Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study presents a unified algorithm of determining the coexistence levels in any system of linear equations. The coesistence levels can be determined both for the system unknowns (or groups of) as well as for functions binding those unknowns (equations or their groups). Because we deal with systems of linear equations also in geodetic networks, the presented algorithm allows the determination of coexistence levels of network points or observations made within that network. Due to the possibility of grouping of unknowns and equations in the algorithm, there are no limitations of space for the geodetic network. The functioning of the presented algorithm has been iIlustrated by the example of a linear, horizontal geodetic network. Exemplary tasks have also been shown, in which the coexistence levels can be helpful.
Czasopismo
Rocznik
Tom
Strony
217--223
Opis fizyczny
Bibliogr. 4 poz., rys., tab.
Twórcy
autor
- Department of Engineering Surveying Warsaw University of Technology Pl. Politechniki 1, PL-00 661 Warsaw, Poland
Bibliografia
- [1] Adamczewski Z., (1971) Nieliniowa analiza dokładności sieci geodezyjnej (Non-linear accuracy analysis of geodetic network), Kwartalnik Naukowy PAN Geodezja I Kartografia, Nr 3, t. XX; str. 209-223.
- [2] Kwaśniak M., (2008) Estimation of post-adjustment correlations between observations on the basis of their topological coexistence in the network, Kwartalnik Naukowy PAN Geodezja i Kartografia, Vol. 57, No. 2, str. 45-60.
- [3] Nowak E., Nowak J., (2005): Boundary properties of the reliability matrix, Reports on Geodesy No. 3 (74), pp. 65-75.
- [4] Prószyński W., Kwaśniak M., (2002): Niezawodność sieci geodezyjnych (Reliability of geodetic networks), Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWAB-0005-0005