PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sparsity-based methods for processing of radar signals

Autorzy
Identyfikatory
Warianty tytułu
PL
Zastosowania metod na rzadkiej reprezentacji sygnału do przetwarzania sygnałów radiolokacyjnych
Języki publikacji
EN
Abstrakty
EN
This work summarizes the author's research on radar applications of methods resulting from the assumption of signal sparsity. The term sparsity means that a signal under investigation may be modeled with a small number of components taken from a large dictionary. This property makes it possible to employ a new class of mathematical methods, recently made known as Compressive Sensing framework, for recovering the signal from the measured samples. The main feature of sparsity-based methods is that they can recover a signal uniquely from much fewer samples than methods derived from the classical sampling theory. However, this is possible only if me sparse model is adequate and if the model dictionary and measurement process conform to the specific requirements of the mathematical framework. In the present work, the author demonstrates how the mathematical theory of sparse representation and recovery may be applied to practical problems arising in radar signal processing. An overall purpose of radar signal processing is to acquire the knowledge of the radar scene from the received echo of a radio frequency signal which illuminates the investigated area. This is a problem generally belonging to the class of inverse problems, which may be ill-conditioned and ambiguous. The assumption of the sparse model of the received signal is an innovative idea that opens new possibilities of resolving ambiguities. The aim of this work was to demonstrate by means of practical examples that sparse reconstruction methods are capable of solving a series of important problems in different areas of radar signal processing. Also, more detailed research was done on these cases, including the study on sampling requirements as well as simulations of the algorithms used. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter.The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. vThe ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter.The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter. The ideas and methods were verified with the use of live recorded signals wherever possible. In the examples presented in this work, sparsity of the signal model is the key assumption to enable the solution of relevant inverse problems. The application areas described here are closely related to the author's experience with existing radar systems, including those currently under research or development at the Warsaw University of Technology. They cover a wide range of radar types and processing modes, including active and passive radars as well as surveillance and imaging ones. The author proposed applications of sparsity-based methods for active radars with a noise waveform, for classical MTI radars, and for imaging radars, using either die synthetic aperture (SAR) technique with noise illumination, or the inverse synthetic aperture (ISAR) technique with passive illumination from a GSM transmitter.
PL
Praca podsumowuje badania autora na temat radiolokacyjnego zastosowania nowatorskich metod wynikających z założenia o rzadkim modelu sygnału. Pojęcie to oznacza, że dany sygnał może być modelowany jako liniowa kombinacja niewielkiej liczby składowych należących do pewnego, z założenia pojemnego, słownika. Przyjęcie lego założenia otwiera możliwość zastosowania nowej klasy metod matematycznych, znanych od niedawna pod wspólna nazwą "Compressive Sensing" (po polsku ostatnio używa się określenia "oszczędne próbkowanie"), do odtworzenia sygnału ze zmierzonych próbek. Najważniejsza cechą tych metod jest możliwość odtworzenia sygnału ze znacznie mniejszej liczby próbek niż wynikałoby to z założeń metod klasycznych (opartych na twierdzeniu o próbkowaniu). Należy jednak podkreślić, że jest to możliwe tylko pod warunkiem adekwatności modelu rzadkiego oraz spełnienia pewnych wymagań przez słownik oraz przez proces pomiaru, zgodnie z teorią matematyczną oszczędnego próbkowania. W przedstawionej pracy autor pokazuje, w jaki sposób rzadki model sygnału i matematyczna teoria oszczędnego próbkowania mogą być użyte w zagadnieniach praktycznie występujących w radiolokacji. Ogólnym celem przetwarzania sygnałów radiolokacyjnych jest uzyskanie wiedzy o oświetlanej scenie poprzez badanie sygnału radiowego od tej sceny odbitego. Jest to problem z dziedziny zagadnień odwrotnych (inverse problems), i jako taki może być źle uwarunkowany i nie mieć jednoznacznego rozwiązania. Ograniczenie swobody szukanego rozwiązania poprzez przyjęcie rzadkiego modelu otwiera nowe możliwości usunięcia niejednoznaczności wyniku. Autor zaproponował w pracy wykorzystanie metod opartych na rzadkiej reprezentacji sygnału do modelowania silnych ech w celu usunięcia ich wpływu na proces detekcji cech słabych, zwanego efektem maskowania. Ma to zastosowanie w aktywnych radarach z oświetleniem szumowym i w radarach pasywnych. Autor badał kilka algorytmów w aspekcie modelowania ech złożonych, wskazał przyczyny niepowodzenia algorytmu kolejnego usuwania składowych i zaproponował w zamian algorytm modelowania łącznego ograniczonej liczby składowych. Kolejne zaproponowane przez autora rozwiązanie przeznaczone jest dla szumowego radaru z syntetyczną aperturą (SAR). Pozwala ono zmniejszyć znacznie liczbę pobieranych próbek w wymiarze przestrzennym a zatem i łączny czas akwizycji sygnału. Zastosowanie rzadkiego modelu sygnału pozwoliło rozwikłać niejednoznaczność odtworzenia obrazu sceny radarowej powstałą wskutek zmniejszenia częstości próbkowania poniżej granicy Nyquista. Rozwiązanie zostało przebadane w symulacjach i w eksperymentach z wykorzystaniem zarejestrowanych rzeczywistych sygnałów. W zastosowaniu do klasycznych radarów MTI, autor zaproponował zastosowanie rzadkiego modelu sygnału w dziedzinie częstotliwości w celu zwiększenia zdolności pomiaru prędkości kilku obiektów znajdujących się w tej samej odległości od radaru. Następne zaproponowane przez autora rozwiązanie dotyczy estymacji wysokości w radarze pasywnym. Na przykładzie radaru pasywnego pracującego z wykorzystaniem nadajnika telewizji cyfrowej DVB-T autor pokazał, że metody oszczędnego próbkowania pozwalają na rozdzielenie ech obiektu propagujących z i bez odbicia od ziemi. Dysponując pomiarami opóźnienia ech wzdłuż różnych dróg propagacji można określić wysokość obiektu. Jest to istotna innowacja wobec faktu, że określenie wysokości poprzez pomiar kąta przyjścia sygnału jest bardzo trudne przy typowych rozmiarach anten dla pasma telewizji cyfrowej. Przy pracy radaru pasywnego z wykorzystaniem niewielkiej liczby nadajników uzyskanie niezależnego pomiaru wysokości obiektu znacząco poprawia jakość lokalizacji obiektu w przestrzeni trójwymiarowej. Rozpatrując zagadnienie obrazowania obiektów ruchomych w radarze pasywnym wykorzystującym nadajnik GSM, autor zaproponował metodę uzyskiwania wyraźnego obrazu w technice ISAR (odwrotnej syntetycznej apertury), korzystając z faktu, że ruchomy obiekt przy obrazowaniu ISAR może być uważany za zbiór niewielu punktów odbijających, poruszających się w jednolity sposób. Zastosowanie tej metody pozwoliło z rzeczywistych, zarejestrowanych sygnałów uzyskać obraz ISAR jadącego pojazdu. Klasyczne metody oparte na filtracji dopasowanej w tej samej sytuacji zawiodły, gdyż cały obserwowany obiekt był mniejszy niż rozmiar komórki rozdzielczości odległościowej, który wynika z szerokości pasma sygnału. W opisanych przez autora przykładach zastosowań rzadkość modelu jest kluczowym założeniem przy rozwiązywaniu postawionych zagadnień odwrotnych. Przykłady dotyczą obszarów zastosowań ściśle związanych z długoletnim doświadczeniem autora w projektowaniu i konstruowaniu urządzeń radarowych, w tym eksperymentalnych urządzeń aktualnie opracowywanych w Politechnice Warszawskiej. Zastosowania przedstawione w pracy obejmują szerokie spektrum różnych typów radarów i sposobów ich wykorzystania, włączając w to radary pasywne i aktywne czy też radary przeznaczone do wykrywania obiektów lub tworzenia ich obrazów.
Rocznik
Tom
Strony
5--136
Opis fizyczny
Bibliogr. 132 poz., rys., wykr.
Twórcy
  • Instytut Systemów Elektronicznych, Politechnika Warszawska
Bibliografia
  • [1] B. Alexeev, J. Cahill, and D. G. Mixon, "Full spark frames," ArXiv e-prints, Oct. 2011.
  • [2] S. Axelsson, "Improved clutter suppression in random noise radar," in Proc. of URSI 2005 Commission F Symposium on Microwave Remote Sensins of the Earth, Oceans, Ice, and Atmosphere, Barza d'Ispra, Italy, 20-21 April 2005,
  • [3] J. Bailey, M. A. Iwen, and C. V. Spencer. "On the design of deterministic matrices for fast recovery of Fourier compressible functions," ArXiv e-prints, May 2011.
  • [4] W. U. Bajwa, K. Gedalyahu, and Y. C. Eldar, "Identification of parametric under-spread linear systems and super-resolution radar," Signal Processing, IEEE Transactions on, vol. 59, no. 6, pp. 2548-2561, Jun. 2011.
  • [5] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, "Compressed channel sensing: A new approach to estimating sparse multipath channels," Proceedings of the IEEE, vol. 98, no. 6, pp. 1058-1076, Jun. 2010.
  • [6] W. Bajwa, A. Sayeed, and R. Nowak, "Learning sparse doubly-selective channels," in Communication, Control, and Computing, 2008, 46th Annual Allerton Conference on, Sep. 2008, pp. 575-582.
  • [7] R. Baraniuk, "Compressive sensing [lecture notes]," Signal Processing Magazine, IEEE, vol. 24, no. 4, pp. 118-121, July 2007.
  • [9] C. Berube, P. Felcyn, K. Hsu, J. Latimer, and D. Swanay, "Target height estimation using multipath over land," in Radar Conference, 2007 IEEE, Apr. 2007, pp. 88-92.
  • [8] R. Baraniuk, E. Candés, R. Nowak, and M. Vetterli, "Compressive sampling [from the guest editors]," Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 12-13, Mar. 2008.
  • [10] T. Blumensath and M. Davies, "Stagewise weak gradient pursuits," Signal Processing, IEEE Transactions on, vol. 57, no. 11, pp. 4333-4346, Nov. 2009.
  • [11] S. Boyd and L. Vandenberghe, Convex Optimization, ser. Berichte uber verteilte messysteme. Cambridge University Press, 2004.
  • [12] D. B. Brick and J. Galejs, "Radar interferences and its reduction," The Sylvania Technologist, vol. 11, no. 3, pp. 96-108, July 1959.
  • [13] E. Candés, "Compressive sampling," in Proceedings of the International Congress of Mathematicians: Madrid, August 22-30, 2006: invited lectures, 2006, pp. 1433-1452.
  • [14] E. Candés, J. Romberg, and T. Tao, "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489-509, Feb. 2006.
  • [15] E. Candés and T. Tao, "Decoding by linear programming," Information Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
  • [16] E. Candés and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?" Information Theory, IEEE Transactions on, vol. 52, no. 12, pp. 5406-5425, Dec. 2006.
  • [17] E. Candés and M. Wakin, "An introduction to compressive sampling," Signal Processing Magazine, IEEE, vol. 25, no, 2, pp. 21-30, Mar. 2008.
  • [18] M. Cetin and W. Karl, "Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization," Image Processing, IEEE Transactions on, vol. 10, no. 4, pp. 623 -631, Apr. 2001.
  • [19] S. S. Chen, D. L. Donoho, Michael. and A. Saunders, "Atomic decomposition by basis pursuit," SIAM Journal on Scientific Computing, vol. 20, pp. 33-61, 1998.
  • [20] Y. Chen, W. Peng, Q. Wu, W. Hao, and C. Liu, "A novel method of resolving velocity ambiguity in the pulse doppler radar," in Image and Signal Processing (CISP), 2010 3rd International Congress on, vol. 9, Oct. 2010, pp. 4321-4323.
  • [21] J. F. Claerbout and F. Muir, "Robust modeling with erratic data," Geophysics, vol. 38, no. 5, pp. 826-844, 1973. [Online]. Available: http://geophysics.geoscienceworld.org/content/3 8/5/826.short
  • [22] S. Craig, W. Fishbein, and O. Rittenbach, "Continuous-wave radar with high range resolution and unambiguous velocity determination," IRE Trans. Mil Electronics, vol. MIL 6, no. 2, pp. 153-161, April 1962.
  • [23] Z. Czekała, K. S. Kulpa, and J. Misiurewicz, "Practical implementation and performance of a hovering helicopter detection system in a search radar," in Proc. of International Radar Symposium India, 2005, pp. 18-21.
  • [24] D. L. Donoho, A. Maleki, and A. Montanari, "Message-passing algorithms for compressed sensing," Proceedings of the National Academy of Sciences, vol. 106, no. 45, pp. 18914-18919, Nov. 2009. [Online]. Available: http://dx.doi.org/10.1073/pnas.0909892106
  • [25] D. Donoho, "Compressed sensing," Information Theory, IEEE Transactions on, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
  • [26] D. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," Information Theory, IEEE Transactions on, vol. 58, no. 2, pp. 1094-1121, Feb. 2012.
  • [27] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, "Single-pixel imaging via compressive sampling," Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 83 -91, Mar. 2008.
  • [28] M. Duarte and Y. Eldar, "Structured compressed sensing; From theory to applications," Signal Processing, IEEE Transactions on, vol. 59, no. 9, pp. 4053-4085, Sep. 2011.
  • [29] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 1st ed. Springer Publishing Company, Incorporated, 2010.
  • [30] Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge University Press, 2012.
  • [31] J. H. G. Ender, "Autofocusing ISAR images via sparse representation," Synthetic Aperture Radar, 2012, EUSAR. 9th European Conference on, pp. 203-206, Apr. 2012.
  • [32] J. H. Ender, "On compressive sensing applied to radar," Signal Processing, vol. 90, no. 5, pp. 1402-1414, 2010, special Section on Statistical Signal & Array Processing. [Online], Available: http://www.sciencedirect.com/science/article/B6V18-4XVC4K9-1/2/66442c6iib55089d282ec8cd7e24896a
  • [33] M. Fornasier, Theoretical Foundations and Numerical Methods for Sparse Recovery, ser. Radon Series on Computational and Applied Mathematics. De Gruyter, 2010.
  • [34] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, "One sketch for all: Fast algorithms for compressed sensing," in STOC 2007 (39th ACM Symposium on Theory of Computing. 2007, pp. 237-246.
  • [35] A. Gilbert and J. Tropp, "Applications of sparse approximation in communications," in Information Theory, 2005, ISIT2005. Proceedings. International Symposium on, Sep. 2005, pp. 1000-1004.
  • [36] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss, "Near-optimal sparse fourier representations via sampling," in STOC, J. H. Reif, Ed. ACM, 2002, pp. 152-161.
  • [37] V. Goyal, A. Fletcher, and S. Rangan, "Compressive sampling and lossy compression," Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 48 -56, Mar. 2008.
  • [38] H. Griffiths and C. Baker, "Passive coherent location radar systems. part 1: performance prediction," Radar, Sonar and Navigation, IEE Proceedings, vol. 152, no. 3, pp. 153-159, Jun. 2005.
  • [39] J. Haupt, L. Applebaum, and R. Nowak, "On the restricted isometry of deterministically subsampled Fourier matrices," in Information Sciences and Systems (CISS), 2010 44th Annual Conference on, Mar. 2010, pp. 1-6.
  • [40] M. Herman and T. Strohmer, "Compressed sensing radar." in Radar Conference, 2008, RADAR '08. IEEE, May 2008, pp. 1-6.
  • [41] K. Herrity, A. Gilbert, and J. Tropp, "Sparse approximation via iterative thresholding," in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, vol. 3. May 2006, p. III.
  • [42] J. A. Högbom, "Aperture synthesis with a non-regular distribution of interferometric baselines," Astron. Astrophys. Supp., vol. 15, pp. 417-426, 1974.
  • [43] W. Holm, W. Melvin, and J. Scheer, Principles of Modern Radar: Advanced Techniques, ser. Principles of Modern Radar. SciTech Publishing, Incorporated, 2013.
  • [44] B. Horton, "Noise-modulated distance measuring system," Proc. IRE, vol. 47, pp. 821-828, May 1959.
  • [45] P. E. Howland, "A passive metric radar using a transmitter of opportunity," in International Conference on Radar. Soc Electr. & Electron., 1994, pp. 251-256.
  • [46] M. A. Iwen, "Combinatorial sublinear-time Fourier algorithms," Foundations of Computational Mathematics, vol. 10, no. 3, pp. 303-338, 2010.
  • [47] S. Kay and S. Marple, "Spectrum analysis - a modern perspective," IEEE Proc., vol. 69, no.ll, pp. 1380-1419, November 1981.
  • [48] K. Kazimierczuk and V. Y. Orekhov, "Accelerated NMR spectroscopy by using compressed sensing." Angew Chem Int Ed Engl, 2011. [Online]. Available: http://www.biomedsearch.com/nih/Acceleraled-NMR-Spectroscopy-by-Using/21538743.html
  • [49] K. Kazimierczuk and V. Y. Orekhov, "A comparison of convex and non-convex compressed sensing applied to multidimensional NMR." J Magn Reson, vol. 223C, pp. 1-10, 2012. [Online]. Available: http://www.biomedsearch.com/nih/comparison-convex-non-compressed-sensing/22960668.html
  • [50] W. Klembowski, M. Smolarczyk, J. Misiurewicz, K. S. Kulpa, and M. Malanowski, "Polish airborne synthetic aperture radar," in Proc. of International Radar Symposium India, 2005, pp. 7-10.
  • [51] D. Knuth, The Art of Computer Programming. Addison-Wesley, 1969, vol. 2.
  • [52] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Sejnowski, "Dictionary learning algorithms for sparse representation," Neural Computation, vol. 15, no. 2, pp. 349-396, 2003.
  • [53] P. Krysik, K. Kulpa, M. Baczyk, L. Maslikowski, and P. Samczyński, "Ground moving vehicles velocity monitoring using a GSM based passive bistatic radar," in Radar (Radar), 2011 IEEE CIE International Conference on, vol. 1, oct. 2011, pp. 781-784.
  • [54] P. Krysik, K. Kulpa, P. Samczynski, K. Szumski, and J. Misiurewicz, "Moving target detection and imaging using GSM-based passive radar," in Proceedings of the IET international conference on radar systems RADAR 2012, Glasgow, 2012.
  • [55] P. Krysik, P. Samczynski, M. Malanowski, L. Maslikowski, and K. Kulpa, "Detection of fast maneuvering air targets using GSM based passive radar," in Radar Symposium (IRS), 2012 13th International, May 2012, pp. 69-72.
  • [56] P. Krysik, P. Samczynski, M. Malanowski, L. Maslikowski, and K. S. Kulpa, "Velocity measurement and traffic monitoring using a GSM passive radar demonstrator," Aerospace and Electronic Systems Magazine, IEEE, vol. 27, no. 10, pp. 43-51, Oct. 2012.
  • [57] J. Kulpa and J. Misiurewicz, "Compressed sensing application for target elevation estimation via multipath effect in a passive radar." in International Radar Symposium IRS-2013 (submitted), Dresden, Germany, 2013.
  • [58] K. Kulpa, K. Lukin, W. Miceli, and T. Thayaparan, "Editorial: Signal processing in noise radar technology," IET Radar, Sonar & Navigation, vol. 2, no. 4, pp. 229-232, 2008. [Online]. Available: http://link.aip.org/link/?RSN/2/229/1
  • [59] K. Kulpa, K. Lukin, J. Misiurewicz, Z. Gajo, A. Mogila, and P. Vyplavin, "Quality enhancement of image generated with bistatic ground based noise waveform SAR," IET Radar, Sonar & Navigation, vol. 2, no. 4, pp. 263-273, 2008. [Online]. Available: http://link.aip.org/link/?RSN/2/263/1
  • [60] K. Kulpa, "Adaptive clutter rejection in bi-static CW radar," in Radar Symposium, 2004. IRS 2004, International, 2004, pp. 61-68.
  • [61] K. Kulpa, J. Misiurewicz, M. P. Malanowski, P. J. Samczyński, and M. Smolarczyk, "Recent developments in passive radars," in IQPC Military Sensors 2009 Conference, 2009, pp. ss. CD; 1-45.
  • [62] K. S. Kulpa, "Multi-static entirely passive detection of moving targets and its limitations," IEE Proceedings Radar, sonar and navigation, vol. 152, no. 3, pp. 169-173, June 2005.
  • [63] K. S. Kulpa, "Simple sea clutter canceller for noise radar," in Proc. International Radar Symposium, Kraków, Poland, 2006, pp. 299-302.
  • [64] K. S. Kulpa, Zastosowanie metod CLEAN do detekcji stałych ech radiolokacyjnych na tle zakłóceń biernych, ser. Prace naukowe - Elektronika. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej, 2008, vol. 164.
  • [65] K. S. Kulpa and Z. Czekała, "Ground clutter suppression in noise radar," in Proc. Int. Conf. RADAR 2004, Toulouse, France, 18-22 October 2004, pp. 236-239.
  • [66] K. S. Kulpa and Z. Czekała, "Masking effect and its removal in PCL radar," IEE Proceedings Radar, sonar and navigation, vol. 152, no. 3, pp. 174-178, June 2005.
  • [67] K. S. Kulpa and J. Misiurewicz, "Stretch processing for long integration time passive covert radar," in CIE International Conference on Radar, Shanghai, China, October 2006, pp. 496-499
  • [68] C. Lemke, T. Mahr, and H.-G. Kolle, "Coherent parameter estimation for radar signals," in Proceedings of International Radar Symposium, IRS-2007, Cologne, Germany, 2007, pp. 145-150.
  • [69] M. Lustig, D. Donoho, J. Santos, and J. Pauly, "Compressed sensing MRI," Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 72-82, Mar. 2008.
  • [70] A. Majumdar and R. K. Ward, "An algorithm for sparse MRI reconstruction by Schatten p-norm minimization," Magnetic Resonance Imaging, vol. 29, no. 3, pp. 408-417, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0730725X10002730
  • [71] M. Malanowski, "Comparison of adaptive methods for clutter removal in PCL radar," in Radar Symposium, 2006. IRS 2006, International, May 2006, pp. 1-4.
  • [72] M. Malanowski, K. S. Kulpa, J. Misiurewicz, and P. Samczyński, "Analiza dostępnych sygnałów telekomunikacyjnych pod kątem ich zastosowania do pasywnej lokalizacji obiektów," in Urządzenia i systemy radioelektroniczne. Wybrane problemy. Warszawa: Wojskowa Akademia Techniczna, 2009.
  • [73] M. Malanowski, K. S. Kulpa, P. Samczyński, J. Misiurewicz, J. Kulpa, Ł. Podkalicki, P. Roszkowski, P. Dzwonkowski, D. Gromek, Ł. Maslikowski, and M. Misiurewicz, "Experimental results of the PaRaDe passive radar field trials," in Proceedings of International Radar Symposium, Warsaw, Poland, May 2012, pp. 65-68.
  • [74] M, Malanowski, G. Mazurek, K. S. Kulpa, and J. Misiurewicz, "FM based PCL radar demonstrator," in Proceedings of International Radar Symposium, IRS-2007, Cologne, Germany, 2007, pp. 431-436.
  • [75] M. P. Malanowski, K. Kulpa, J. Misiurewicz, and K. Szumski, "Pasywna lokalizacja obiektów z wykorzystaniem nadajników FM," Przegląd Telekomunikacyjny - wiadomości telekomunikacyjne, vol. 6, pp. 432-435, 2010.
  • [76] A. Maleki, L. Anitori, Z. Yang, and R. G. Baraniuk, "Asymptotic analysis of complex LASSO via complex approximate message passing CAMP," CoRR, vol. abs/1108.0477, 2011.
  • [77] S. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," Signal Processing, IEEE Transactions on, vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
  • [78] L. Maslikowski and K. Kulpa, "Bistatic quasi-passive noise SAR experiment," in Radar Symposium (IRS), 2010, 11th International, Jun. 2010, pp. 1-3.
  • [79] L. Maslikowski and M. Malanowski, "Sub-band phase calibration in stepped frequency GB noise SAR," in Radar Conference (EuRAD), 2010 European, Oct. 2010, pp. 200-203.
  • [80] J. Mattingley and S. Boyd, "Real-time convex optimization in signal processing," Signal Processing Magazine, IEEE, vol. 27, no. 3, pp. 50-61, May 2010.
  • [81] Ł. Maślikowski, M. Malanowski, K. S. Kulpa, and C. Contartese, "Preliminary results of ground-based noise SAR experiments," in 8th European Conference on Synthetic Aperture Radar (EuSAR). Aachen, Germany: VDE Publishing House, 2010, pp. 596-599.
  • [82] Ł. Maślikowski and J. Misiurewicz, "Nonuniform spatial sampling in a noise SAR," in Radar Symposium (IRS), 2010, 11th International, June 2010, pp. 72-75.
  • [83] Ł. Maślikowski and J. Misiurewicz, "Nonuniform spatial sampling in a ground-based noise SAR," International Journal of Electronics and Telecommunications, vol,57,no. l, pp. 71-75, 2011.
  • [84] Ł. Maślikowski and J. Misiurewicz, "Compressed sensing experiments in a noise SAR," in Proceedings of International Radar Symposium, Warsaw, Poland, May 2012, pp. 481-487.
  • [85] M. Mishali, Y. Eldar, and A. Elron, "Xampling: Signal acquisition and processing in union of subspaces," Signal Processing, IEEE Transactions on, vol. 59, no. 10, pp. 4719-4734, Oct 2011.
  • [86] J. Misiurewicz, "An algorithm for frequency estimation beyond the Nyquist range in MTI radar Doppler signal processing," Bulletin of the Polish Academy of Sciences, Technical Sciences, vol.44, pp. 157-168, 1996.
  • [87] J. Misiurewicz, "Unambiguous Doppler frequency estimation in an MTI radar," in Proc. Intl. RADAR 97 Conference, Edinburgh, Scotland, 1997, pp. 530-534.
  • [88] J. Misiurewicz, "Uproszczone modelowanie ech obiektów silnych w radarze PCL," Elektronika - konstrukcje, technologie, zastosowania, vol. 8, pp. 30-34, 2009.
  • [89] J. Misiurewicz, "Sparsity-based modelling of compact target echo in PCL radar," Acta Physica Polonica A, vol. 119, no. 4, pp, 495-502. 2011.
  • [90] J. Misiurewicz, "Sampling strategies for a Compressed Sensing MTI radar," in 1st International Workshop on Compressed Sensing applied to Radar, Bonn, Germany, 2012. [Online]. Available: http://workshops.fhr.fraunhofer.de/cosera/cosera2012/pdf/1031_t.pdf, accessed May 28, 2012
  • [91] J. Misiurewicz and K. Kulpa, "Modelling of compact target echo in PCL radar," in International Radar Symposium IRS 2009 - Proceedings, 2009, pp. 187-191.
  • [92] J. Misiurewicz and K. S. Kulpa, "Compensation of envelope stretch in long integration time noise radars," in Proceedings of International Radar Symposium, IRS- 2007, Cologne, Germany, 2007, pp. 89-94.
  • [93] J. Misiurewicz and K. S. Kulpa, "Stretch processing for masking effect removal In noise radar," IET Radar. Sonar & Navigation, vol. 2, no. 4, pp. 274-283, 2008. (Online). Available: http://link.aip.org/link/?RSN/2/274/1
  • [94] J. Misiurewicz and K. S. Kulpa, "Strong complex echo removal in noise radar," in Proceedings of the 5th European Radar Conference, Amsterdam, 2008, pp. 120-123.
  • [95] R. Moses, L. Potter, and M. Celin, "Wide angle SAR imaging," Proc. of SPIE, vol. 5427, p. 165, 2004.
  • [96] D. Needell, J. Tropp, and R. Vershynin, "Greedy signal recovery review," in Signals, Systems and Computers, 2008 42nd Asilomar Conference on, Oct. 2008, pp. 1048-1050.
  • [97] D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301-321, Apr. 2008. [Online]. Available: http://arxiv.org/abs/0803.2392
  • [98] D. Needell and R. Vershynin, "Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit," Selected Topics in Signal Processing, IEEE Journal of, vol. 4, no. 2, pp. 310-316, Apr. 2010.
  • [99] D. Needell and J. A. Tropp, "Cosamp: iterative signal recovery from incomplete and inaccurate samples," Comman. ACM, vol. 53, no. 12, pp. 93-100, Dec. 2010. [Online]. Available: http://doi.acm.org/10.1145/1859204.1859229
  • [100] U. Nickel, "Passive radar operation with GSM base stations-features and concepts," in Proc. of 2nd Passive Radar FHR-PCL-focus days, Wachtberg, Germany, 17-18 November 2009, p. CD.
  • [101] U. Nickel, "System considerations for passive radar with GSM illuminators," in Phased Array Systems and Technology (ARRAY), 2010 IEEE International Symposium on, Oct. 2010, pp. 189-195.
  • [102] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, "Orthogonal matching pursuit: recursive function approximation with applications lo wavelet decomposition," in Signals, Systems and Computers, 1993.1993 Conference Record of The Twenty-Seventh Asilomar Conference on, Nov. 1993, pp. 40-44 vol. 1.
  • [103] D. Peng and P. Fan, "Generalised Sarwate bounds on the aperiodic correlation of sequences over complex roots of unity," Communications, IEE Proceedings, vol. 151, no. 4, pp. 375-382, Aug. 2004.
  • [104] G. Peyre, 'Toolbox sparsity - sparsity-based signal processing related functions," website, http://www.mathworks.com/matlabcenlral/fileexchange/16204, accessed April 12.2010.
  • [105] P. Phu, H. Aumann, and J. Piou, "Multipath height finding in the presence of interference," in Antennas and Propagation Society International Symposium, 2007 IEEE, Jun. 2007, pp. 2025 -2028.
  • [106] L. Prünte. "Application of compressed sensing to SAR/GMTl-data," in 8th European Conference on Synthetic Aperture Radar (EuSAR). Aachen, Germany: VDE Publishing House, 2010, pp. 465-469.
  • [107] A. Przelaskowski, "The role of sparse data representation in semantic image understanding," in ICCVG (1), ser. Lecture Notes in Computer Science, L. Bolc, R. Tadeusiewicz, L. J. Chmielewski, and K. W. Wojciechowski, Eds., vol. 6374, Springer, 2010, pp. 69-80.
  • [108] A. Przelaskowski and R. Józwiak, "Compressive measurements with integrated sensing, compression and data processing - initial study," in PCS, M. Domanski, T. Grajek, D. Karwowski, and R. Stasinski, Eds. IEEE, 2012, pp. 193-196.
  • [109] J. Romberg, "Imaging via compressive sampling," Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 14-20, Mar. 2008.
  • [110] M. Rudelson and R. Vershynin, "On sparse reconstruction from Fourier and Gaussian measurements," Comm. Pure Appl. Math., vol. 61, pp. 1025-1045, 2006.
  • [111] P. Samczynski, K. Kulpa, M. Malanowski, P. Krysik, and L. Maslikowski. "A concept of GSM-based passive radar for vehicle traffic monitoring," in Microwaves, Radar and Remote Sensing Symposium (MRRS), 2011, Aug. 2011, pp. 271-274.
  • [112] D. C. Schleher, MTI and Pulsed Doppler Radar, ser. Radar Library. Artech House, 1991.
  • [113] V. M. Sidelnikov, "Cross correlation of sequences," Problemy Kiberneiiki (in Russian). vol. 24, pp. 15-42, 1971.
  • [114] M. Skolnik, Radar Handbook. McGraw-Hill, 1970.
  • [115] H. Sun, D. Tan, Y. Lu, and M. Lesturgie, "Applications of passive surveillance radar system using cell phone base station illuminators," Aerospace and Electronic Systems Magazine, IEEE, vol. 25, no. 3, pp. 10-18, Mar. 2010.
  • [116] R. Takahasht, K. Hirata, and H. Maniwa, "Attitude estimation of low elevation target over the sea for surface based phased array radar," in Radar Conference, 2010 IEEE, May 2010, pp. 123-128.
  • [117] D. Tan, M. Lesturgie, H. Sun, W. Li, and Y. Lu, "GSM based through-the-wall passive radar demonstrator for motion sensing," in New Trends for Environmnental Monitoring Using Passive Systems, 2008, Oct. 2008, pp. 1-4.
  • [118] D. Tan, H. Sun, Y. Lu, M. Lesturgie, and H. Chan, "Passive radar using global system for mobile communication signal: theory, implementation and measurements," Radar, Sonar and Navigation, IEE Proceedings, vol. 152, no. 3, pp. 116-123, Jun. 2005.
  • [119] D. Tan, H. Sun, and Y. Lu, "Sea and air moving target measurements using a GSM based passive radar," in Radar Conference, 2005 IEEE International, May 2005, pp. 783-786.
  • [120] H. L. Taylor, S. C. Banks, and J. F. McCoy, "Deconvolution with the l1 norm," Geophysics, vol. 44. no. 1, pp. 39-52, 1979. [Online], Available: http://geophysics.geoscienceworld.org/content/44/1 /39.abstract
  • [121] J. Tropp. "Just relax: convex programming methods for identifying sparse signals in noise," Information Theory, IEEE Transactions on, vol. 52, no. 3, pp. 1030-1051, Mar 2006.
  • [122] J. Tropp and A. Gilbert. "Signal recovery from random measurements via orthogonal matching pursuit." Information Theory, IEEE Transactions on, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
  • [123] L. Welch, "Lower bounds on the maximum cross correlation of signals (corresp.)," Information Theory, IEEE Transactions on, vol. 20. no. 3, pp. 397-399, May 1974.
  • [124] N. Willis, Bistatic Radar, 2nd ed. SciTech. 2005.
  • [125] N. Willis and H. Griffiths, Advances in bistatic radar, SciTech Pub., 2007.
  • [126] P. Wojtaszczyk, "Stability and instance optimality for gaussian measurements in compressed sensing," Foundations of Computational Mathematics, vol. 10, no. 1, pp. 1-13, 2010.
  • [127] W. Yin, S. Morgan, J. Yang, and Z Yin, "Practical compressive sensing with Toeplitz and circulant matrices," website. www.caam.rice.edu/ wy1/paperfiles/Rice_CAAM_TR10-01,PDF, accessed April 12, 2010.
  • [128] L. T. Younkins, "Velocity estimation for radar systems with staggered pulse repetition frequency," in Proc. Intl. RADAR 97 Conference, Edinburgh, Scotland, 1997, pp. 425-128.
  • [129] D. Zhu, X. Yu, and Z. Zhu, "Algorithms for compressed ISAR autofocusing," in Radar (Radar), 2011 IEEE CIE International Conference on, vol. 1, Oct. 2011, pp. 533-536.
  • [130] X. X. Zhu and R. Bander, "Tomographic SAR inversion by l1 - norm regularization; the compressive sensing approach," Geoscience and Remote Sensing, IEEE Transactions on, vol. 48, no. 10, pp. 3839-3846, Oct. 2010.
  • [131] X. Zhu and R. Bamler, "Super-resolution for 4-D SAR tomography via compressive sensing," in 8th European Conference on Synthetic Aperture Radar (EuSAR). Aachen, Germany: VDE Publishing House, 2010, pp. 273-276.
  • [132] M. Zibulevsky and M. Elad, "L1-L2 optimization in signal and image processing," Signal Processing Magazine, IEEE, vol. 27, no. 3, pp. 76-88, May 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b008932e-039f-44f0-a17b-1c08e06e6fb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.