramana Journal Phys., 68, (1), 550-552, 2007.
  • [292] Samanth K.M., Harum S.K., Korpoov S., Synthesis of carbon nanotubes by chemical Vapor deposition (CVD) method: optimization of various parameter for the maximal yield, Pramana Journal Phys., 68, (1), 50-55, 2007.
  • [293] Sampedro-Tejedor D. Maroto-Valiente A., Nevskaja D.M., Munoz V.,Rodrigez- Ramos J., Guerrero-Ruiz A., The effect of growth temperature on the synthesis of high purity carbon nanotubes, Diamond and Related Materials, 16, 542-549, 2001.
  • [294] Sanjay A., Sarada B. Kamal K., A Novel Approach to Synthesize Carbon Nanotubes, Carbon Nanocoils, Carbon Microcoils on the Surface of Metallic Wire: Application in Vacuum Electronic Devices, Azojomo, vol 6, Dec., 2010.
  • [295] Satishkumar B. C., Govindaraj A., Rao C. N. R., Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixture: role of the metal nanoparticles produced i situ., Chem. Phys. Lett. 307, 158, 1999.
  • [296] Satiskumar B.C., Govindaraj A., Sen R., Rao C.N.R., Single walled nanotubes by the pyrolysis of acetylene organometallic mixtures., Chem. Phys. Lett. 293, 47, 1998.
  • [297] Sazonova V., Yaish Y., Äustaunel H., Roundy D., Arias T.A., McEuen P.L., A tunable carbon nanotube electromechanical oscillator, Nature, 431:284, 2004.
  • [298] Schlange A., dos Santos A.R., Kunz U., Turek T., Continuous preparation of carbon-nanotube-supported platinum catalysts in a flow reactor directly heated by electric current, Beilstein JournalOrg.Chem. 7, 1412-1420, 2011.
  • [299] Scriven L.E., Physics and applications of dip coating and spin coating, Better ceramics through chemistry III. pp. 717-729, 1988.
  • [300] Shamsudin M.S., Achoi M.F., Asiah M.N., Ismail L.N., Suriani A.B., Abdullah S., Y ahya S . Y. S ., Rusop M ., A n I nvestigation o n t he F ormation o f Carbon Nanotubes by Two-Stage Chemical Vapor Deposition, Journal of Nanomaterials, ID 972126, 2012.
  • [301] Sharma S., Ranjan P., Das S., Gupta S., Bhali R., Majumdar A., Synthesis of carbon nanotubes using olive oil, Int. Journal of Renevable Energy Research, 2, (2), 2012.
  • [302] Shashikant P. Hong-Ik K., Jae-Hun J., Patole A., Kim H., Han I., Bhoraskar V.N., Yo J., The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel, Carbon, 49, 11, 3522-3528, 2011.
  • [303] Shelimov K.B., Esenaliev R.O., Rinzler A.G., Huffman C.B., Smalley R.E., Purification of Single-Wall Carbon Nanotubes By Ultrasonically Assisted Filtration, Chemical Physics Letters, 282, 429-434, 1998.
  • [304] Shi Q., Yang D., Su Y. et al., Covalent functionalization of multi-walled carbon nanotubes by lipase. JournalNanopart. Res. 2007, 9, 1205.
  • [305] Sibiński M., Jakubowska M., Znajdek K., Słoma M., Guzowski B., Carbon nanotube transparent conductive layers for solar cells application. Optica Applicata, Vol. XLI, No. 2, pp. 375-381, 2011.
  • [306] Sibiński M., Znajdek K., Walczak S., Lisik Z., Słoma M., Górski M., Cenian A., Comparison of ZnO, ITO and Carbon Nanotube Transparent Conductive Layers in Flexible Solar Cells Applications, Mat. Konf. MicroTherm 2011, Łódź, pp. 144-149, 2011.
  • [307] Siegal M.P., Overmyer D.L., Kaatz F.H., Controlling the site density of multiwall carbon nanotubes via growth conditions, Appl Phys Lett 2004, 84(25): 5156-8, 2004.
  • [308] Silva A.J.R, Fazzio A., Antonelli A.A., Bundling up Carbon Nanotubes through Wigner Defects. Nano Letters, 5:1045, 2005.
  • [309] Somega M., Takashi F., Masukazu H., Shigeo H., Process for producing aligned carbon nanotube films., US patents appl. 06967013.
  • [310] Soneda Y., Szostak K., Delpen X.S. Bonnamy S., Beguin F., XV Int.Conf., Electronic Properties of Molecular Nanostructure, Vol. 591, pp. 199-203, 2001.
  • [311] Steiner S.A., Baumann T.F., Bayer B.C., Blume R., Worsley M., Chan W., Shaw E.L., Schlo R., Hart A.J., Hofmann S., Wardle B.L., Nanoscale Zirconia as a Nonmetallic Catalyst for Graphitization of Carbon and Growth of Single- and Multiwall Carbon Nanotube Journal Amer. Chem. Soc, 131, 34, 12144-12154, 2009.
  • [312] Su M., Li Y., Maynor B., Buldum A., Lu J. P., Liu J., Lattice oriented growth of single walled carbon nanotubes, J. Phys. Chem. B 104, 6505-8, 2000.
  • [313] Su M., Zheng B., Liu J., A scalable CVD methods for the synthesis of single walled carbon nanotubes with high catalyst productivity, Chem. Phys. Lett., 322 321-6, 2000.
  • [314] Sugimoto S., Matsuda Y., Mori H., Carbon nanotube formation directly on the surface of stainless steel material by plasma assisted chemical vapor deposition, Journal Plasma Fusion Res., Vol. 8, 522-525, 2009.
  • [315] Sukhla B., Koshi M., A highly efficient growth mechanizm of polycyclic aromatic hydrocarbons., Phys.Chem. Chem. Phys., 12, 10, 2427-2437, 2010.
  • [316] Sun, L.F., Mao, J.M., Pan, Z.W., Chang, B.H., Zhou, W.Y., Wang, G., Qian, L.X., Xie, S.S., Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition. Appl. Phys. Lett. 1999, 74 (5), 644-646, 1999.
  • [317] Suriani A.B., Nor R. Md, Rusop M., Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/ Journal of the Ceramic Society of Japan, Vol. 118, No. 1382, pp. 963-968, 2010.
  • [318] Szarawara J., Termodynamika chemiczna. Warszawa, WNT, 1969, ss. 238-245, 1969.
  • [319] Szymański Ł., Kołaciński Z., Raniszewski G., Reaktor plazmowy z łukiem wirującym, Przegląd Elektrotechniczny (Electrical Review), ISSN 0033-2097, R. 88 NR 6/2012, ss. 118-122, 2012.
  • [320] Szymański Ł., Raniszewski G., Kolaciński Z., Microwave Plasma for CNTs Synthesis with Iron Pentacarbonyl as a Precursor, Conference proceedings 4th International Conference Nanocon, 2012.
  • [321] Szymański Ł., Raniszewski G., Kolaciński Z., Magnetic Field Controlled CNTs Synthesis In An Electrical Arc, Book of Contributed Papers – Hakone XIII, ISBN 978-83-62596-99-7, ss. 268-270, 2012.
  • [322] Taler J., Duda P., Rozwiązywanie prostych i odwrotnych zagadnień przewodzenia ciepła, WNT, Warszawa 2003.
  • [323] Tang B.Z., Xu H., Preparation, alignment, and optical properties of soluble poly(phenylacetylene)- wrapped carbon nanotubes. Macromolecules. 1999, 32, 2569.
  • [324] Tans S.J., Alwin R.M., Verschueren and Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature Vol. 393, pp. 49-52, 1998.
  • [325] Tapaszto L., Kerte K., Vertesy Z., Horvath Z.E., Koos A.A., Osvath Z., Sarkozi Z., Darabont Al., Biro L.P., Diameter and morphology dependence on experimental conditions of carbon nanotube arrays grown by spray pyrolysis, Carbon, 43, 970-977, 2005.
  • [326] Tasis D., Tagmatarchis N., Bianco A., Prato M., Chemistry of carbon nanotubes. Chem. Rev., 106, 1105, 2006.
  • [327] Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim, S.G., et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273 (5274), 483-487, 1996.
  • [328] Uhm H.S., Hong Y.C. Synthesis of carbon nanotubes by making use of microwave plasma torch., United States Patent US 423/445/00B.
  • [329] Ullmann's Encyclopedia of Industrial Chemistry, Wiley, 1987.
  • [330] United States Patent US 6,815,008 B2.
  • [331] Vaisman L ., W agner H ., M arom G ., T he r ole o f surfactants i n d ispersion o f carbon nanotubes, Advances In Colloid and Interface Science, 128-130,37-46, 2006.
  • [332] Vohrera U., Kolaricb I., Haqueb M.H., Rothc S., Detlaff-Weglikowskac U., Carbon nanotube sheets for the use as artificial muscles, Carbon, Volume 42, Issues 5-6, pp. 1159-1164, 2004.
  • [333] Yang W., Moghaddam M.J., Taylor S., Bojarski B., Wieczorek L., Hemnami J., Maxine J., McCall. Single-Walled Carbon Nanotubes with DNA Recognition. Chem. Phys. Lett. 443, 169-172, 2007.
  • [334] Wan Keely M., Differential Thermal Analysis study of the reduction of cobalt oxide, iron oxide and copper oxide., Journal of Chemical and Egineering Data, 10, 2, 1965.
  • [335] Wagg L.M., Hornyak G.L., Grigorian L., Dillon A.C., Jones K.M., Blackburn J., Parilla P.A., Experimental M. J. H ., G ibbs F ree E nergy Considerations in the Nucleation and Growth of Single-Walled Carbon Nanotubes, Journal Phys. Chem. B, 109, 10435-10440, 2005.
  • [336] Wagner D., Dervisme O., Patisson F., Ablitzer D., A laboratory study of the reduction of iron oxides by hydrogen, Sohn Intern.GSymposium, 27-31 August, San Diego, Proceedings edited by F.Kongoli, F.G.Reddy, TMS, vol.2, pp. 111- 120, 2006.
  • [337] Walczak M., Bieniaś J., Surowska B., Wielowarstwowy układ tytan − powłoka zol-żel − porcelana dentystyczna do zastosowań w protetyce stomatologicznej, Eksploatacja i Niezawodność, 3/2006. ss. 35-40, 2006.
  • [338] Wang Q.H., Setlur A.A., Lauerhaas J. M., Dai J.Y., Seelig E.W., Chang R.H., A nanotube-based field-emission flat panel display, Appl. Phys. Lett. 1998, 72(2912): 399-400, 1998.
  • [339] Wang X., Hu Z., Chen X., Chen Y., Preparation of carbon nanotubes and nano-particles by microwave plasma-enhanced chemical vapor deposition, Scripta Mater., 44, 1567-1570, 2001.
  • [340] Wang Y., Iabal Z., Malhotra S.V., Functionalization of Carbon Nanotubes with Amines and Enzymes. Chem. Phys. Lett. 402, 101, 2005.
  • [341] Wang Y ., Y eow J .T.W., A R eview o f C arbon N anotubes-Based Gas Sensors, Journal of Sensors Volume 2009, Article ID 493904, 2009.
  • [342] Wang Y.J., Rybczynski D.Z., Wang K., Kempa Z.F., Ren W.Z., Li B. Kimball, Periodicity and Alignment of Large-Scale Carbon Nanotubes Arrays, Applied Physics Letters, 85(20), 4741-4743, 2004.
  • [343] Wen J.Z., Goldsmith C.F., Ashcraft R.W., Green W.H., Detailed Kinetic Modeling of Iron Nanoparticle Synthesis from the Decomposition of Fe(CO)5, Journal Phys. Chem. C (Nanomaterials and Interfaces) 111 (15), 5677-5688, 2007.
  • [344] Williams P.A., Papadakisa S.J., Patel A.M., Falvo M.R., Washburn S., Superne R., Fabrication of nanometer-scale mechanical devices incorporating individual multiwalled carbon nanotubes as torsional springs, Applied Physics Letters, 82:805, 2003.
  • [345] Wiltshire J.G., Li L.J., Khlobystov A.N., Padbury C.J., Briggs G.A.D, Nicholas R.J., Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution, Carbon, 43, 1151-1155, 2005.
  • [346] Wiśniewski S., Wiśniewski T.S., Wymiana ciepła, WNT, 2000.
  • [347] Wua Z., Xua Q, Wangb J., Maa J., Preparation of Large Area Double-walled Carbon Nanotube Macro-films with Self-cleaning Properties, Journal Mater. Scie. Technology, 26, (1), 20-26, 2010.
  • [348] Wyder C., Guthold M., Falvo M., Washbum S., R. Superfme, D. Eiie. DNAFunctionalizedSingle- Walled Carbon Nanotubes. Nanotechnology 13, 601-605, 2002.
  • [349] Yabe Y., Ohtake Y., Ishitobi T., Show Y., Izumi T., Yamauchib H., Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method, Diamond and Related Materials, (13), 1292-1295, 2004.
  • [350] Yah C.S., Simate G.S., Moothi K., Maphuta S., Synthesis of large carbon nanotubes from ferrocene: the the CVD techniques, Trend in Appl.Scie.Research, 6, (11), 1270-1279, 2011.
  • [351] Yamada T., Namai T., Hata K., Futaba D., Mizuno K., Fan J., Yudasaka M., Yumura M., Iijima1 S. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts, Nature Nanotechnology, 1, 131-136, 2006.
  • [352] Yamamoto N., Hart A., Garcia E.J., Wicks S.S., Duong H.M., Slocum A.H., Wardle B.L., High yield growth and morphology control of aligned carbon nanotubes on ceramic fibres for multifunctional enhancement of structural comopsites., Carbon, 47, 511-560, 2009.
  • [353] Yan H., Li Q., Zhang J., Liu Z., Possible tactic to i mprove the growth of single walled carbon nanotubes by chemical vapor deposition, Carbon 40 2693-8, 2002.
  • [354] Yasuda S., Futaba N., Yamada T., Satou J., Shibuya A., Takai H., Arakawa K., Yumura M., Hata K., ACS Nano, 3, 4164, 2009.
  • [355] Yaws C.L., Chemical Properties Handbook, McGraw-Hill, 1999.
  • [356] Yetter W.E., Graphite fiber growth employing nuclei derived from iron pentacarbonyl patent USA 4749557.
  • [357] Yilmazoglu O., Popp A., Pavlidis D., Schneider J., Garth D., Schuttler F., Battenberg G., Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing, IOP Publishing Nanotechnology 23, 085501, 2012.
  • [358] Yingguo P., Chandro P., Laughlin D. E., Fe3O4 thin films sputter deposited from iron oxide targets, Journal Appl. Phys. 93, 7957, 2003.
  • [359] Yoon M., Han S., Kim G., Lee S.B., Berber S., Osawa E,, Ihm J., Terrones M., Banhart F., Charlier J.C, Grobert N., Terrones H., Ajayan P.M., Tomanek D., Zipper Mechanism of Nanotube Fusion: Theory and Experiment, Nano Letters, 92:075504, 2004.
  • [360] Yoon Y.J., Bae J.C., Baik H.K., Cho S.J., Lee S.J., Song K., Mand Myung N.S.,Growth control of single and multiwalled carbon nanotubes by thin film catalyst, Chem. Phys. Lett. 366, 109-14, 2002.
  • [361] Yudasaka M., Komatsu T., Ichihashi T., Iijima S., Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett. 1997, 278 (1,2,3), 102-106, 1997.
  • [362] Yudasaka, M., Sensui, N., Takizawa, M., Bandow, S., Ichihashi, T., Iijima, S., Formation of single-wall carbon nanotubes catalyzed by Ni separating from Y in laser ablation or in arc discharge using a C target containing a NiY catalyst. Chem. Phys. Lett. 1999, 312 (2-4), 155-160, 1999.
  • [363] Yudasaka M., Yamada R., Sensui N., Wilkins T., Ichihashi T., Iijima S., Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of singlewall carbon nanotubes formed by pulsed Nd :YAG laser ablation. Journal Phys. Chem. B 1999, 103 (30), 6224-6229, 1999.
  • [364] Yudasaka M., Zhang M., Iijima S., Porous target enhances production of single-wall carbon nanotubes by laser ablation. Chem. Phys. Lett. 2000, 323 (5,6), 549-553, 2000.
  • [365] Zajickova L., Elias M., Jasek O., Kudrle V., Frgala Z., Matejkova J., Bursik J., Kadlecikova M., Atmospheric pressure microwave torch for synthesis of carbon nanotubes, Plasma Phys. Control. Fusion 47 B655-B666, 2005.
  • [366] Zajickova L., Jasek O., Elias M., Synek P., Lazar L., Schneeweiss O., Hanzlikova R., Synthesis of carbon nanotubes by plasmaenhanced chemical vapor deposition in an atmospheric-pressure microwave torch, Pure Appl. Chem., Vol. 82, No. 6, pp. 1259-1272, 2010.
  • [367] Zajícková L., Jašek O., Synek P., Eliáš M., Kudrle V., Kadlecíková M., Breza J., Hanzlíková R., Synthesis of carbon nanotubes in MW plasma torch with different methods of catalyst layer preparation and their applications, Nanocon 2009.
  • [368] Zavodchikova M., Nasibulin A.G., Kulmala T., Grigoras K., Anisimov A., Franssila S., Ermolov V., Kauppinen E.I., Novel carbon nanotube network deposition technique for electronic device fabrication, Phys.State.Solids (b), 10, 2272-2275, 2008.
  • [369] Zdrojek M., Gebbicki W., Jastrzębski C., Melin T., Huczko A., Studies of Multi Wall Carbon Nanotubes using Raman spectroscopy and atomie force microscopy, Solid State Phenmena, 99(265), 1-4, 2004.
  • [370] Zhang S, Liu W. K., Ruor R.S., Atomistic Simulations of Double-Walled Carbon Nanotubes (DWCNTs) as Rotational Bearings. Nano Letters, 4:293, 2004.
  • [371] Zhang X. Cao A., Xu C.,Wu D., Oxidation and opening of well-aligned carbon nanotube tips, Materials Transactions, 43, (7), 1707-1710, 2002.
  • [372] Zhang Y., Gregoire J.M., Dover R.B., Hart A.J., Ethanol-Promoted High-Yield Growth of Few-Walled Carbon Nanotubes, J. Phys. Chem. C, 114, 6389-6395, 2010.
  • [373] Zhang Y., Li Y., Kim W., Wang D., Dai H., Imaging as growth of single – walled carbon nanotubes originated from isolated catalytic particles, Appl. Phys. A 74 325-8, 2002.
  • [374] Zhao B., Futaba N., Yasuda S., Akoshima M., Yamada T., Hata K., Exploring advantages of diverse carbon nanotubes forest with tailored structures synthetized by supergrowth from engineered catalyst., ACS Nano, 3, 1, 108, 2009.
  • [375] Zhiltsova I.V., Zaslonko I.S., Yu. K. Karasevich H., Wagner G.G., Nonisothermal effects in the process of soot formation in ethylene pyrolysis behind shock waves, Kinetics and Catalysis, Volume 41, Issue 1, pp. 76-89, 2000.
  • [376] Zhiltsova I.V., Zaslonko I.S., Karasevich Y.K., Wagner H.G., Nonisothermal effects in the process of soot formation in ethylene pyrolysis behind schock waves, Kinetics and Catalysis, 41, 1, 76-89, 2000.
  • [377] Züttel, A, Sudan, P., Mauron, Ph., Kiyobayashi, T., Emmenegger, Ch., Schlapbach L., Hydrogen storage in carbon nanostructures, Int. Journal Hydrogen Energy, 27, 203, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b01c5eb4-ed3d-4f1d-b2d7-04656d21582a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.