Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We develop a Q-switched degenerate laser, delivering a partially coherent light pulse of duration about 16 ns. The spatial coherence of the output laser pulse can be varied by tuning the spatial filter inside the laser resonator, and the oscillating transverse mode structure can be determined by measuring the degree of coherence of the output laser pulse. It is shown that the larger is the diameter of the spatial filter, the more are the oscillating transverse modes, and the lower is the degree of coherence. Based on coherent-mode representation for the partially coherent source, we can estimate the transverse mode contribution to the output partially coherent laser. The experimental results on suppressing speckle demonstrate that the generated partially coherent light possesses the characteristics of rapid reduction of spatial coherence, making it an ideal source for high-speed imaging and ranging applications.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
245--256
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- College of Information Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People’s Republic of China
autor
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian 361021, People’s Republic of China
- College of Engineering, Niigata University, Niigata 950-2181, Japan
autor
- College of Information Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian 361021, People’s Republic of China
autor
- College of Information Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen, Fujian 361021, People’s Republic of China
Bibliografia
- [1] REDDING B., CHOMA M.A., CAO H., Speckle-free laser imaging using random laser illumination, Nature Photonics 6(6), 2012, pp. 355–359, DOI:10.1038/nphoton.2012.90.
- [2] CAO H., CHRIKI R., BITTNER S., FRIESEM A.A., DAVIDSON N., Complex lasers with controllable coherence, Nature Reviews Physics 1(2), 2019, pp. 156–168, DOI:10.1038/s42254-018-0010-6.
- [3] AKRAM M.N., TONG Z.M., OUYANG G.M., CHEN X.Y., KARTASHOV V., Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror, Applied Optics 49(17), 2010, pp. 3297–3304, DOI:10.1364/AO.49.003297.
- [4] KNITTER S., LIU C.G., REDDING B., KHOKHA M.K., CHOMA M.A., CAO H., Coherence switching of a degenerate VECSEL for multimodality imaging, Optica 3(4), 2016, pp. 403–406, DOI:10.1364/OPTICA.3.000403.
- [5] WANG F., LIU X.L., YUAN Y.S., CAI Y.J., Experimental generation of partially coherent beams with different complex degrees of coherence, Optics Letters 38(11), 2013, pp. 1814–1816, DOI:10.1364/OL.38.001814.
- [6] CHEN H., JI X., WANG Y., CHEN Z., SASAKI O., PU J., Investigation on intracavity SHG with control-lable coherence in a degenerate laser, IEEE Journal of Quantum Electronics 56(1), 2020, article 1700106, DOI:10.1109/JQE.2019.2958372.
- [7] CHANG C.C., CHEN X.D., CHEN Z.Y., LIN Z., LI X.Y., PU J.X., Experimental investigation on a nonuniformly correlated partially coherent laser, Applied Optics 57(16), 2018, pp. 4381–4385, DOI:10.1364/AO.57.004381.
- [8] HUANG T.D., LU T.H., Controlling an optical vortex array from a vortex phase plate, mode converter, and spatial light modulator, Optics Letters 44(16), 2019, pp. 3917–3920, DOI:10.1364/OL.44.003917.
- [9] CUI S.W., CHEN Z.Y., ZHANG L., PU J.X., Experimental generation of nonuniformly correlated partially coherent light beams, Optics Letters 38(22), 2013, pp. 4821–4824, DOI:10.1364/OL.38.004821.
- [10] WANG Y.X., MENG P.H., WANG D.Y., RONG L., PANEZAI S., Speckle noise suppression in digital holography by angular diversity with phase-only spatial light modulator, Optics Express 21(17), 2013, pp. 19568–19578, DOI:10.1364/OE.21.019568.
- [11] CHEN X.D., CHANG C.C., CHEN Z.Y., LIN Z.L., PU J.X., Generation of stochastic electromagnetic beams with complete controllable coherence, Optics Express 24(19), 2016, pp. 21587–21596, DOI:10.1364/OE.24.021587.
- [12] ARNAUD J.A., Degenerate optical cavities, Applied Optics 8(1), 1969, pp. 189–195, DOI:10.1364/AO.8.000189.
- [13] CHRIKI R., MAHLER S., TRADONSKY C., PAL V., FRIESEM A.A., DAVIDSON N., Spatiotemporal super-modes: rapid reduction of spatial coherence in highly multimode lasers, Physical Review A 98(2), 2018, article 023812, DOI:10.1103/PhysRevA.98.023812.
- [14] LIEW S.F., KNITTER S., WEILER S., MONJARDIN-LOPEZ J.F., RAMME M., REDDING B., CHOMA M.A., CAO H., Intracavity frequency-doubled degenerate laser, Optics Letters 42(3), 2017, pp. 411–414, DOI:10.1364/OL.42.000411.
- [15] NIXON M., REDDING B., FRIESEM A.A., CAO H., DAVIDSON N., Efficient method for controlling the spatial coherence of a laser, Optics Letters 38(19), 2013, pp. 3858–3861, DOI:10.1364/OL.38.003858.
- [16] CHRIKI R., NIXON M., PAL V., TRADONSKY C., BARACH G., FRIESEM A.A., DAVIDSON N., Manipulating the spatial coherence of a laser source, Optics Express 23(10), 2015, pp. 12989–12997, DOI:10.1364/OE.23.012989.
- [17] NIXON M., KATZ O., SMALL E., BROMBERG Y., FRIESEM A.A., SILBERBERG Y., DAVIDSON N., Real-time wavefront shaping through scattering media by all-optical feedback, Nature Photonics 7(11), 2013, pp. 919–924, DOI:10.1038/nphoton.2013.248.
- [18] STARIKOV A., WOLF E., Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields, Journal of the Optical Society of America 72(7), 1982, pp. 923–928, DOI:10.1364/JOSA.72.000923.
- [19] LUXON J.T., PARKER D.E., Practical spot size definition for single higher-order rectangular-mode laser beams, Applied Optics 20(10), 1981, pp. 1728–1729, DOI:10.1364/AO.20.001728.
- [20] DEGNAN J.J., Optimization of passively Q-switched lasers, IEEE Journal of Quantum Electronics 31(11), 1995, pp. 1890–1901, DOI:10.1109/3.469267.
- [21] REDDING B., AHMADI P., MOKAN V., SEIFERT M., CHOMA M.A., CAO H., Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging, Optics Letters 40(20), 2015, pp. 4607–4610, DOI:10.1364/OL.40.004607.
- [22] WOLF E., Introduction to the Theory of Coherence and Polarization of Light, Cambridge University Press, 2007, Chapter 3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0067954-e314-428f-81e5-dea373589ea8