Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the equilibrated residual method (ERM) of error estimation in coupled problems in the case of complex piezoelectric models. These models include hierarchical, first-order, and transition models within the mechanical field of displacements, as well as hierarchical models within the electric field of potential. Three (classical, modified and enhanced) transition models are considered. The paper presents a variational formulation of the model problem of general piezoelectricity in the case of complex piezoelectric models and the finite element approximation of this problem. Next, the equilibration residual method for coupled problems of piezoelectricity and complex piezoelectric models is presented. The mechanical, electric and coupled parts of the modelling, approximation and total error estimators, and true errors are given. Effectivity indices (the ratio of estimated error to true error) are used to assess the quality of error estimation in the case of three error parts and three types of error for the complex models of piezoelectric plates. The effectivity results for simple piezoelectric models and uncoupled problems of elasticity and dielectricity are applied as references.
Rocznik
Tom
Strony
art. no. e153228
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Poland
autor
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences in Gdansk, Poland
Bibliografia
- [1] D.W. Kelly, “The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method,” Int. J. Numer. Methods Eng., vol. 20, no. 8, pp. 1491–1506, 1984.
- [2] R.E. Bank and A. Weiser, “Some a posteriori error estimations for elliptic partial differential equations,” Math.Comput., vol. 44, pp. 283–301, 1985.
- [3] P. Ladeveze and L. Leguillon, “Error estimate procedure in the finite element method and applications,” SIAM J. Numer. Anal., vol. 20, pp. 485–509, 1983.
- [4] M. Ainsworth and J.T. Oden, “A procedure for a posteriori error estimation for ℎ − 𝑝 finite element methods,” Comput. Meth. Appl. Mech. Eng., vol. 101, pp. 73–96, 1992.
- [5] M. Ainsworth and J.T. Oden, “A posteriori error estimators for second order elliptic systems: Part 1. Theoretical foundations and a posteriori error analysis,” Comput. Math. Appl., vol. 25, no. 2, pp. 101–113, 1993.
- [6] M. Ainsworth and J.T. Oden, “A posteriori error estimators for second order elliptic systems: Part 2. An optimal order process for calculating self-equilibrating fluxes,” Comput. Math. Appl., vol. 26, no. 9, pp. 75–87, 1993.
- [7] M. Ainsworth, J.T. Oden, and W. Wu, “A posteriori error estimation for ℎ − 𝑝 approximations in elastostatics,” Appl. Numer. Math., vol. 14, pp. 23–55, 1994.
- [8] J.T. Oden and J.R. Cho, “Adaptive hpq-finite element methods of hierarchical models for plate- and shell-like structures,” Comput. Meth. Appl. Mech. Eng., vol. 136, pp. 317–345, 1996.
- [9] G. Zboiński, “Adaptive hpq finite element methods for the analysis of 3D-based models of complex structures. Part 2. A posteriori error estimation,” Comput. Meth. Appl. Mech. Eng., vol. 267, pp. 531–565, 2013.
- [10] G. Zboiński, “Adaptive modeling and simulation of elastic, dielectric and piezoelectric problems” in Finite Element Method. Simulation, Numerical Analysis and Solution Techniques, R. Pacurar (Ed.), InTech, Rijeka (Croatia), 2018, pp. 157–192.
- [11] G. Zboiński, “Tuning of the equilibrated residual method for applications in general, direct and inverse piezoelectricity,” J. Theor. Appl. Mech., vol. 62, no. 2, pp. 219–230, 2024.
- [12] G. Zboiński, “Tuning of the equilibrated residual method for applications in elasticity, dielectricity and piezoelectricity” in AIP Conf. Proc., 2020, vol. 2239, p. 020050.
- [13] G. Zboiński. “Problems of hierarchical modeling and hp-adaptive finite element analysis in elasticity, dielectricity and piezoelectricity” in Perusal of the Finite Element Method. R. Petrova (Ed.), InTech, Rijeka (Croatia), 2016, pp. 1–29.
- [14] M. Zielińska and G. Zboiński, “Szacowanie błędów w adaptacyjnej analizie złożonych modeli piezoelektryków,” in Aspekty komputerowego wspomagania projektowania, wytwarzania i eksploatacji. Część 4, R. Trębiński and D. Rodzik (Eds), Wojskowa Akademia Techniczna, Warszawa, 2024, pp. 151–162.
- [15] B.A. Szabó and G.J. Sahrmann, “Hierarchic plate and shell models based on 𝑝-extension,” Int. J. Numer. Methods Eng., vol. 26, pp. 1855–1881, 1988.
- [16] L. Demkowicz, Computing with hp-Adaptive Finite Elements. Vol. 1. One- and Two-Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC: Boca Raton, FL, 2007.
- [17] G. Zboiński and M. Zielińska, “3d-Based Transition hpq/hp-Adaptive Finite Elements for Analysis of Piezoelectrics,” Appl. Sci., vol. 11, p. 4062, 2021.
- [18] G. Zboiński and W. Ostachowicz, “An Algorithm of a Family of 3D-Based, Solid-to-Shell, hpq/hp-Adaptive Finite Elements,” J. Theor. Appl. Mech., vol. 38, pp. 791–806, 2000.
- [19] M. Zielińska, “Analiza struktur sprężystych adaptacyjną metodą elementów skończonych z wykorzystaniem bryłowo-powłokowych elementów przejściowych,” Ph.D. dissertation, Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn, 2016 (in Polish).
- [20] G. Zboiński, “Adaptive hpq finite element methods for the analysis of 3D-based models of complex structures. Part 1 Hierarchical modelling and approximation,” Comput. Meth. Appl. Mech. Eng., vol. 199, pp. 2913–2940, 2010.
- [21] G. Zboiński, “3D-based hierarchical models and hpq-approximations for adaptive finite element method of Laplace problems as exemplified by linear dielectricity,” Comput. Meth. Appl. Mech. Eng., vol. 78, pp. 2468–2511, 2019.
- [22] A. Premount, Mechatronics. Dynamics of Electromechanical and Piezoelectric Systems, Springer: Dordrecht, 2006.
- [23] M. Ainsworth and J.T. Oden. A Posteriori Error Estimation in Finite Element Analysis, Wiley: New York, 2000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b018b758-6f15-4e10-ace5-d9d4003081f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.