PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial distribution of BTEX and inorganic pollutants during summer season in Yalova, Turkey

Identyfikatory
Warianty tytułu
PL
Rozkład przestrzenny BTEX i zanieczyszczeń nieorganicznych w sezonie letnim w Yalova, Turcja
Języki publikacji
EN
Abstrakty
EN
The objective of this research is to determine the atmospheric concentrations and spatial distribution of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) (BTEX) and inorganic air pollutants (O3, NO2 and SO2) in the Yalova atmosphere during summer 2015. In this study, a combination of passive sampling and Geographical Information System-based geo-statistics are used with spatial statistics of autocorrelation to characterise the spatial pattern of the quality of air based on concentrations of these pollutants in Yalova. The spatial temporal variations of pollutants in the air with five types of land-use, residence, rural, highway, side road and industrial areas were investigated at 40 stations in Yalova between 7th August 2015 and 26th August 2015 using passive sampling. An inverse distance weighting interpolation technique was used to estimate variables at an unmeasured location from observed values at nearby locations. The spatial autocorrelation of air pollutants in the city was investigated using the statistical methods of Moran’s I in addition to the Getis Ord Gi. During the summer, highway and industrial sites had higher levels of BTEX then rural areas. The average concentration of toluene was measured to be 5.83 μg/m3 and this is the highest pollutant concentration. Average concentrations of NO2, O3 and SO2 are 35.64, 84.23 and 3.95 μg/m3, respectively. According to the global results of Moran’s I; NO2 and BTEX had positive correlations on a global space at a significant rate. Moreover, the autocorrelation analysis on the local space demonstrated significant hot spots on industrial sites and along the main roads.
Rocznik
Strony
565--581
Opis fizyczny
Bibliogr. 44 poz., rys., wykr., tab., map.
Twórcy
autor
  • Environmental Engineering Department, Corlu Engineering Faculty, Namik Kemal University, Silahtaraga 3, 59860 Corlu, Tekirdag, Turkey
autor
  • Geography Department, Balikesir University, Çağış Yerleşkesi, Bigadiç Yolu 17 km, 10463 Balikesir, Turkey, phone 90 266 612 10 00, fax 90 266 612 12 15
autor
  • The Ministry of Environment and Urban Planning, Yalova Provincial Offices, Adnan Menderes Neighborhood, Rahmi Ustel 2, 77200 Yalova, Turkey
autor
  • Environmental Engineering Department, Corlu Engineering Faculty, Namik Kemal University, Silahtaraga 3, 59860 Corlu, Tekirdag, Turkey
Bibliografia
  • [1] Briggs DJ, Collins S, Elliott P, Fischer P, Kingham S, Lebret E. Mapping urban air pollution using GIS: a regression based approach. Int J Geogr Inf Sci. 1997;11:699-718. DOI: 10.1080/136588197242158.
  • [2] Cooper O, Parrish D, Stohl A, Trainer M, Nédélec P, Thouret V, et al. Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. 2010;463:344-348. DOI: 10.1038/nature08708.
  • [3] Gilge S, Plass-Duelmer C, Fricke W, Kaiser A, Ries L, Buchmann B, et al. Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe. Atmos Chem Phys. 2010;10:12295-12316. DOI: 10.5194/acp-10-12295-2010.
  • [4] Tecer LH, Tagil S. Impact of urbanization on local air quality: differences in urban and rural areas of Balikesir, Turkey. Clean. 2014;42(11):1489-1499. DOI: 10.1002/clen.201200640.
  • [5] Directive 2008/50/EC of the European Parliament and of the Council of 21 May 208 on ambient air quality and cleaner air for Europe. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF.
  • [6] World Health Organization (WHO) Burden of disease from Ambient Air Pollution for 2012. Description of method Version 1.3. Geneva: World Health Organization; 2014, http://www.who.int/phe/health_topics/outdoorair/databases/HAP_BoD_results_March2014.pdf.
  • [7] Vardoulakis S, Gonzales-Flesca N, Fisher BEA, Pericleous K. Spatial variability of air pollution in the vicinity of a permanent monitoring station in central Paris. Atmos Environ. 2005;39(15):2725-2736. DOI: 10.1016/j.atmosenv.2004.05.067.
  • [8] Wheeler A, Smith-Dorion M, Xu X, Gilbert N, Brook J. Intro-urban variability of air pollution in Windsor, Ontario-measurement and modelling for human exposure. Assess Environ Res. 2008;106:7-16. DOI: 10.1016/j.envres.2007.09.004.
  • [9] Olszowski T. Seasonal values of the gaseous concentrations of air quality ratings in a rural area. Ecol Chem Eng S. 2013;20(4):719-732. DOI: 10.2478/eces-2013-0050.
  • [10] Olszowski T, Kłos A. The impact of candle burning during All Saints’ Day ceremonies on ambient alkyl-substituted benzene concentrations. Bull Environ Contam Toxicol. 2013;91:588-594. DOI: 10.1007/s00128-013-1104-6.
  • [11] Li L, Losser T, Yorke C, Piltner R. Fast inverse distance weighting-based spatiotemporal interpolation: A web-based application of interpolating daily fine particulate matter PM2.5 in the Contiguous U.S. using parallel programming and k-d tree. Int J Environ Res Public Health. 2014;11:9101-9141. DOI: 10.3390/ijerph110909101.
  • [12] Phillips DL, Tingey DT, Lee EH, Herstrom AA, Hogsett WE. Use of auxiliary data for spatial interpolation of ozone exposure in southeastern forests. Environmetrics. 1997;8(1):43-61. DOI: 10.1002/(SICI)1099-095X(199701)8:1<43::AID-ENV237>3.0.CO;2-G.
  • [13] Feng L, Ye B, Feng H, Ren F, Huang S, Zhang X, et al. Spatiotemporal changes in fine particulate matter pollution and the associated mortality burden in China between 2015 and 2016. Int J Environ Res Public Health. 2017;14:1321. DOI: 10.3390/ijerph14111321.
  • [14] Kethireddy SR, Tchounwou PB, Ahmad HA, Yerramilli A, Young JH. Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics. Int J Environ Res Public Health. 2014;11:983-1000. DOI: 10.3390/ijerph110100983.
  • [15] Myers DE. Interpolation and estimation with spatially located data. Chemometr Intell Lab. 1991;11:209-228. DOI: 10.1016/0169-7439(91)85001-6.
  • [16] Ikechukwu MN, Ebinne E, Idorenyin U, Raphael NI. Accuracy assessment and comparative analysis of IDW, spline and kriging in spatial interpolation of landform (Topography): An experimental study. J Geographic Informat System. 2017;9:354-371. DOI: 10.4236/jgis.2017.93022.
  • [17] Smith TB, Smith N, Weleber RG. Comparison of nonparametric methods for static visual field interpolation. Med Biol Eng Comput. 2017;55(1):117-126. DOI: 10.1007/s11517-016-1485-x.
  • [18] Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Clim Res. 2003;24:161-180. DOI: 10.3354/cr024161.
  • [19] Lee J, Wong D. Statistical Analysis with ArcView GIS. New York: John Wiley Sons. Inc; 2005. ISBN: 978-0-471-46899-8.
  • [20] Lu H, Cai QY, Wen S, Chi Y, Guo S, Sheng G, et al. Carbonyl compounds and BTEX in the special rooms of hospitals in Guangzhou, China. J Hazard Mater. 2010;178:673-679. DOI: 10.1016/j.jhazmat.2010.01.138.
  • [21] Toxicity Criteria Database, Cal/EPA, Office of Environmental Health Hazard Assessment, OEHHA Toxicity Criteria Database. http://www.oehha.ca.gov/risk/ChemicalDB/index.asp, 2009.
  • [22] Kyle AD, Wright CC, Caldwell JC, Buffler PA, Woodruff TJ. Evaluating the health significance of hazardous air pollutants using monitoring data. Public Health Rep. 2001;16:32-44. DOI: 10.1093/phr/116.1.32.
  • [23] Tecer LH, Tagil S. Spatial and Temporal Variations of Nitrogen Dioxide and Ozone Concentrations Assessment Using a GIS Based Geostatistical Approach in Balikesir, Turkey. 12th International Multidisciplinary Scientific GeoConference, www.sgem.org, SGEM2012 Conference Proceedings/ ISSN 1314-2704, June 17-23 2012;4:411-418. DOI: 10.5593/SGEM2012/S17.V4023.
  • [24] Wong DW, Yuan L, Perlin SA. Comparison of spatial interpolation methods for the estimation of air quality data. J Expo Anal Environ Epidemiol. 2004;14(5):404-415. DOI: 10.1038/sj.jea.7500338.
  • [25] Anselin L, Syabri I, Kho Y. GeoDa: an introduction to spatial data analysis. Geogr Anal. 2006;38:5-22. DOI: 10.1111/j.0016-7363.2005.00671.x.
  • [26] Anselin L. Local indicators of association-LISA. Geogr Anal. 1995;27:93-115. DOI: 10.1111/j.1538-4632.1995.tb00338.x.
  • [27] Getis A, Ord JK. The analysis of spatial association by use of distance statistics. Geogr Anal. 1992;24(3):189-206. DOI: 10.1111/j.1538-4632.1992.tb00261.x.
  • [28] Lee SC, Chiu MY, Ho KF, Zou SC, Wang XM. Volatile Organic Compounds (VOCs) in urban atmosphere of Hong Kong. Atmos Environ. 2002;48:375-382. DOI: 10.1016/S0045-6535(02)00040-1.
  • [29] Hsieh LT, Yang HH, Chen HW. Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan. J Hazard Mater. 2006;128:106-115. DOI: 10.1016/j.jhazmat.2005.08.001.
  • [30] Pekey B, Ozaslan U. Spatial distribution of SO2, NO2, and O3 concentrations in an industrial City of Turkey using a passive sampling method. Clean. 2013;41:423-428. DOI: 10.1002/clen.201200172.
  • [31] Hoque RR, Khillare PS, Agarwal T, Shridhar V, Balachandran S. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci Total Environ. 2008;392:30-40. DOI: 10.1016/j.scitotenv.2007.08.036.
  • [32] Gelencsér A, Siszler K, Hlavay J. Toluene-benzene concentration ratio as a tool for characterizing the distance from vehicular emission sources. Environ Sci Technol. 1997;31:2869-2872. DOI: 10.1021/es970004c.
  • [33] Liu PWG, Yao YC, Tsai JH, Hsu YC, Chang LP, Chang KH. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci Total Environ. 2008;398(13):154-163. DOI: 10.1016/j.scitotenv.2008.02.053.
  • [34] Monod A, Sive BC, Avino P, Chen T, Blake DB, Rowland FS. Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos Environ. 2001;35:135-149. DOI: 10.1016/S1352-2310(00)00274-0.
  • [35] Truc VTQ, Oanh NTK. Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmos Environ. 2007;41:7685-7697. DOI: 10.1016/j.atmosenv.2007.06.003.
  • [36] Yurdakul S, Civan M, Tunce G. Volatile organic compounds in suburban Ankara atmosphere, Turkey: sources and variability. Atmos Res. 2013;120-121:298-311. DOI: 10.1016/j.atmosres.2012.09.015.
  • [37] Zalel A, Broday DM. Revealing source signatures in ambient BTEX concentrations. Environ Pollut. 2008;156(2):553-562. DOI: 10.1016/j.envpol.2008.01.016.
  • [38] Mehta D, Nguyen A, Montenegro A, Li ZA. Kinetic study of the reaction of OH with xylenes using the relative rate/discharge flow/mass spectrometry technique. J Phys Chem. 2009;113(46):12942-12951. DOI: 10.1021/jp905074j.
  • [39] Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management. http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1996/L/01996L0062-20031120-en.pdf.
  • [40] Itano Y, Bandow H, Takenaka N, Saitoh Y, Asayama A, Fukuyama J. Impact of NOx reduction on long-term ozone trends in an urban atmosphere. Sci Total Environ. 2007;379:46-55. DOI: 10.1016/j.scitotenv.2007.01.079.
  • [41] Zabalza J, Ogulei D, Elustondo D, Santamaría JM, Alastuey A, Querol X, et al. Study of urban atmospheric pollution in Navarre (Northern Spain). Environ Monit Assess. 2007;134:137-151. DOI: 10.1007/s10661-007-9605-6.
  • [42] Saborit JMD, Cano VJE. Field comparison of passive samplers versus UV-photometric analyser to measure surface ozone in a Mediterranean area. J Environ Monit. 2007;9:610-615. DOI: 10.1039/B618075B.
  • [43] Keuken M, Roemer M, van den Elshout S. Trend analysis of urban NO2 concentrations and the importance of direct NO2 emissions versus ozone/NOx equilibrium. Atmos Environ. 2009;43:4780-4783. DOI: 10.1016/j.atmosenv.2008.07.043.
  • [44] Wolff GT, Korsog PE. Ozone control strategies based on the ration of volatile organic compounds to nitrogen oxides. J Air Waste Manage Assoc. 1992;42:1173-1177. DOI: 10.1080/10473289.1992.10467064.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0144ad1-7255-4ba5-b183-beffc4e67666
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.