PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drought forecasting using new machine learning methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod
Języki publikacji
EN
Abstrakty
EN
In order to have effective agricultural production the impacts of drought must be mitigated. An important aspect of mitigating the impacts of drought is an effective method of forecasting future drought events. In this study, three methods of forecasting short-term drought for short lead times are explored in the Awash River Basin of Ethiopia. The Standardized Precipitation Index (SPI) was the drought index chosen to represent drought in the basin. The following machine learning techniques were explored in this study: artificial neural networks (ANNs), support vector regression (SVR), and coupled wavelet-ANNs, which pre-process input data using wavelet analysis (WA). The forecast results of all three methods were compared using two performance measures (RMSE and R²). The forecast results of this study indicate that the coupled wavelet neural network (WA-ANN) models were the most accurate models for forecasting SPI 3 (3-month SPI) and SPI 6 (6-month SPI) values over lead times of 1 and 3 months in the Awash River Basin in Ethiopia.
PL
Efektywna gospodarka rolna, uzyskanie dużych plonów wymaga prowadzenia działań w celu ograniczenia niekorzystnego wpływu suszy. Ważnym czynnikiem ograniczania skutków suszy jest efektywna i możliwie precyzyjna metoda przewidywania suszy. W artykule przedstawiono trzy metody prognozowania suszy w okresach krótkoterminowych, które zostały zastosowane w zlewni rzeki Awash w Etiopii. Do kwantyfikacji suszy zastosowano wskaźnik standaryzowanego opadu (SPI). Zastosowane zostały następujące samouczące się metody: sztuczne sieci neuronowe (ANNs), regresje wektorowe (SVR) oraz połączenie ANNs z analizą falową (WA), którą zastosowano do wstępnej obróbki danych. Ocenę prognozy dokonano stosując dwa mierniki – RMSE i R². Na podstawie obliczeń stwierdzono, że połączona metoda analizy falowej z siecią neutronową (WA-ANN) jest najdokładniejsza w prognozowaniu wartości SPI 3 (3-miesięczne SPI) i SPI 6 (6-miesięczne SPI) w okresie 1 i 3 miesiące naprzód w zlewni rzeki Awash.
Wydawca
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada, H9X 3V9
autor
  • Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada, H9X 3V9
Bibliografia
  • [1.] ADAMOWSKI J., CHAN H.F. 2011. A Wavelet Neural Network Conjunction Model for Groundwater Level Forecasting. Journal of Hydrology. Vol. 407. Iss. 1–4 p. 28–40.
  • [2.] ASEFA T., KEMBLOWSKI M., MCKEE M., KHALIL A. 2006. Multi-time scale stream flow 505 predicitons: The support vector machines approach. Journal of Hydrology. Vol. 318. Iss. 1–4 p. 7–16.
  • [3.] BACANLI U.G., FIRAT M., DIKBAS F. 2008. Adaptive Neuro-Fuzzy Inference System for drought forecasting. Stochastic Environmental Research and Risk Assessment. Vol. 23. Iss. 8 p. 1143–1154.
  • [4.] BONACCORSO B., BORDI I., CANCELLIERE A., ROSSI G., SUTERA A. 2003. Spatial variability of drought: an analysis of SPI in Sicily. Water Resources Management. Vol. 17. Iss. 4 p. 273–296.
  • [5.] BARROS A., BOWDEN G. 2008. Toward long-lead operational forecasts of drought: An experimental study in the Murray- Darling River Basin. Journal of Hydrology. Vol. 357. Iss. 3–4 p. 349–367.
  • [6.] CACCIAMANI C., MORGILLO A., MARCHESI S., PAVAN V. 2007. Monitoring and forecasting drought on a regional scale: Emilia-Romagna Region. In: Methods and tools for drought Analysis and management. Eds. G. Rossi, T. Vega, B. Bonaccorso. Water Science and Technology Library. Vol. 62 (1) p. 29–48.
  • [7.] CANNAS B., FANNI A., SIAS G., TRONCI S., ZEDDA M.K. 2006. River flow forecasting using neural networks and wavelet analysis. Proceedings of the European Geosciences Union.
  • [8.] CUTORE P., DI MAURO G., CANCELLIERE A. 2009. Forecasting Palmer Index using neural networks and climatic indexes. Journal of Hydrologic Engineering. Vol. 14. No. 6 p. 588–595.
  • [9.] EDOSSA D.C., BABEL M.S., GUPTA A.D. 2010. Drought analysis on the Awash River Basin, Ethiopia. Water Resource Management. Vol. 24. Iss. 7 p. 1441–1460.
  • [10.] HAYES M. 1996. Drought indexes. National Drought Mitigation Center, University of Nebraska–Lincoln, p. 7 (available from University of Nebraska–Lincoln, 239LW Chase Hall, Lincoln, NE 68583).
  • [11.] KARAMOUZ M., RASOULI K., NAZIL S. 2009. Development of a Hybrid Index for Drought Prediction: Case study. Journal of Hydrologic Engineering. Vol. 14. No. 6 p. 617–627.
  • [12.] KHAN M.S., COULIBALY P. 2006. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering. Vol. 11. No. 3 p. 199–205.
  • [13.] KIM T., VALDES J.B. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering. Vol. 8. No. 6 p. 319–328.
  • [14.] KISI O., CIMEN M. 2009. Evapotranspiration modelling using support vector machines. Hydrological Science Journal. Vol. 54. Iss. 5 p. 918–928.
  • [15.] KISI O., CIMEN M. 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. Journal of Hydrology. Vol. 399. Iss. 1–2 p. 132–140.
  • [16.] MAITY R., BHAGWAT P.P., BHATNAGAR A. 2010. Potential of support vector regression for prediction of monthly streamflow using endogenous property. Hydrological Processes. Vol. 24. Iss. 7 p. 917–923.
  • [17.] MARJ A.F., MEIJERINK A.M. 2011. Agricultural drought forecasting using satellite images, climate indices and artificial neural network. International Journal of Remote Sensing. Vol. 32. No. 24 p. 9707–9719.
  • [18.] MCKEE T.B., DOESKEN N.J., KLEIST J. 1993. The relationship of drought frequency and duration to time scales. 8th Conference on Applied Climatology. 17-22 January 1993, Anaheim, California. American Meteorological Society, Anaheim, CA.
  • [19.] Ministry of Water Resources. 2007. The Awash River Basin. http://www.mowr.gov.et/AWMISET/images/Awash_agroecologyv3.pdf. Accessed 06-June-2013
  • [20.] MISHRA A.K., SINGH V.P. 2010. A review of drought concepts. Journal of Hydrology. Vol. 391. Iss. 1–2 p. 202–216.
  • [21.] MISHRA A.K., DESAI V.R. 2006. Drought forecasting using feed-forward recursive neural network. Ecological Modelling. Vol. 198. No. 1–2 p. 127–138.
  • [22.] MISHRA A.K., DESAI V.R., SINGH V.P. 2007. Drought forecasting using a hybrid stochastic and neural network model. Journal of Hydrologic Engineering. Vol. 12. Iss. 6 p. 626–638.
  • [23.] MORID S., SMAKHTIN V., BAGHERZADEH K. 2007. Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology.Vol. 27. Iss. 15 p. 2103–2111.
  • [24.] NASON G.P., VON SACHS R. 1999. Wavelets in time-series analysis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. Vol. 357. No. 1760 p. 2511–2526.
  • [25.] NTALE H.K., GAN T.Y. 2003. Drought indices and their application to East Africa. International Journal of Climatology. Vol. 23. Iss. 11 p. 1335–1357.
  • [26.] PARRELLA F. 2007. Online support vector regression. Master Thesis, University of Genoa.
  • [27.] PARTAL T., KISI O. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology. Vol. 342. Iss. 1–2 p. 199–212.
  • [28.] TIWARI M.K., CHATTERJEE C. 2010. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. Journal of Hydrology. Vol. 394. Iss. 3–4 p. 458–470.
  • [29.] TSAKIRIS G. VANGELIS H. 2004. Towards a Drought Watch System based on spatial SPI. Water Resources Management. Vol. 18. Iss. 1 p. 1–12.
  • [30.] VAPNIK V. 1995. The nature of statistical learning theory. New York, USA. Springer Verl. ISBN-10: 0387987800 pp. 334.
  • [31.] WANG W.C., CHAU K.W., CHENG C.T., QIU L. 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology. Vol. 374. Iss. 3–4 p. 294–306.
  • [32.] WANAS N., AUDA G., KAMEL M.S., KARRAY F. 1998. On the optimal number of hidden nodes in a neural network. In: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering. Michigan. IEEE p. 918–921.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b00b0dd7-af3d-453e-9d68-0745e8aedb91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.