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1. INTRODUCTION 
 
Wavelet analysis is a powerful and popular tool for the analysis of non-stationary signals. The 
wavelet transform is a joint function of the time series of interest x(t) and an analysing 
wavelet ψ(t). This transform isolates signal variability both in time t, and also in scale s, by 
rescalling and shifting the analysing wavelet. The wavelet itself can be said to pay the role of 
a lens through which a signal is observed, and therefore, it is important to understand how the 
wavelet transform depends upon the wavelet properties. Such understanding would permit the 
identification of optimal wavelets which most accurately represent signal characteristics in the 
properties of the transform. This paper presents the results of the master diploma thesis based 
on the application of the wavelet transform to the analyses of the Earth tides observations 
recorded in Astro-Geodetic Observatory at Jozefoslaw. 
 
2. METHOD 
 
Wavelet transform is derived from Fourier Transform, but it is much more flexible. The FT 
could not be used to the non-stationary time series, in which stochastic characteristics change 
in time. If we assume that non-stationary signal consists of several stationary signals the 
STFT (Short-Time Fourier Transform) could be applied. The signal is divided into small 
segments which are assumed to be stationary. The main role in such analysis plays “window”, 
which is used to divide the signal. But in this case we act with indeterminacy. If narrow 
window is chosen the accurate information about time is obtained, less accurate about 
frequency. In case of wide window just the other way about.  
Continuous Wavelet Transform (CWT) assumes that the signal is a composition of a several 
functions (wavelets in this case). CWT of a signal ( ) ( )ℜ∈ 2Ltx  is a sequence of projections 

onto rescaled and translated versions of an analysing functions of wavelets ψ(t) 
(Mallat, 1989): 
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The equation presents wavelet function, which depends on two parameters: 
s - scale coefficient, 
τ - time shift.  

Using this equation we can derive the family of the functions from ψ  - mother wavelet using 
scale factor and shift. The wavelet has finite length and is concentrated around t=0 point and 
its mean value is equal to zero: 

 
(3) 

The s/1  part is also worth mentioned. It is a kind of normalization of the signal to keep the 
same energy for all scales.  
The algorithm of CWT contains: 

• comparison of the wavelet with the beginning of the signal. The factor C is calculated 
which could be interpreted as the correlation between wavelet and the part of the 
signal; 

• using shift factor τ the next part of the signal is chosen and the subsequent comparison 
is done. This step is repeated until the whole signal is compared. 

• using scale factor we extend the wavelet and make the comparison once again. 
 

 
 

Fig. 1. Outline of the CWT. 
 
3. DATA 
 
The data analysed in this project was collected at Astro-Geodetic Observatory in Jozefoslaw. 
The Observatory belongs to the Warsaw University of Technology and is placed at the suburb 
of Warsaw, 15 km from the city centre, but the vicinity is rather quiet. The data is collected 
by the ET-26 LaCoste&Romberg gravimeter since January 2002. To these analyses the data 
since 2006 to 2008 were used because of the highest consistency. The data was only despiked 
and degapped using TSoft software (Van Camp and Vauterin, 2005). 
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Fig. 2. Tidal data from LC&R ET-26 gravimeter. 
 
4. TOOL 
 
For the calculations Matlab software was used with help of additional library - Wavelet 
Toolbox, as presents Fig. 3: 
 

 
 

Fig. 3. Wavelet Toolbox Menu in Matlab. 
 
and complex Morlet wavelet (Goupillaud et al.,1984): 
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In Matlab this wavelet is described as cmor”fb-fc” and depends on two parameters: 
fb - bandwidth parameter; 
fc - centre frequency. 

and different modifications of Morlet complex wavelet are possible, presented at the figure 
No. 4 (solid and dashed lines represent real and imaginary part respectively). 
 

 

 
 

Fig. 4. Modification of complex Morlet wavelet. 
 
Base on Nyquist rule Matlab allows to determine wavelet coefficients C for periods from 0 to 
fn, where fn is equal to half of the signal's length. On these conditions maximum determinable 
scale is: 

 
(5) 

 
 

where n is the highest power of 2 to be comprised in the original signal's length. 
 
5. RESULTS 
 

The analyses have been started with complex Morlet wavelet fb=3 and fc=1 (cmor3-1) 
obtaining spectrogram describing power spectrum (C-coefficients) in the particular 
frequencies occurred in the original gravity signal (fig. 5). 
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Fig. 5. Morlet Wavelet Spectrum, cmor3-1. 
 

Application of cmor3-1 wavelet did not allowed to separate particular diurnal and semi-
diurnal tidal waves (left figure 6). Better solution was obtained using cmor25-8 wavelet (right 
figure 6). 

 
 

Fig. 6. Comparison of Morlet Wavelet Spectrum (cmor3-1 – left, cmor25-8 – right). 
 
As it was mentioned before the results of the CWT is the matrix of C-coefficients, which are 
the amounts of the energy in particular periods. To recalculate it into amplitude the linear 
relationship was used (Kalarus, 2007): 

 
(6) 

where: 
A is the amplitude, 
C - wavelet coefficient, 
Cn - integral from the envelope of the wavelet function used for calculations. 
 

In practice, Cn is calculated by making 
wavelet transform of the artificial signal of 
amplitude 1 and period determined by the 
transform of the original signal. The Cn 
coefficients obtained by this method are 
different for different frequencies, as shown 
in Fig. 7. 

 
Fig. 7. Calculated values of Cn factors. 
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6. COMPARISON 
 
The amplitudes obtained by this method were compared to those determined using classical 
least square manner (Chojnicki, 1977) calculated using Eterna 3.4 (Wenzel, 1996) with the 
same original signal of gravity changes (see Table 1). 
 

Table 1. Frequencies of the tidal waves. 
 
Frequency [cycle/day] 

Name 
Amplitude 
[nm/s^2] 

Std. dev. 
[nm/s^2] from to 

0.501370 0.842147 SGQ1 2,76 0,143 

0.842148 0.860293 2Q1 8,83 0,135 

0.860294 0.878674 SGM1 10,45 0,137 

0.878675 0.896968 Q1 66,09 0,127 

0.896969 0.911390 RO1 12,53 0,131 

0.911391 0.931206 O1 346,55 0,124 

0.931207 0.949286 TAU1 4,61 0,165 

0.949287 0.967660 M1 27,19 0,109 

0.967661 0.981854 CHI1 5,37 0,122 

0.981855 0.996055 PI1 9,15 0,149 

0.996056 0.998631 P1 161,06 0,156 

0.998632 1.001369 S1 3,49 0,227 

1.001370 1.004107 K1 480,85 0,140 

1.004108 1.006845 PSI1 4,49 0,150 

1.006846 1.023622 PHI1 7,07 0,156 

1.023623 1.035250 TET1 5,21 0,132 

Frequency [cycle/day] 
Name 

Amplitude 
[nm/s^2] 

Std. dev. 
[nm/s^2] from to 

1.035251 1.054820 J1 27,45 0,124 

1.054821 1.071833 SO1 4,61 0,128 

1.071834 1.090052 OO1 14,85 0,089 

1.090053 1.470243 NU1 2,85 0,087 

1.470244 1.845944 EPS2 2,43 0,058 

1.845945 1.863026 2N2 8,44 0,061 

1.863027 1.880264 MU2 10,21 0,067 

1.880265 1.897351 N2 64,11 0,065 

1.897352 1.915114 NU2 12,23 0,068 

1.915115 1.950493 M2 335,38 0,068 

1.950493 1.970390 L2 9,60 0,102 

1.970391 1.998996 T2 9,15 0,065 

1.998997 2.001678 S2 155,54 0,066 

2.001679 2.468043 K2 42,40 0,049 

2.468044 7.000000 M3M6 3,64 0,037 

 
From the comparison we can notice that there is a big discrepancy in K1 frequency. We can 
claim that classical manner based on the least squares method better separates P1, K1 and S1 
waves. The same conclusion could be pointed out: wavelet transform of this signal did not 
separate correctly S2 and K2 waves (see Fig. 8). 
 

 
 

Fig. 8. Tidal waves amplitudes (solid line – CWT, 1st July 2007,  ETERNA). 
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7. DIURNAL AND SUB-DIURNAL WAVES 
 
To investigate frequency of the diurnal and sub-diurnal waves Morlet wavelet cmor25-8 was 
used. Results are shown in Fig. 9-11. 

 
 

Fig. 9. Morlet Wavelet Spectrum, diurnal. 
 

 
 

Fig. 10. Morlet Wavelet Spectrum, semi-diurnal. 
 

 
 

Fig. 11. Morlet Wavelet Spectrum, sub-diurnal. 
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The considered time span allowed to identify 7 diurnal waves and 4 sub-diurnal waves . They 
are:  

− PSK1, O1, Q1, J1, M1, OO1, SIG1, 
− M2, S2K2, N2, M3. 

Table 2 presents differences between theoretical and obtained periods, the maximum 
difference did not exceed 5 minutes. 
 

Table 2. Comparison of the waves period. 
 

Name 

Per iod [h]  
Di f ferences 

[min]  theoret ic  
determined 

range mean va lue 

SGM1 27.848388 27.8333 – 28.0000 27.91667 4.1 
Q1 26.868357 26.7500 – 26.9167 26.83333 2.1 
O1 25.819342 25.7500 – 25.9167 25.83333 0.8 
M1 24.833248 24.7500 – 24.9167 24.83333 0.0 

PSK1 23.934469 23.9167 – 24.0000 23.95833 1.4 
J1 23.098477 23.0833 – 23.1667 23.12500 1.6 

OO1 22.306074 22.2500 – 22.3333 22.29167 0.9 
N2 12.658348 12.5833 – 12.7500 12.66667 0.8 
M2 12.420601 12.3333 – 12.5000 12.41667 0.2 

S2K2 12.000000 11.9167 – 12.0833 12.00000 0.0 
M3  8.280401  8.2500 –  8.3333  8.29167 0.7 

 
8. MODULATION 
 
At this stage changes of the wave's amplitudes were investigated. 
Changes of the PSK1 wave's amplitude ranged from 450 to 630 nm/s^2 and are periodical. 
Major period is 180.5 days, minor 24-hours, 14- and 28-days, but they are of range 1 to 5 
nm/s^2. O1 wave is much more stable. Changes of the amplitude are mainly half-yearly and 
oscillate from 398 to 408 nm/s^2. M1 wave arises from the Earth-Moon motion, so the main 
modulation is 27.5 days, but the amplitude is rather small: 5 to 7 nm/s^2. Conclusions from 
the modulation of J1, OO1 and SIG1 amplitudes are very similar. 28- and 14-day changes, but 
also 9- and 7-days, rather unexpected, but very small and at the level of the accuracy of the 
measurements. Chart of Q1's amplitude changes show strong 3-month modulation (30 
nm/s^2) and 9-days, but less of importance. 
M2 wave is the most stable from sub-diurnal waves. Changes of the amplitude are about 8 
nm/s^2, which amount 2%. 14- and 180-day modulations could be clearly seen. The highest 
modulation was investigated in S2K2 wave. These oscillations are related to the thermal 
activity of the Sun and reach up 120 nm/s^2. Using CWT the N2 wave was also identified as 
the weakest possible. The amplitude varies from 55 to 90 nm/s^2 and changes with 28-days 
and half of the year. The last from sub-diurnal waves that were determined is M3. This is 
relatively weak wave, modulation of the amplitude seem to be non-regular. 
The wavelet transform allows also for determination of the long-period tides and investigate 
its properties. As the example declinational wave Mf was taken. The amplitude is about 100 
nm/s^2, but changes from 63 to 118 nm/s^2. The range of the observations was relatively 
short so only 60-day period of changes was found. 
The wave’s modulation are results from drumming near frequency’s waves, that’s the reason 
why modulation are periodic (tidal period).  
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But from previous results (Chojnicki, 1996; Bogusz and Klek, 2008) we can claim that some 
part of this modulation is not artificial and represents real, geophysical effect. 
 

 
 

Fig. 12. Amplitude’s seasonal modulation. 
 
9. CONCLUSIONS 
 
This investigation was aimed at application of the wavelet transform to the Earth tides 
observations analyses. It was done upon the data collected in Astro-Geodetic Observatory at 
Jozefoslaw by LC&R Et-26 gravimeter. Wavelet transform was made using Morlet functions 
with different parameters to recognise its usefulness to this type of data. Calculations were 
made in the Matlab environment. The results were compared to the previously obtained by 
different method. Good consistence was found in frequencies (with theoretical) and 
amplitudes (compared to Eterna) as well. A big advantage of WT is the ability of amplitude’s 
seasonal modulation investigation. Seasonal changes of the main diurnal and sub-diurnal tidal 
waves were presented. Disadvantage is lack of phase determination, obtainable in least square 
method. WT could be also implemented to investigation of the long-period tides. Wavelet 
analysis is now a very popular tool for the analysis of non-stationary signals and after careful 
setup can be implemented to the selected analyses of the Earth tides observations. 
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