Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The casting workshop was discovered with numerous artifacts, confirming the existence of the manufacturing process of metal ornaments using ceramic molds and investment casting technology in Lower Silesia (Poland) in 7-6 BC. The research has yielded significant technological information about the bronze casting field, especially the alloys that were used and the artifacts that were made from them. Based on the analyses, the model alloys were experimentally reconstructed. Taking advantage of the computer-modeling method, a geometric visualization of the bronze bracelets was performed; subsequently, we simulated pouring liquid metal in the ceramic molds and observed the alloy solidification. These steps made it possible to better understand the casting processes from the perspective of the mold technology as well as the melting and casting of alloys.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1329--1337
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- AGH University Of Science And Technology, Faculty Of Foundry Engineering, Historical Layers Research Center, Reymonta 23 Str. , 30-059 Krakow, Poland
autor
- AGH University Of Science And Technology, Faculty Of Foundry Engineering, Historical Layers Research Center, Reymonta 23 Str. , 30-059 Krakow, Poland
autor
- AGH University Of Science And Technology, Faculty Of Foundry Engineering, Historical Layers Research Center, Reymonta 23 Str. , 30-059 Krakow, Poland
autor
- Foundry Research Institute, Zakopiańska 73 Str, 30-418 Krakow, Poland
autor
- Copper Museum, Partyzantów 3 Str., 59-220 Legnica, Poland
Bibliografia
- [1] B. S. Ottaway, Eur. J. Archaeol. 4 (1), 87-112 (2001).
- [2] B. W. Roberts, Ch. Thornton (Eds.), Archaeometallurgy in Global Perspective Methods and Syntheses, Springer (2014).
- [3] M. A. A. Khan, A. K. Sheikh, B. S. Al-Shaer, Evolution of Metal Casting Technologies. A Historical Perspective, Springer (2017).
- [4] S. E. Greer, A comparison of the ancient metal casting materials and processes to modern metal casting materials and processes, Hartford, Connecticut: Master of Mechanical Engineering. Rensselaer Polytechnic Institute (2009).
- [5] S. Pattnaik, D. B. K arunakar, P. K. J ha, J. Mater. Process. Tech. 212 (11), 2332-2348 (2012) DOI: 10.1016/j.jmatprotec.2012.06.003.
- [6] E. C hica, S. Agu delo, N. Sie rra, Renew. Energ. 60, 739-745 (2013) DOI: 10.1016/j.renene.2013.06.030.
- [7] R. Singh, S. Singh, M. S. J. Hashmi, Investment Casting, Reference Module in Materials Science and Materials Engineering (2016) DOI: 10.1016/B978-0-12-803581-8.04163-1.
- [8] C. Cheah, C. Chua, C. Lee, et al. Int. J. Adv. Manuf. Technol. 25 (3-4), 308-320 (2005) DOI: 10.1007/s00170-003-1840-6.
- [9] J. Aguilar, A. Schievenbusch, O. Kättlitz, Intermetallics 19 (6), 757-761 (2011). DOI: 10.1016/j.intermet.2010.11.014.
- [10] K. Zaba, S. Nowak, M. Kwiatkowski, M. Nowosielski, P. Kita, A. Sioma, Arch. Metall. Mater. 59 (4), 1517-1525 (2015) DOI:10.2478/amm-2014-0250.
- [11] J. Cheng, T. Guo, J. Biomed. Eng. 15 (4), 414-418 (1998).
- [12] S. Rzadkosz, J. Zych, A. Garbacz-Klempka, M. Kranc, J. Kozana, M. Piękoś, J. Kolczyk, Ł. Jamrozowicz, T. Stolarczyk, Metalurgija 54 (1), 293-296 (2015).
- [13] A. Garbacz-Klempka, J. S. Suchy, Z. Kwak, T. Tokarski, R. Klempka, T. Stolarczyk, Study of investment casting technology from Bronze Age. Casting workshop in Grzybiany (southwest Poland), Arch. Metall. Mater. 63 (2), 615-624 (2918).
- [14] A. Garbacz-Klempka, J. Kozana, M. Piękoś, Z. Kwak, P. Długosz, T. Stolarczyk, Archives of Foundry Engineering 15 (spec. iss. 1), 21-26 (2015).
- [15] E. Pernicka, Provenance Determination of Archaeological Metal Objects, Archaeometallurgy in Global Perspective. Methods and Syntheses, in: B.W. Roberts, Ch.P. Thornton (Eds.) Springer (2014).
- [16] E. Ciliberto, G. Spoto, Modern analytical methods in art and archaeology. Toronto, (2000).
- [17] A. M. Pollard, C. M. Batt, B. Stern, S. M. M. Young, Analytical chemistry in archaeology, Cambridge University Press (2007).
- [18] M. Bos, J.A.M. Vrielink, Anal Chim Acta 373 (2-3), 291-302 (1998).
- [19] T. Kearns, M. Martinón-Torres, T. Rehren, Historical Metallurgy 44 (1), 48-58 (2010).
- [20] D. Dungworth, Historical Metallurgy 34 (2), 83-86 (2000).
- [21] M. Pearce, STAR: Science & Technology of Archaeological Research 2 (1), 46-53 (2017). DOI: 10.1080/20548923.2016.1160593.
- [22] M. S. Shackley, An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In: Shackley M. (Eds.) X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. Springer: New York, NY (2011). DOI: 10.1007/978-1-4419-6886-9_2.
- [23] M. Lo Brutto, P. Meli, International Journal of Heritage in the Digital Era Article Information 1 (1), 1-6 (2012). DOI: 10.1260/2047-4970.1.0.1.
- [24] A. Garbacz-Klempka, M. Szucki, Arch. Metall. Mater. 54 (2), 339-345 (2009).
- [25] A. Garbacz-Klempka, Z. Kwak, P. L. Żak, M. Szucki, D. Ścibior, T. Stolarczyk, K. Nowak, Archives of Foundry Engineering 17 (3), 184-190 (2017).
- [26] H. C. Miles, A. T. Wilson, F. Labrosse, B. Tiddeman, J. C. Roberts, Journal on Computing and Cultural Heritage 9 (1), 4:1-4:18 (2016). DOI: 10.1145/2795233.
- [27] P. Reilly, IBM Systems Journal 28 (4), 569-579 (1989). DOI:10.1147/sj.284.0569.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b0007233-70aa-41ff-8dec-89c759a6b589