PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diatoms (Bacillariophyta) from the Genus Eunotia and Pinnularia Developing on Soils in the Open Landscape of the Low Beskids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the areas of medium mountains, including the landscape of the Low Beskids, turf communities guarantee the biodiversity increasing the value of open landscape and protecting soil from erosion. The aim of this study was to show the diversity of the diatom communities from the Eunotia and Pinnularia genera developing on soils under the conditions of varied landscape use (meadows, pastures, fallow lands). The research was carried out within the catchment area of the Ryjak stream in the Magura National Park, together with the buffer zone at three sites. The water content varied in the studied soils with fluctuating moisture content depending on the season and the research year. On the other hand, the pH values indicated high acidification of the studied soils. The diatomaceous analysis showed numerous occurrences of the Eunotia (12 taxa) and Pinnularia (18 taxa) genera. The acid pH of the soil undoubtedly favored the development of diatoms of these genera. Most species of the Eunotia and Pinnularia genera usually developed individually, except for Pinnularia borealis Ehrenberg and P. obscura Krasske. They are typically soil species; therefore, they often dominated in the material and occurred in most of the research seasons. Apart from cosmopolitan diatoms, rare or endangered taxa from the Red List of the algae in Poland (Siemińska et al. 2006) were also found on soils. Four species belonged to the endangered category (E): Eunotia botuliformis F. Wild, Nörpel & Lange-Bert., Pinnularia nodosa (Ehrenberg) Smith, P. schoenfelderi and P. viridiformis Krammer. Canonical analysis (CCA) demonstrated a rather low statistical significance of the impact of environmental parameters (pH and humidity) on the differentiation of diatom communities. It only confirmed the fact that diatoms develop better in the environment with permanent or at least periodic moisture, compared to the dry habitats.
Słowa kluczowe
Rocznik
Strony
257--270
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Department of Landscape Architecture, Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszów, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland
Bibliografia
  • 1. Adesalu T.A., Olugbemi O.M. 2015. Soil algae: A case study of two vegetable farmlands in Lagos and Ogun states, southwest Nigeria. Ife Journal of Science, 17(3), 765–772.
  • 2. Antonelli M., Wetzel C.E., Ector L., Teuling A.J., Pfister L. 2017. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecological Indicators, 75, 73–81.
  • 3. Banach A., Wolińska A., Błaszczyk M., Stępniewska Z. 2015. The influence of soil properties and land use on the phosphate level in soils from Lubelskie region Polish Journal of Agronomy, 22, 3–9.
  • 4. Barragán C., Wetzel C.E., Ector L. 2018. A standard method for the routine sampling of terrestrial diatom communities for soil quality assessment. Journal of Applied Phycology, 30(2), 1095–1113.
  • 5. Bérard A., Rimet F., Capowiez Y., Leboulanger C. 2004. Procedures for determining the pesticide sensitivity of indigenous soil algae: a possible bioindicator of soil contamination? Arch. Environ. Contam. Toxicol., 46, 24–31.
  • 6. Cameron R.E. 1960. Communities of soil algae occuring in the Sonoran Desert in Arizona. Journal Arizona Acadademic Science, 1, 85–88.
  • 7. Cameron R.E. 1962. Species of Nostoc Vaucher occuring in the Sonoran Desert in Arizona. Transactions of the American Microscopical Society, 81, 379–384.
  • 8. Caraus I. 2017. Algae of Romania. A distributional checklist of actual algae. Version 2.4. Studii si Cercetari Biologie, 7, 1–1002.
  • 9. Durrell L.W. 1959. Algae in Colorado soils. American Midland Naturalist, 61, 322–328.
  • 10. Durrell L.W. 1962. Algae of Death Valley. Transactions of the American Microscopical Society, 81, 267–268.
  • 11. Ettl H., Gärtner G. 1995. Sylabus der Boden-, Luftund Flechtenalgen. Gustaw Fischer, Stuttgart – Jena – New York.
  • 12. Foets J., Wetzel C.E., Teuling A.J., Pfister L. 2020. Temporal and spatial variability of terrestrial diatoms at thecatchment scale: controls on communities. PeerJ, 8, e8296.
  • 13. Gajda A.M., Przewłoka B. 2012. Soil biological activity as affected by tillage intensity. International Agrophisics, 26, 15–23.
  • 14. Gollerbah M.M., Shtina E.A. 1969. Pochviennyje vodorosli. Nauka, Leningrad.
  • 15. Hahn A., Neuhaus W. 1997. Boden-Diatomeen einer landwirtschaftlichen Nutzfläche bei Potsdam, Deutschland. Nova Hedwigia, 65(1–4), 285–298.
  • 16. Heger T.J., Straub F., Mitchell E.A.D. 2012. Impact of farming practices on soil diatoms and testate amoebae: A pilot study in the DOK-trial at Therwil, Switzerland. Eur. J. Soil Biol., 49, 31–36.
  • 17. Hofmann G., Werum M., Lange-Bertalot H. 2011. Diatomeen im Süsswasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. [In:] H. Lange-Bertalot (Ed.), A.R.G. Ganter Verlag K.G., Königstein/Germany.
  • 18. Hunt C.D., Durrell L.W. 1966. Distribution of fungi and algae. U.S. Geological Survey Professional Paper, 509, 55–66.
  • 19. Ignaczak S. 1998. A maintenance system of fallow soil – changes in temperature, humidity and salinity of the various layers. Fragmenta Agronomica, 5, 225–237, (in Polish).
  • 20. Jankowska-Huflejt H. 2007. Agri-environmental importance of permanent grasslands. Problems of Agricultural Engineering, 1, 23–34, (in Polish).
  • 21. Johansen J.R., Shubert L.E. 2001. Algae in soils. Nova Hedwigia, Beiheft, 123, 297–306.
  • 22. Kalinowska R., Pawlik-Skowrońska B. 2008. Metal resistance of soil algae (Chlorophyta) occurring in post-flotation Zn/Pband Cu-tailing ponds. Polish J. Ecol., 56(3), 415–430.
  • 23. Karczewska A., Kabała C. 2008. Methodology of laboratory analysis of soils and plants, Methodology in force in the laboratories of the INGOŚ Environmental Protection Institute,Wrocław, (in Polish).
  • 24. Kawecka B. 2012. Diatom diversity in streams of the Tatra National Park (Poland) as indicator of environmental conditions. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.
  • 25. Komárek J., Fott B. 1983. Chlorococcales. [In:] G. Huber Pestalozzi (Ed.), Das Phytoplankton des Süßwassers, 7(1), 283–308.
  • 26. Krammer K. 2000. The genus Pinnularia [In:] H. Lange-Bertalot (Ed.) Diatoms of Europe. A.R.G. Gantner Verlag KG, Vaduz.
  • 27. Krammer K., Lange-Bertalot H. 1986. Bacillariophyceae. 1. Naviculaceae. [In:] H. Ettl et al. (Eds), Süsswasserflora von Mitteleuropa. 2(1), G. Fischer Verlag, Stuttgart–New York.
  • 28. Krammer K., Lange-Bertalot H. 1991. Bacillariophyceae. 3. Centrales, Fragilariaceae, Eunotiaceae. [In:] H. Ettl et al. (Eds), Süsswasserflora von Mitteleuropa. 2(3), G. Fischer Verlag, Stuttgart–Jena.
  • 29. Krążel R. 1990. The dynamics of changes in the physical properties of sundy soil in different ways. Zesz. Probl. Post. Nauk Rol., 376, 25–30, (in Polish)
  • 30. Lange-Bertalot H., Bąk M., Witkowski A. 2011. Eunotia and some related genera. [In:] Diatoms of Europe. Diatoms of the European inland water and comparable habitats. Vol. 6 H. Lange-Bertalot (Ed.), A.R.G. Gantner Verlag K.G., Ruggell.
  • 31. Lange-Bertalot H., Hofmann, Werum M., Cantonati M. 2017. Freshwater benthic diatoms of Central Europe: over 800 common species used in ecological assessments. English edition with updated taxonomy and added species. [In:] M. Cantonati et al. (Eds), Koeltz Botanical Books, Schmitten-Oberreifenberg.
  • 32. Noga T., Peszek Ł., Stanek-Tarkowska J., Pajączek A. 2014a. The Pinnularia genus in south-eastern Poland with consideration of rare and new taxa to Poland. Oceanological and Hydrobiological Studies, 43(1), 77–99.
  • 33. Noga T., Kochman N., Peszek Ł., Stanek-Tarkowska J., Pajączek A. 2014b. Diatoms (Bacillariophyceae) in rivers and streams and on cultivated soils of the Podkarpacie Region in the years 2007–2011. Journal of Ecological Engineering, 15(1), 6–25.
  • 34. Noga T., Stanek-Tarkowska J., Kochman-Kędziora N., Rybak M., Peszek Ł., Pajączek A. 2017. Luticola frequentissima Levkov, Metzeltin & Pavlov – morphological and ecological characteristic of population from Southern Poland. Oceanological and Hydrobiological Studies, 46(2), 237–243.
  • 35. Pajączek A., Peszek Ł., Kochman-Kędziora N., Rybak M., Noga T., Stanek-Tarkowska J. 2015. Occurrence of endangered diatom Pinnularia schoenfelderi Krammer on the area of south-eastern Poland. [In:] J. Gąsior et al. (Eds), Acta Carpathica, 23, 67–72 (in Polish with English summary).
  • 36. Patoczka P. 2016. Skylines. University of Rzeszów, Rzeszów, (in Polish)
  • 37. Pfister L., Wetzel C.E., Klaus J., Martínez-Carreras N., Antonelli M., Teuling A.J., McDonnell J.J. 2017. Terrestrial diatoms as tracers in catchment hydrology: a review. Wiley Interdisciplinary Reviews: Water, 4(6), p. 1241.
  • 38. Pudełko J., Wright D., Wiatrak P. 1994. Applying restrictions on farming in the United States. Zeszyty Postępów Nauk Rolniczych, 1, 153–162 (in Polish).
  • 39. Rybak M., Noga T., Zubel R. 2018. The aerophytic diatom assemblages developed on mosses covering the bark of Populus alba L. Journal of Ecological Engineering, 19(6), 113–123.
  • 40. Rybak M., Noga T., Poradowska A. 2019. Diversity in anthropogenic environment – permanent puddle as a place for development of diatoms. Journal of Ecological Engineering, 20(8), 165–174.
  • 41. Shields L.M., Drouet F. 1962. Distribution of terrestial algae within the Nevada Test Site. American Journal of Botany, 49, 457–554.
  • 42. Siebielec G., Smreczak B., Klimkowicz-Pawlas A., Kowalik M., Kaczyński R., Koza P., Ukalska-Jaruga A., Łysiak M., Wójtowicz U., Poręba L., Chabros E. 2017. Report from the 3rd Stage of the Order Implementation “Monitoring of Soil Chemistry in Poland in 2015–2017”. Instytut Uprawy, Nawożenia i Gleboznawstwa PIB, Puławy (in Polish).
  • 43. Sieminiak D. 1998. Biomass of soil algae under rye in different crop rotation systems. Polish Journal of Soil Science, 31(2), 79–85.
  • 44. Sieminiak D. 2003. Soil algae in two farming systems of potato cropping. Bulletin of the Polish Academy of Sciences. Biological Sciences, 51(1), 1–8.
  • 45. Siemińska J., Wołowski K. 2003. Catalogue of Polish prokaryotic and eucaryotic algae. W. Szafer Intitute of Botany, Polish Academy of Sciences, Kraków
  • 46. Siemińska J., Bąk M., Dziedzic J., Gąbka M., Gregorowicz P., Mrozińska T., Pełechaty M., Owsiany P. M., Pliński M. & Witkowski A. 2006. Red list of the algae in Poland. [In:] Z. Mirek et al. (Eds), Red list of plants and fungi in Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków
  • 47. Skiba S. 2006. Soil cover of the alpine zone of the Carpathians and its threats. Roczniki Bieszczadzkie, 14, 201–214, (in Polish with English summary).
  • 48. Stanek-Tarkowska J., Noga T. 2012a. The diatom communities developing on dust soils under sweet corn cultivation in Podkarpackie region. Fragmenta Floristica et Geobotanica Polonjca, 19(2), 525–536.
  • 49. Stanek-Tarkowska J., Noga T. 2012b. Diversity of diatoms (Bacillariophyceae) in the soil under traditional tillage and reduced tillage. Inżynieria Ekologiczna, 30, 287–296.
  • 50. Stanek-Tarkowska J., Noga T., Pajączek A., Peszek Ł. 2013. The occurrence of Sellaphora nana (Hust.) Lange-Bert. Cavacini, Tagliaventi & Alfinito, Stauroneis borrichii (J.B. Petersen) J.W.G. Lund, S. parathermicola Lange-Bert. and S. thermicola (J.B. Petersen) J.W.G. Lund on agricultural soils. Algological Studies, 142, 109–120.
  • 51. Stanek-Tarkowska J., Noga T., Kochman-Kędziora N., Peszek Ł., Pajączek A., Kozak E. 2015. The diversity of diatom assemblages developed on fallow soil in Pogórska Wola near Tarnów (southern Poland). Acta Agrobot., 68(1), 33–42.
  • 52. Stanek-Tarkowska J., Noga T., Kochman-Kędziora N., Rybak M. 2016. Diatom assemblages growing on cropping soil in Pogórska Wola near Tarnów. Inżynieria Ekologiczna, 46, 128–134 (in Polish with English summary).
  • 53. Stanek-Tarkowska J., Czyż E.A., Kaniuczak J., Poradowska A. 2017. Physicochemical properties of silt loamy soil and diversity of diatom species under winter wheat and oats. Journal of Ecological Engineering, 18(6), 142–151.
  • 54. Stanek-Tarkowska J., Czyż E.A., Dexter A.R., Sławiński C. 2018. Effects of reduced and traditional tillage on soil properties and diversity of diatoms under winter wheat. International Agrophisics, 32, 403–409.
  • 55. Szewczyk A. 2017. Impact of agricultural use on selected soil properties in the buffer zone of the Magura National Park. Ph. D. Thesis, University of Rzeszów, Rzeszów (in Polish with English summary).
  • 56. Škaloud P. 2009. Species composition and diversity of aero-terrestial algae and Cyanobacteria of the Boreč Hill ventaroles. Fottea, 9(1), 65–80.
  • 57. Ter Braak C.J.F., Šmilauer P. 2012. Canoco reference manual and user’s guide. Software for ordination (version 5.0). Microcomputer Power, Ithaca, New York.
  • 58. Van Dam H., Martens A., Sinkeldam J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28(1), 117–133.
  • 59. Veen A., Hof C.H.J., Kouwets F.A.C., Berkhout T. 2015. Taxa Watermanagement the Netherlands (TWN) [Rijkswaterstaat Waterdienst, Informatiehuis Water] http://ipt.nlbif.nl/ipt/resource?r=checklist-twn.
  • 60. Wojtal A.Z. 2013. Species composition and distribution of diatom assemblages in spring waters from various geological formations in southern Poland. J. Cramer, Gebrüder Borntraeger Verlagsbuchhandlung, Stuttgart. Bibliotheca Diatomologica, 59, 1–436.
  • 61. Włodek S., Pabin J., Biskupski A. 2007. The dynamics of soil water content at different methods of soil tillage. Fragmenta Agronomica, 24(4)4, 254–260 (in Polish with English summary).
  • 62. Zancan S., Trevisan R., Paoletti M.G. 2006. Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems and Environment, 112, 1–12.
  • 63. Żelazna-Wieczorek J. 2011. Diatom flora in springs of Łódź Hills (Central Poland). Biodiversity, taxonomy and temporal changes of epipsammic diatom assemblages in springs affected by human impact. Diatom Monographs, 13, 1–420.
  • 64. Żyszkowska M. 2003. Protected plant species and grassland habitats in the valley of a mountain river – the Bystrzyca Dusznicka River. Woda Środowisko Obszary Wiejskie, T. 6, 2(18), 387–396 (in Polish with English summary).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b00c7b0c-8c7c-49db-84d9-dc77883a7320
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.