PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Data Processing Tools for the Analysis of Radargrams in Utility Detection Using Ground Penetrating Radar

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The extraction of quantitative information from Ground Penetrating Radar (GPR) data sets (radargrams) to detect and map underground utility pipelines is a challenging task. This study proposes several algorithms included in the main stages of a data processing chain associated with radargrams. It comprises preprocessing, hyperbola enhancing, hyperbola detection and localization, and parameter extraction. Additional parameters related to the GPR system such as the frequency band and the polarization bring data sets additional information that need to be exploited. Presently, the algorithms have been applied step by step on synthetic and experimental data. The results help to guide future developments in signal processing for quantitative parameter estimation.
Rocznik
Tom
Strony
55--68
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Université Lille Nord de France, IFSTTAR, 20 rue Elis´ee Reclus, 59650 Villeneuve-d’Ascq, France
Bibliografia
  • [1] Z. Liu and Y. Kleiner, “State of the art review of inspection technologies for condition assessment of water pipes”, Measurement, vol. 46, no. 1, pp. 1–15, 2013.
  • [2] H. O. Henriques, M. Z. Fortes, L. Hudson, N. S. V. Silva, and F. O. Teixeira, “Use of radar illegal connections prospecting in buried or embedded cables”, Measurement, vol. 47, pp. 221–227, 2014.
  • [3] CI/ASCE38-02, American Society of Civil Engineers, Standard guideline for the collection and depiction of existing subsurface utility data, 2002.
  • [4] ASTM Designation D 6432-11, Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation, 2011.
  • [5] Italian Standard CEI-883, Regulations for performing preliminary surveys with ground-probing radar for before laying underground utilities and infrastructures, 2004.
  • [6] Proceedings of the First General Meeting of COST Action TU1208, L. Pajewski, and A. Benedetto, Eds. Rome, Italy, July 2013, Aracne, Rome, Italy, July 2013 [Online]. Available: http://www.cost.eu/ domains actions/tud/Actions/TU1208
  • [7] F. Sagnard, “Design of a compact ultra-wide band bow-tie slot antenna system for the evaluation of structural changes in civil engineering works”, Progress in Electromag. Res., PIER B, vol. 58, pp. 181–191, 2014.
  • [8] F. Sagnard and E. Tebchrany, “Using polarization diversity in the detection of small discontinuities by an ultra-wide band ground penetrating radar”, Measurement, vol. 61, pp. 129–141, 2015.
  • [9] F. Sagnard, C. Norgeot, X. Derobert, V. Baltazart, E. Merliot, F. Derkx, and B. Lebental, “Utility detection and positioning on the urban site Sense-City using Ground Penetrating Radar Systems”, Measurement, vol. 88, pp. 318–330, 2016.
  • [10] R. Solimene, A. Cuccaro, A. Dell’Aversano, I. Catapano, and F. Soldovieri, “Ground clutter removal in GPR surveys”, IEEE J. of Selec. Topics in Appl. Earth Observ. and Remote Sensing, vol. 7, no. 3, pp. 792–798, 2014.
  • [11] E. Tebchrany, F. Sagnard, V. Baltazart, and J. P. Tarel, “Data processing of ground-penetrating radar signals for the detection of discontinuities using polarization diversity”, European Geoscience Union General Assembly 2014, Vienna, Austria, 27 Apr. – 2 May 2014.
  • [12] G. T. Tesfamariam, D. Mali, and A. M. Zoubir, “Clutter reduction techniques for GPR based buried landmine detection”, in Proc. Int. Conf. on Signal Process., Commun., Comput. and Netw. Technol. ICSCCN 2011, Thuckalay, India, 2011, pp. 182–186.
  • [13] I. T. Jolliffe, Principal Component Analysis, 2nd ed. Springer, 2002.
  • [14] A. Hyvärinen, “Independent component analysis: recent advance”, Philos Trans. A Math. Phys. Eng. Sci., vol. 371, no. 1984, 2013 (doi: 10.1098/rsta.2011.0534).
  • [15] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications”, Neural Netw., vol. 13, no. 4, pp. 411–430, 2000.
  • [16] S. J. Radzevicius and J. J. Daniels, “Ground penetrating radar polarization and scattering from cylinders”, J. Applied Geophys., vol. 45, pp. 111–125, 2000.
  • [17] H. M. Jol, Ground Penetrating Radar Theory and Applications. Elsevier, 2008.
  • [18] P. K. Verma, A. N. Gaikwad, D. Singh, and M. Nigam, “Analysis of clutter reduction techniques for through wall imaging in UWB range”, Progress in Electromag. Res. B, vol. 17, pp. 29–48, 2009.
  • [19] T. Fawcett, “An introduction to ROC analysis”, Pattern Recogn. Lett., vol. 27, no. 8, pp. 861–874, 2006.
  • [20] F. Sagnard and J. P. Tarel “Template-matching based detection of hyperbolas in ground-penetrating radargrams for buried utilities”, J. of Geophys. and Engin., vol. 13, no. 4, pp. 491–504, 2016.
  • [21] S. Shihab and W. Al-Nuamy, “Radius estimation for cylindrical objects detected by ground penetrating radar”, Subsurface Sensing Technol. and Appl., vol. 6, no. 2, pp. 151–166, 2005.
  • [22] D. Vernon, Machine Vision-Automated Visual Inspection and Robot Vision. Prentice Hall, 1991.
  • [23] C. A. Balanis, Advanced Engineering Electromagnetic. Wiley, 1989.
  • [24] M. E. Yavuz, A. E. Fouda, and F. L. Teixeira, “GPR signal enhancement using sliding-window space-frequency matrices”, Progress in Electromag. Res., vol. 145, pp. 1–10, 2014.
  • [25] L. Mertens, R. Persico, L. Matera, and S. Lambot, “Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium”, IEEE Trans. Geosci. and Remote Sens., vol. 54, no. 1, pp. 580–596, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b014ca2a-3a66-496b-a536-31fe1f74eab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.