PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative experimental analysis of fluid flow in a concentric tube exchanger having semi hollow cylindrical macro inserts with nanofluid and base fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanofluids represent a novel category of advanced heat transfer fluids composed of nanoparticles within a size range of 1-20 nm dispersed in a base fluid such as water. Contemporary research predominantly focuses on incorporating nanoparticles like Al2O3 and ZnO into the water at a 0.1% volume fraction to create nanofluids. Recent investigations aim to optimize thermal performance by introducing nanoparticles into the base fluids and inducing turbulence through various macro-inserts. Key factors influencing heat exchanger efficiency enhancement include geometric parameters, thermal conductivity and volume fraction. This study endeavours to analyse the thermal and fluid flow characteristics of a proposed nanofluid, augmenting thermal transfer through computational simulations and experimental validation, achieving an error margin of 3%-5%. The impact of rectangular micro inserts, with dimensions of 4 cm in height and longitudinal spacings of 5 cm and 11.5 cm, on the heat transfer rate is examined to enhance fluid flow turbulence. Results indicate that among different geometric profiles, the insert with a spacing of 11.5 cm demonstrates superior performance, yielding higher heat transfer rates and Nusselt numbers. This research holds significant implications for various industries including thermal, power, aviation, space and automotive sectors, particularly in the utilization of concentric tube heat exchangers across diverse applications. By exploring novel geometrical and fluid domains within heat exchangers, this study unveils promising avenues for enhancing the heat transfer efficiency compared to conventional methods, highlighting the potential for further investigation into alternative materials and configurations for heat elimination enhancement.
Rocznik
Strony
205--212
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Assistant Professor, Department of Mechanical Engineering, S. C. E. Dehradun, India
  • Assistant Professor, Department of Electrical and Electronics Engineering, S. C. E. Dehradun, India.
  • Professor, Department of Mechanical Engineering, B.T.K.I.T. Dwarahat, India
  • Assistant Professor, Department of Mechanical Engineering, Dr. A.P.J.A.K.I.T. Tanakpur, India
  • Assistant Professor, Department of Mechanical Engineering, Dr. A.P.J.A.K.I.T. Tanakpur, India
  • Assistant Professor, Department of Mechanical Engineering, Graphic Era Hill University, Bhimtal, India
  • Scholar, Department of Mechanical Engineering, S. C. E. Dehradun, India.
autor
  • Scholar, Department of Mechanical Engineering, S. C. E. Dehradun, India.
  • Scholar, Department of Mechanical Engineering, S. C. E. Dehradun, India.
  • Scholar, Department of Mechanical Engineering, S. C. E. Dehradun, India.
autor
  • Assistant Professor, Department of Mechanical Engineering, G.B.P.I.E.T., Pauri, India
Bibliografia
  • [1] Chamsa-ard, W., Brundavanam, S., Fung, C., Fawcett, D., & Poinern, G. (2017). Nanofluid types their synthesis properties and incorporation in direct solar thermal collectors. A review. Nano materials (MPDI), 7(6), 1-131. doi: 10.3390/nano7060131
  • [2] Qi, C., Luo, T., Liu, M., Fan, F., & Yan, Y. (2019). Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Conversion and Management, 197, 11187. doi:10.1016/j.enconman.2019.111877
  • [3] Alimoradi, A., & Veysi, F. (2016). Prediction of heat transfer coefficient of shell and coiled tube heat exchanger. International Journal of Thermal Science, 107, 196-208. doi: 10.1016/j.ijthermalsci.2016.04.010
  • [4] Zhai, X., Qi, C., Pan, Y., Luo, Y., & Lian, L. (2019). Effect of screw pitches and rotation angles on flow and heat transfer characteristics of nanofluids in spiral tubes. International Journal of Heat and Mass Transfer, 130, 989-1003. doi: 10.1016/j.ijheatmasstransfer.2018.10.131
  • [5] Chandrasekar, M., Suresh, S., & Bose, A.C. (2010). Experimental Studies on heat transfer & friction factor characteristics of Al2O3/H2O nanofluids in a circular pipe under laminar flow with wire coil insert. Experimental Thermal and Fluid Science, 34, 122-130. doi: 10.1016/j.expthermflusci.2009.10.001
  • [6] Ambreen, T., & Kim, M. (2018). Effect of variable particle sizes on hydrothermal characteristic of nanofluids in a micro channel. International Journal of Heat and Mass Transfer, 120, 490–498. doi: 10.1016/j.ijheatmasstransfer.2017.12.067
  • [7] Schuller, M., Show, Q., & Lalk, T. (2015). Experimental investigation of the specific heat of a nitrate – alumina nanofluid for solar thermal energy storage systems. International Journal of Thermal Science, 91, 142-145. doi: 10.1016/j.ijthermalsci.2015.01.012
  • [8] Kumar, N., Sonawane, S.S., & Sonawane, S.S. (2018). Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. International Communications in Heat and Mass Transfer, 90, 1–10. doi: 10.1016/j.icheatmasstransfer.2017.10.001
  • [9] Kaushik, S., & Singh, S. (2019). Analysis on heat transmission and fluid flow attributes in solar air accumulator passage with diverse faux jaggedness silhouettes on absorber panel. International Journal of Engineering and Advanced Technology, 8, 32-41. doi: 10.35940/ijeat.E1011.0785S319
  • [10] Kaushik, S., Panwar, K., & Vashisth, S. (2022). Investigating the Thermionic Effect of Broken Perforated Curved Ribs on Solar Preheater through CFD Simulation. Res Militaris, 12(5). 1508- 1524. https://resmilitaris.net/index.php/resmilitaris/article/view/2286/2139
  • [11] Abulkhair, H., Alsaiari, A.O., Ahmed, I, Almatrafi, E., Madhukeshwara, N., & Sreenivasa, B.R., (2023). Heat transfer and airflow friction in solar air heaters: A comprehensive computational and experimental investigation with wire-roughened absorber plate, Case Studies in Thermal Engineering, 48, 103148. doi: 10.1016/j.csite.2023.103148
  • [12] Uniyal, V., Kumar, J., S., Kaushik, S., & Kanojia, N. (2021). CFD Investigation of transfer of the heat and turbulent flow in circular copper tube with perforated conical rings of aluminium material. Materials Today: Proceeding, 46(15), 6719-6725. doi: 10.1016/j.matpr.2021.04.217
  • [13] Kaushik, S., Singh, S., Kanojia, N., Rawat, K., & Panwar, K. (2020). Comparative Study for Thermal and Fluid Flow Peculiarities in Cascading Spiral Inner Tube Heat Exchanger with or without Diverse Inserts over Spiral Tube. IOP Conference Series: Materials Science and Engineering, 802. doi: 10.1088/1757-899X/802/1/012009
  • [14] Kaushik, S., Singh, S., & Panwar, K. (2021). Comparative analysis of thermal and fluid flow behavior of diverse nanofluid using Al2O3, ZnO, CuO nanomaterials in concentric spiral tube heat exchanger. Materials Today: Proceedings, 46(15), 6625-6630. doi: 10.1016/j.matpr.2021.04.100
  • [15] Kaushik, S., Singh, S., & Panwar, K. (2022). Experimental Study of Fluid Flow Properties in Spiral Tube Heat Exchanger with Varying Insert Shape over Spiral Tube Profile. Materials Today. Proceeding Elsevier. 80(1), 78-84. doi: 10.1016/j.matpr.2022.10.117
  • [16] Kaushik, S., Singh, S., Kanojia, N., Naudiyal, R., Kshetri, R., Paul, A.R., Kumari, R., Kumar, A., & Kumar, S. (2021). Effect of introducing a varying number of fins over LED light bulb on thermal behavior. Materials Today: Proceeding, 46(19), 9794-9799. doi: 10.1016/j.matpr.2020.10.876
  • [17] Kanojia, N., Kaushik, S., Singh, M., & Sha, M.K. (2021). A Comprehensive Review on Packed Bed Thermal Energy Storage System. In Lecture Notes in Mechanical Engineering, 1, 165174. Springer Nature Singapore. doi: 10.1007/978-981-16-0942-8
  • [18] Yang, X., & Cai, Z., (2019). An analysis of a packed bed thermal energy storage system using sensible heat and phase change materials, International Journal of Heat and Mass Transfer, 144,118651. doi: 10.1016/j.ijheatmasstransfer.2019.118651
  • [19] Kaushik, S., Panwar, K., & Karki, S.S. (2022). Comparative Thermal Analysis and Characteristic Optimization of Cram Bed Regenerator for Space Warmth Applications in Mountainous Areas. Res Militaris (resmilitaris.net), 12(5), 1525-1539. https://resmilitaris.net/index.php/resmilitaris/article/view/2287/2140
  • [20] Kanojia, N., Kaushik, S., Panwar, K., Kshetri, K., Uniyal, V., & Singh, M. (2021). Experimental investigation of optimum charging and discharging time on packed bed heat regenerator for space heating and solar drying application. Materials Today: Proceedings, 46(15), 6712-6718. doi: 10.1016/j.matpr.2021.04.210
  • [21] Elouali, A., Kousksou, T., Rhafiki, T., E., Hamdaoui, S., Mahdaoui, M., Allouhi, A., & Zeraouli, Y., (2019). Physical models for packed bed: Sensible heat storage systems, Journal of Energy Storage, 23, 69-78. doi: 10.1016/j.est.2019.03.004
  • [22] Panwar, K., & Kaushik, S. (2022). Investigation of Thermo-Mechanical Properties of Flue Gases Using CFD in Thermal Regenerator. Res Militaris (resmilitaris.net), 12(5), 1366-1376. https://resmilitaris.net/index.php/resmilitaris/article/view/2271/2124
  • [23] Sati, V., Kaushik, S., Kshetri, R., Panwar, K., & Pandey, R. (2020). Comparison of a Classical Cyclone Separator and Protruding Surface Cyclone Separator using CFD Software. IOP Conference Series: Materials Science and Engineering, 802, 2nd International Conference on Futuristic Trends in Materials and Manufacturing 2019, 8-9th November 2019, Greater Noida, India. doi: 10.1088/ 1757-899X/802/1/012008
  • [24] Sati, V., Kaushik, S., Singh, S., Kshetri, R., & Pandey, R. (2019). Reduction of Losses in 90 Degree Pipe Bends by Varying Design Parameters using CFD Software, International Journal of Engineering and Advanced Technology, 8, 78–87. doi: 10.35940/ijeat.E1022.0785S319
  • [25] Kaushik, S., Sati, V., Kanojia, N., Mehra, K.S., Malkani, H., Pant, H., Gupta, H., Singh, A.P., Kumar, A., Paul, A.R., & Kumari, R. (2021). Bio-Diesel a Substitution for Conventional Diesel Fuel: A Comprehensive Review. In Lecture Notes in Mechanical Engineering, 1, 113-122. Springer Nature Singapore. doi: 10.1007/978-981-16-0942-8
  • [26] Kaushik, S., Pandey, R., & Singh, A. (2023). Industrial Automation System and its effect on the position of laborers and their consciousness. Journal for ReAttach Therapy and Developmental Diversities, 6(2s), 159–163. https://jrtdd.com/index.php/journal/article/view/276/212
  • [27] Kaushik, S., Singh, A., & Kumar, G. (2022). A Comprehensive Study on the Utilization of the Energy Using Mobile Solutions. Res Militaris (resmilitaris.net). 12(5), 1487–1497. https://resmilitaris.net/index.php/resmilitaris/article/view/2284/2137
  • [28] Kaushik, S., Ali, S., Kanojia, N., Uniyal, V., Verma, A.K., Panwar, S., Uniyal, S., Goswami, S., Kindo, S., Som, D., & Yadav, N.K. (2023). Experimental and CFD analysis of fluid flow in a rectangular strip-based microchannel with nanofluid. Materials Today: Proceedings. doi.: 10.1016/j.matpr.2023.05.647
  • [29] Kaushik, S., Verma, A., K., Singh, S., Kanojia, N., Panwar, S., Uniyal, S., Goswami, S., Kindo, S., Som, D., & Yadav, N.K. (2023). Comparative Analysis of Fluid Flow Attributes in Rectangular Shape Micro Channel having External Rectangular Inserts with Hybrid Al2O3+ZnO+H2O Nano Fluid and (H2O) Base Fluid. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(2), 851-862. doi: 10.5109/6792839
  • [30] Kaushik, S., Uniyal, V., Ali, S., Kanojia, N., Verma, A.K., Joshi, S., Makhloga, M., Pargai, P., S., Sharma, S.K., Kumar, R., & Pal, S. (2023). Comparative analysis of fluid flow in a mini channel with nanofluids and base fluid. Materials Today: Proceedings.doi: 10.1016/j.matpr.2023.05.363
  • [31] Kaushik, S., Uniyal, V., Verma, A.K., Jha, A.K., Joshi, S., Makhloga, M., Pargai, P., S., Sharma, S.K., Kumar, R., & Pal, S. (2023). Comparative Experimental and CFD Analysis of Fluid Flow Attributes in Mini Channel with Hybrid CuO+ZnO+H2O Nano Fluid and (H2O) Base Fluid. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 182-195. doi: 10.5109/6781069
  • [32] Mehra, K.S., Kaushik, S., Pant, G., Kandwal, S., & Singh, A.K. (2021). Finite Element Modeling and Parametric Investigation of Friction Stir Welding (FSW). Advances in Industrial Machines and Mechanisms, Lecture Notes in Mechanical Engineering, 1, 251-259. doi: 10.1007/978-981-16-1769-0_23
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b00103e0-432d-435b-ab46-db2553fb7058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.