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Acoustic propagation in inhomogeneous fluids: regularization

via the introduction of fine particles∗)
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It is shown, using analytical methodologies, that the velocity field blow-up
suffered by vertically ascending acoustic waves in an isothermal atmosphere can be
eliminated via the introduction of fine particles. Assuming the inhomogeneous gener-
alization of the particle-laden flow model known as the (linearized) Marble–Thompson
model-1, it is established that bounded, exponentially decreasing, shock amplitudes
can be obtained provided the mass fraction of particles exceeds a critical value, for
which an exact expression is derived. Lastly, supporting numerical results are pre-
sented, special cases are discussed, and possible follow-on studies are noted.
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1. Introduction

With the linearized (1D) Euler equations as his model system,
Rayleigh [1], in 1890, showed that a time-harmonic acoustic wave propagating
upwards in an isothermal atmosphere will always suffer amplitude blow-up as
z → ∞; see also Lamb [2, §309] and Whitham [3, §6.6]. In 1908, Lamb [4, §7]
investigated the impact of Newtonian viscosity on Rayleigh’s solution; his ap-
proach, however, was to simply add a viscosity term to Rayleigh’s equation of
motion (EoM), which in [4] had been re-derived in Lagrangian coordinates. In
the context of the same problem that Rayleigh had considered some 18 years
earlier, Lamb found that the main effect of including Newtonian viscosity was to
reduce the rate at which amplitude blow-up occurs as z → ∞: specifically, from
exponential in z, which Rayleigh [1] encountered in his study of the lossless case,
to linear in z when viscosity is included in the EoM [4, p. 131].

The subsequent studies of the lossless case by Carslaw and Jaeger [5, §82]
and, more recently, Keiffer et al. [6, §3.3] show that the amplitudes of acous-
tic singular surfaces [7] also suffer blow-up as they propagate upwards in an
isothermal atmosphere.
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In this paper, we revisit the problem of an upward propagating acoustic
shock in a lossless, isothermal atmosphere. We show that the amplitude blow-
up reported by earlier authors can be eliminated via the introduction of fine
particles; i.e., by regarding the atmosphere as a dusty gas. Our approach, which
is based on a classically-formulated dusty gas model and employs the Laplace
transform, examines not only the solution for the fluid (i.e., gas) phase, but that
of the solid (i.e., particle) phase as well, the latter being directly derivable from
the former. We conclude our presentation by noting applicable special cases of
our model system and possible extensions of the present study.

Before presenting our analysis and findings, however, we pause briefly to
formulate (at a rather general level) the model system that we have adopted as
the basis of this study.

2. The inhomogeneous Marble–Thompson model-1

When generalized to allow for the possibility that the ambient state of both
phases might be inhomogeneous, the linearized, multi-D, version of the particle-
laden flow model that Jordan [8] has termed the Marble–Thompson model-1

(MT-1) becomes

∂̺/∂t+ ∇ · (ρau) = 0,(2.1a)

∂(ρau)/∂t+ ∇p = −(6πµa)na(u − vv) − [∇Pa − (̺+ ρa)b],(2.1b)

∂(̺pvv)/∂t = 9
2(µ/a2)(u − vv) + ̺pb,(2.1c)

∂p/∂t+ u · (∇Pa) = c2a [∂̺/∂t+ u · (∇ρa)] ,(2.1d)

∂n/∂t+ ∇ · (navv) = 0,(2.1e)

where a subscript “a” denotes the ambient state value of the quantity to which
it is attached. Here, u = (u, v, w) and vv = (u, v,w) are, respectively, the fluid
and particle velocity vectors; p(x, y, z, t) = P (x, y, z, t) − Pa(x, y, z) is known as
the acoustic (or over) pressure, where P (> 0) is the thermodynamic pressure;
̺(x, y, z, t) = ρ(x, y, z, t) − ρa(x, y, z), where ρ(> 0) is the mass density of the
clean fluid; n(x, y, z, t) = n(x, y, z, t) − na(x, y, z), where n(> 0) is the number
of particles per unit volume; and b = b(x, y, z) is the external (per unit mass)
body force vector. Moreover, ca = ca(x, y, z), the ambient state value of the
sound speed in the clean fluid, is given by

(2.2) ca =
√
Aa/ρa,

where Aa = Aa(x, y, z) denotes the ambient state value of the adiabatic bulk
modulus [9] of the clean fluid; µ(> 0) is the (assumed constant) shear viscosity
coefficient of the clean fluid; ̺p, which we take to be constant, is the density
of the material that constitutes the particles; and a, the particle radius, is also
assumed constant.
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An important assumption in the formulation of the MT-1 model is

(2.3) cpp ≃ 0,

i.e., the particle specific heat (at constant pressure) is negligibly small [10,
pp. 553–556]; an important consequence of this is

(2.4) ϑp = ϑ,

where ϑp = ϑp(x, y, z, t) and ϑ = ϑ(x, y, z, t) denote the particle absolute tem-
peratures and the absolute temperature of the clean fluid, respectively. Also,
implicit in Eq. (2.1d) is the assumption that the flow is isentropic [10]. In the
context of general (i.e., nonlinear) compressible flow theory, this means

(2.5) Dη/Dt = 0,

where η = η(x, y, z, t) is the specific entropy of the clean fluid and D/Dt denotes
the material derivative operator. In the present study, which of course is carried
out under the linear approximation, the isentropic nature of the flow follows from
Eq. (2.4); see [8] and [10, §11.5].

3. Mathematical preliminaries

3.1. Governing system: reduction to 1D

In this study we consider the case of 1D propagation along the +z-axis in
the atmosphere under the assumption that the “flat Earth” approximation [11,
§5.3.2] holds and that the Earth’s rotation can be neglected, where the +z-axis
is taken to be directed vertically upwards. Under this propagation geometry,
the following simplifications are realized: u = (0, 0, w(z, t)), vv = (0, 0,w(z, t)),
P = P (z, t), ρ = ρ(z, t), n = n(z, t), and b = (0, 0,−g), where g denotes the
acceleration due to gravity. On making these replacements, and taking note of
the fact that all quantities that carry a subscript “a” are now functions of (at
most) z, System (2.1) is reduced to

̺t + ρ′a(z)w + ρa(z)wz = 0,(3.1a)

ρa(z)wt + pz = −(m/τ)na(z)(w − w) − {P ′
a(z) + g[̺+ ρa(z)]},(3.1b)

wt = −g + (w − w)/τ,(3.1c)

pt + P ′
a(z)w = −ρa(z)c

2
a(z)wz,(3.1d)

nt + n′a(z)w + na(z)wz = 0,(3.1e)

where a prime denotes d/dz and Eq. (3.1a) has been used to eliminate ̺t from
Eq. (3.1d). Here, the momentum relaxation time, τ(> 0), is given by

(3.2) τ =
2̺pa

2

9µ
=

m

6πµa
,

where m(> 0), the mass of each individual particle, is assumed constant.
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3.2. Additional assumptions

To simplify the forthcoming analysis, and our presentation thereof, we now
introduce the notation

(3.3)
P0 := lim

z→0
Pa(z), ρ0 := lim

z→0
ρa(z), ϑ0 := lim

z→0
ϑa(z),

η0 := lim
z→0

ηa(z), c0 := lim
z→0

ca(z), n0 := lim
z→0

na(z),

and, more importantly, invoke the following assumptions:

(I) Following earlier authors, we hereafter assume that air, i.e., the mixture
of gases which comprises the Earth’s atmosphere, behaves like a (single
species) perfect gas [10, p. 79]. In terms of our model system, this means
that Pa, ρa, and ϑa also satisfy the following special case of the ideal gas

law [10, §2.5]:

(3.4) Pa = (cp − cv)ρaϑa (cp, cv := const),

and that the ambient state value of the adiabatic bulk modulus is given
by (see [9, p. 30])

(3.5) Aa(z) = γPa(z) (perfect gases).

Here, cp > cv > 0 are the specific heats at constant pressure and volume,
respectively, of the clean gas; γ = cp/cv, where γ = 1.4 in the case of air [9,
p. 28]; and we observe that Eq. (3.3)5 evaluates to

(3.6) c0 =
√
γP0/ρ0 (perfect gases).

(II) When Eq. (3.1c) is recast in a suitable dimensionless form, the gravitational
body force term it contains, becomes −gτ |W0|−1, where |W0|(6= 0) denotes
the magnitude of the signal that is driving the gas phase. In many situations
of practical interest, τ is sufficiently small so that the following inequality
is easily satisfied1:

(3.7)
gτ

c0
< ǫ(≪ 1),

where ǫ = c−1
0 |W0| is the acoustic Mach number. [It is noteworthy that gτ is

the magnitude of the (falling body) terminal velocity of a single particle, as
is easily established on setting w = 0 in Eq. (3.1c) and recalling Eq. (3.2).]

1In the case of cigarette smoke in air, e.g., τ ∼ 1 µs [10, p. 552]; therefore, using c0 =
331m/s [9, p. 29], which corresponds to dry air at ϑ0 = 273.15K, and g = 9.81m/s2, the value
near Earth’s surface, c−1

0 gτ ≈ 2.96 × 10−8.
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According to the linearization scheme under which System (2.1) was de-
rived, ǫ is not only small with respect to unity, it is regarded as an infinites-

imal, and therefore negligibly small, parameter. Seeking both practicality
and analytical simplicity, we hereafter assume that τ is such that the above
inequality is always satisfied and, as this implies that the impact of gravity
on the motion of the particles is always negligibly small, replace g with
zero in the particle momentum equation.

(III) Since g no longer appears in the particle momentum equation, we now take
the ambient state of both phases to be not only inhomogeneous, i.e., Pa,
ρa, ϑa, and na may vary with (at most) z, but also quiescent [9, p. 14],
meaning that ua = vva = (0, 0, 0). Achieving the latter while simultaneously
satisfying System (3.1), in particular, Eq. (3.1b), requires that

(3.8) P ′
a(z) = −gρa(z),

which is the condition of hydrostatic equilibrium for our 1D atmosphere; see [10,
Example 2.4].

3.3. Equation of motion

On carrying out the simplifications contained in Assumptions (I)–(III), Sys-
tem (3.1) reduces to

̺t + ρ′a(z)w + ρa(z)wz = 0,(3.9a)

ρa(z)wt + pz = −(m/τ)na(z)(w − w) − g̺,(3.9b)

(1 + τ∂t)w = w,(3.9c)

pt + γPa(z)wz = gρa(z)w,(3.9d)

nt + n′a(z)w + na(z)wz = 0,(3.9e)

Now eliminating p, ̺, and w between the first four equations of System (3.9),
we obtain the equation of motion (EoM) for the gas phase:

(3.10)

[
1 +m

(
na(z)

ρa(z)

)]
wtt − c2a(z)wzz + γgwz = τ(c2a(z)wtzz − γgwtz − wttt).

In all that follows relating to the 1D case, however, we make the simplifying
assumption na(z) ∝ ρa(z), specifically, that

(3.11) na(z) = (n0/ρ0)ρa(z);

consequently, our EoM is reduced to

(3.12) (1 + κ0)wtt − c2a(z)wzz + γgwz = τ(c2a(z)wtzz − γgwtz − wttt),

where κ0 = n0m/ρ0 denotes the mass fraction of particles [10, p. 554].
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In the next section we shall investigate Eq. (3.12) under the simplest, and
rather limited (see Section 6.1), model of Earth’s atmosphere; specifically, in
Section 4 we present both analytical and numerical results for the case in which
the ambient state of the entire atmosphere is assumed to behave isothermally

with respect to acoustic propagation.

4. Isothermal ambient state: ormulation and analysis

4.1. Gas phase

The distinguishing assumption of this model, as Rayleigh [1] and others have
discussed, is

(4.1) ϑa(z) = ϑ0 ⇒ ρa(z) = ρ0 exp(−z/H), Pa(z) = P0 exp(−z/H), c2a(z) = c20,

where H = c20/(γg) is known as the “scale height of the atmosphere” [10, p. 69].
(In the case of Earth, taking ϑ0 = 283K yields the value H ≈ 8284m.)

In the remainder of this section, we investigate the following initial-boundary
value problem (IBVP):

(1 + κ0)wtt − c20wzz + γgwz = τ(c20wtzz − γgwtz − wttt),(4.2a)

(z, t) ∈ (0,∞) × (0,∞),

w(0, t) = W0Θ(t), lim
z→∞

|w(z, t)| <∞, t > 0,(4.2b)

w(z, 0) = 0, wt(z, 0) = 0, wtt(z, 0) = 0, z > 0,(4.2c)

which might be regarded as the acoustic version of Stokes’ first problem2. Here,
Θ(ζ) denotes the Heaviside unit step function, we recall that W0(6= 0) is the
(constant) amplitude of the input signal that is driving the gas phase, and we
observe that once w is determined, w can be obtained with the aid of Eq. (3.9c).

Turning to the Laplace transform, we apply this well known (linear) operator
to Eq. (4.2a) and the boundary conditions (BC)s. After employing the initial
conditions and simplifying, we are led to consider the subsidiary equation

(4.3) c20(1 + τs)w′′ − γg(1 + τs)w′ − s2[(1 + κ0) + τs]w = 0,

where s is the Laplace transform parameter and a bar over a quantity denotes
the image of that quantity in the Laplace transform domain. Solving this ODE
subject to the transformed BCs, which take the form

(4.4) w(0, s) = W0/s, lim
z→∞

|w(z, s)| <∞,

yields

2See, e.g., Schlichting [12]. From the physical acoustics standpoint, however, this IBVP
is considered a signaling problem.
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w(z, s) = (W0/s) exp[z/(2H)](4.5)

× exp

[
−
(
z

2H

)√
1 + τs+ 4c−2

0 H2s2(1 + κ0 + τs)

1 + τs

]
,

which is the exact solution of IBVP (4.2) in the transform domain.
In principle, the exact time-domain solution, w(z, t), can be determined by

applying the Laplace Inversion Theorem [5, 13] to Eq. (4.5). This procedure,
however, would not only be extremely laborious to perform analytically, but the
resulting sum of integrals is unlikely to elucidate the physics we seek to under-
stand. Instead, we employ a simple, transform-based, methodology that Boley
developed to determine the time-domain amplitude-value of a discontinuity that
a given solution, or any of its time derivatives, might exhibit; see, e.g., [14, §4].
The main advantage of what some authors refer to as “Boley’s criterion” is that
it is applied in the transform domain, specifically, to the large-s expansion of
one’s transform domain solution.

To this end, we expand Eq. (4.5) for large-s, which yields

w(z, s) ∼W0s
−1 exp(−sz/c0) exp

[(
1 − c0κ0

γgτ

)
z

2H

]
(4.6)

×
[
1 +

(
κ0(4 + κ0)

8c0τ2
− c0

8H2

)
z

s
+ O(s−2)

]
(s→ ∞).

On applying the theorem given in [14, §4] (i.e., Boley’s criterion) to Eq. (4.6), it
is readily established that

(4.7) [[w]](t) = W0 exp

[
−
(
κ0

κ∗0
− 1

)
c0t

2H

]
,

which is the amplitude of the jump discontinuity exhibited by w across
Σ(t) = c0t. Here, we introduce

(4.8) κ∗0 := γgτ/c0,

which is a critical value of κ0. (In the case of Earth, taking τ = 1µs [10, p. 552]
and ϑ0 = 283K yields the value κ∗0 ≈ 4.07×10−8.) In this presentation, we follow
Morro [15, §3] and Straughan [16] and define the amplitude of the jump in
a function F = F(z, t) across a singular surface z = Σ(t) as

(4.9) [[F]](t) := F− − F+,

where F∓ := limz→Σ(t)∓ F(z, t) are assumed to exist, and where a “+” superscript
corresponds to the region into which Σ is advancing while a “−” superscript
corresponds to the region behind Σ.
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With respect to the gas phase, then, the physical interpretation of the plane
z = Σ(t) = c0t is that of a shock wave [7] propagating in the +z-direction with
speed c0. Here, we observe that w+ = 0 in the case of IBVP (4.2).

Hence, rejecting the case κ0 < κ∗0 for obvious reasons, and also rejecting the
case κ0 = κ∗0 because of its unstable character, we hereafter limit our focus to

(4.10) κ0 > κ∗0.

This case, as illustrated in Section 4.3, yields solutions that satisfy IBVP (4.2)
in its entirety, in particular, the second BC therein.

4.2. Particle phase

In the case of the particle phase we have, using the Laplace transformed
version of Eq. (3.9c) and Eq. (4.5),

(4.11) w(z, s) =

(
τ−1W0

s2 + s/τ

)
exp[z/(2H)]

× exp

[
−
(
z

2H

)√
1 + τs+ 4c−2

0 H2s2(1 + κ0 + τs)

1 + τs

]
,

from which we easily obtain

(4.12) w(z, s) ∼ (W0/τ)s
−2 exp(−sz/c0)

× exp

[(
1 − c0κ0

γgτ

)
z

2H

][
1 +

(
κ0(4 + κ0)

8c0τ2
− c0

8H2

)
z

s
+ O(s−2)

]
(s→ ∞).

Applying Boley’s criterion to this expansion reveals that while [[w]](t) = 0,

(4.13) [[wt]](t) = τ−1[[w]](t) = (W0/τ) exp

[
−
(
κ0

κ∗0
− 1

)
c0t

2H

]

and

(4.14) [[wz]](t) = −
(
W0

c0τ

)
exp

[
−
(
κ0

κ∗0
− 1

)
c0t

2H

]
,

where we observe that both of these jumps also occur across Σ(t) = c0t. Here,
[[wz]](t) was determined using the expression for [[wt]](t) and the [[F]](t) = 0
special case of

(4.15)
d[[F]](t)

dt
= [[Ft]](t) + c0[[Fz]](t),
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which is often referred to as the kinematic condition of compatibility3, and it
should be noted that w+

z = 0 in Eq. (4.14).
Thus, with respect to the particle phase, the physical interpretation of the

plane z = c0t is that of an acceleration wave [7], which is the weak discontinuity
of lowest possible order [17, p. 182], that is propagating in the +z-direction with
speed c0. Thus, like the case in which the ambient state of both phases is assumed
to be homogeneous [8], the velocity field of the particle phase associated with
the present IBVP is found to admit a singular surface one order higher than that
of its gas phase counterpart.

4.3. Numerical results

While clearly important, our singular surface results do not give us any infor-
mation on the behavior of the solution profiles behind Σ(t), i.e., on the interval
0 < z < c0t. Moreover, it is of interest to compare the evolution of the velocity
profile of the gas phase with that of its particle phase counterpart. As such, in
this subsection we compute and plot the solution of IBVP (4.2) by numerically
inverting Eq. (4.5), as well as Eq. (4.11), using the modified Tzou series4

(4.16) F(z, t) ≈ exp(4.7)

t

×
{

1

2
F

(
z,

4.7

t

)
+ Re

[ M∑

j=1

(−1)j F

(
z,

4.7 + ijπ

t

)
sinc

(
jπ

M

)]}
(t > 0),

where M ≫ 1 is an integer and

(4.17) sinc(ζ) :=

{
ζ−1 sin(ζ), ζ 6= 0,

1, ζ = 0.

The plots shown in Fig. 1, wherein we have set W := w/W0 and W := w/W0

to reduce the number of parameters, clearly illustrate the main analytical results
presented in the previous subsection; e.g., the fact that Σ(t) = c0t for both phases.
Also, while we employ a relatively large value of τ(= 0.01 s), so as to produce
clear, easy to view plots, the left-hand side of the inequality in Eq. (3.7) remains
quite small (∼ O(10−4)).

In the upper panel of Fig. 1 we see that, as predicted by Eq. (4.7), the am-
plitude of the shock which the gas phase exhibits is a (exponentially) decreasing
function of t when κ0 > κ∗0. What is also clear from this panel is that

(4.18) W−1
0 [[w]](t) = [[W]](t) < W < 1 (z, t) ∈ (0, c0t) × (0,∞);

3See, e.g., [16] and the references cited therein; see also Bland [17, §6.9], who refers to this
relation as “Hadamard’s lemma”.

4See [6] and the references cited therein.
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Fig. 1. Blue curve: W vs. z based on Eq. (4.5). Green curve: W vs. z based on Eq. (4.11).
Orange-dashed line: [[W]](t) vs. z (see Eq. (4.7)). Purple-dashed line: (z − c0t) [[Wz]](t) vs. z
(see Eq. (4.14)). Herein, we have taken τ = 0.01 s, γ = 1.4, g = 9.81 m/s2, c0 = 331m/s, and
κ0 = 1000κ∗

0, where for these values of τ , γ, g, and c0 Eq. (4.8) yields κ∗
0 ≈ 0.000415. Both

plots were generated using Eq. (4.16) with M = 25000.

i.e., behind z = Σ(t), the W vs. z profile is bounded and strictly decreasing when
κ0 > κ∗0. The lower panel of Fig. 1, on the other hand, illustrates the fact that
the acceleration wave amplitude given in Eq. (4.14) is simply the slope of the
tangent to the bounded, and continuous, W vs. z (i.e., particle phase) profile at
the wavefront, which is located at the point (z,W) = (Σ(t), 0). We also see in the
lower panel of Fig. 1 that, like the absolute value of its slope at the wavefront,
the W vs. z profile is strictly decreasing, for z ∈ (0, c0t).
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5. Discussion

In the present investigation we have shown that by introducing more and
more fine particles, i.e., increasing the mass fraction of particles κ0 (> 0), we
are able to first reduce the rate (⇒ κ0 ∈ (0, κ∗0)), then “zero-out” the rate
(⇒ κ0 = κ∗0), and finally reverse the rate (⇒ κ0 > κ∗0) at which amplitude
blow-up occurs in the case of IBVP (4.2).

The reason for this is clear: the fact that ρa(z) → 0 as z → ∞ means that,
under the isothermal model, our upward propagating acoustic signal begins to
encounter a medium that is tending to the vacuum state; as such, the contin-
uum assumption, on which our model system is based, begins to breakdown. By
introducing fine particles, however, i.e., increasing κ0(> 0) sufficiently, we are
able to compensate for the decreasing gas density ahead of our signal. In fact,
for κ0 > κ∗0 the behavior of our acoustic signal is, qualitatively, the same as if
it were propagating in a dusty gas—one also described by the linearized MT-1
model—but wherein the gas phase is a homogeneous perfect gas; compare the
plots in Fig. 1 with their counterparts in [8, §3.2].

And lastly, it is noteworthy that, as in the case of [[w]](t), the behavior ex-
hibited by the shock amplitude in [15], wherein a “hidden variables” based fluid
model was assumed, depends on a critical value; see [15, p. 198], and note that
Γ is a critical value of the volume gradient.

6. Possible follow-on studies

6.1. Taylor’s two-layer atmosphere model

While the isothermal model provides a suitable approximation of the actual
ambient temperature profile in the stratosphere, it fails to do the same at lower
altitudes, specifically, in the troposphere, where the ambient temperature profile
is known to be a linearly decreasing function of z; see, e.g., [10, Fig. 2.3]. In 1929,
Taylor [18], seeking to formulate a more accurate description of propagation
in Earth’s atmosphere, combined these two models, which until then had been
treated separately, into a single formulation based on a “two-layer” atmosphere.
In its most general form, Taylor’s model reads

ϑa(z) =

{
ϑ0 − βz, z ∈ (0, zi),

ϑs, z ≥ zi,
(6.1)

⇒ ̺a(z) = ̺0

{
(1 − βz/ϑ0)

̟, z ∈ (0, zi),

exp[−(z − zi)/Ĥ](1 − βzi/ϑ0)
̟, z ≥ zi,
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Pa(z) = P0

{
(1 − βz/ϑ0)

1+̟, z ∈ (0, zi),

exp[−(z − zi)/Ĥ](1 − βzi/ϑ0)
1+̟, z ≥ zi,

c2a(z) =

{
c20(1 − βz/ϑ0), z ∈ (0, zi),

c2s , z ≥ zi.

Here, the parameter β (> 0) carries (SI) units of K/m, i.e., β is the magnitude
of the temperature gradient in the troposphere; Ĥ := ϑs(1 − 1/γ)/β1, where,
following Lamb [2, p. 546], we have set β1 := g/cp; the tropopause [19, §4],
i.e., the interface between the two layers, lies at z = zi; and we have also set
ϑs := ϑ0 − βzi, c

2
s := cp(γ − 1)ϑs, and

(6.2) ̟ := −1 +
g

β(cp − cv)
= −1 +

γβ1

β(γ − 1)
,

where we note that̟ is denoted by n in [18]. It is noteworthy that in his analysis,
Taylor [18] took zi = 13000m, ϑ0 = 283K, and β = 1

2β1, from which he obtained
ϑs ≈ 220 K; Pekeris [19, §4], in contrast, took zi = 10300 m, ϑs = 220 K, and
β = 7

11β1, which gave him ϑ0 ≈ 284K.
Of course, IBVPs formulated around Eq. (3.12) and Taylor’s two-layer model

lend themselves to treatment by the Laplace transform, and the use of Boley’s
criterion, after suitable interface condition(s) are specified. An obvious appli-
cation of such IBVPs is the modeling of vertical propagation in regions of the
atmosphere containing particulates, e.g., volcanic dust/ash, in which case the
values of τ and κ0 may not be the same in both layers.

6.2. The special case Pa(x, y, z) := const.

Invoking this assumption, along with taking b = (0, 0, 0), allows us to elimi-
nate ̺, p, and vv between the second, third, and fourth equations of System (2.1).
The resulting multi-D EoM reads

(6.3)

[
1 +m

(
na(x, y, z)

ρa(x, y, z)

)]
utt + τuttt

= ρ−1
a (x, y, z)(1 + τ∂t)∇[ρa(x, y, z)c

2
a(x, y, z)∇ · u].

If the product ρa(x, y, z)c
2
a(x, y, z) = const (i.e., if Aa(x, y, z) = const) as well,

then Eq. (6.3) simplifies to

(6.4)

[
1 +m

(
na(x, y, z)

ρa(x, y, z)

)]
utt + τuttt = c2a(x, y, z)[∇(∇ · u) + τ∇(∇ · ut)].
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6.3. Poroacoustic special case

System (2.1), we observe, is a special case of the linearized, inhomogeneous
fluid, version of the dual-phase continuum model discussed by Ciarletta and
Straughan; see Eqs. (2.1)–(2.4) of [20], as well as [21, §1.9.1] and the references
cited therein. As such, it becomes a model of poroacoustic propagation—one
based on Darcy’s law—on setting vv = (0, 0, 0), omitting Eqs. (2.1c) and (2.1e),
and replacing the product (6πa)na(x, y, z) in Eq. (2.1b) with the (not necessarily
constant) ratio χ/K, where χ ∈ (0, 1) and K denote, respectively, the porosity
and permeability of the rigid, stationary, porous solid under consideration; see
[20, §2], as well as [21, §8.1] and the reference cited therein.

6.4. Analytically intractable problems

Often, problems of practical interest are, from the analytical standpoint,
intractable. With regard to System (2.1) and its aforementioned special cases,
it appears that many (most?) such problems can be treated numerically using
the elaborate, and in some cases elegant, homogenization methodologies one can
find in the literature; see, e.g., [22, 23, 24], and the references cited therein. Of
those which we have studied, the “two-pronged” approach described by E [25]
appears to be especially promising. Briefly, E prescribes the following: Perform
homogenization via what has been termed the Heterogeneous multi-scale method

(HMM)5, followed by use of the appropriate finite-volume scheme [22] to solve
the resulting “macro-scale” model. In future works we hope to apply E’s approach
to not only System (2.1) and its special cases, but to their finite-amplitude (i.e.,
weakly-nonlinear) extensions as well.
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