
 

 

 

 

THE ACCURACY ASSESSMENT 

IN DEAD RECKONING NAVIGATION 
 

Andrzej Banachowicz (1), Grzegorz Banachowicz (2), Adam Wolski (2) 

 

(1) Gdynia Maritime University (Poland)
 

(2) Maritime University of Szczecin (Poland) 

 

 

SUMMARY 
 

Dead reckoning is one of the oldest methods of ship's position determination in sea 

navigation. Its advantages are autonomy and possible integration with other position 

determination methods, in particular with the statistical model for working out 

measurements of navigational parameters. Dead reckoning makes use of basic 

navigational instruments that every ship is equipped with, i.e. the compass and the log. 

Basically, the method pertains to calculating ship's coordinates for a defined moment of 

time by means of the integration of ship's speed and acceleration in the case of analogue 

measurements, or by calculating the increment of the coordinates from differential 

equations in the case of discrete measurements of speed or acceleration. The present 

position is determined as a sum of the coordinates increments. 

 

INTRODUCTION 
 

Dead reckoning is one of the methods of the vessel position coordinates determination. 

The method allows to determine a ship’s position at any given moment of time interval 

for which we know the initial position and the track covered or speed vector (or 

acceleration vector). The distance covered or speed vector are not functionally 

determined a priori, they are obtained from measurements. In integrated navigational 

systems we use measurements of instantaneous speed (or acceleration) for determining 

present position coordinates. The navigational instruments used for this purpose can be 

combined in a variety of ways. In Doppler (hydroacoustic) and inertial systems the 

direction and module of speed (acceleration) vector relative to the bottom are measured. 

In the other cases the speed vector direction and module  are measured relative to the 

water. The following cases can be distinguished: 

1. course measurement by means of a magnetic compass: 

- one-component relative log, 

- two-component relative log, 

- two-component absolute log or accelerometers system; 



2. course measurement by means of compasses other than magnetic (gyrocompasses, 

gyroazimuths, laser etc.): 

- one-component relative log, 

- two-component relative log, 

- two-component absolute log or accelerometers system. 

Relative logs measure ship’s speed through the water (relative to the water). In 

navigation logs measuring speed over ground (Earth’s non-moving surface) are called 

absolute logs, which term does not comply with the notion of motion relativity, in this 

case ship’s motion is relative to the bottom. Although this can sometimes lead to 

misunderstandings, the term is strongly rooted in navigational practice.  

The principles of calculating ship position coordinates in dead reckoning navigation and 

its accuracies will be described as a general case, where navigational parameters 

measurements are performed relative to the bottom, with differences given for 

measurements relative to the water.  Our considerations,  due to the character of 

measurements, refer to discrete systems.  In the case of analogue systems, (nowadays 

practically not used) the relevant formulas will feature integers instead of  summing up. 

 

1. CALCULATING THE COMPONENTS OF SPEED VECTOR 
 

When measuring the ship’s speed relative to the bottom  (absolute log) we obtain its two 

components – longitudinal Vx and transverse Vy (Fig. 1). Their vector sum yields the 

vector of speed over ground Vd  (in the local coordinate system related to the ship). 

 

 

 
Fig. 1. Ship speed vector components for the absolute log. 

 

The speed vector components (or acceleration) are not directly measured in the global 

system (related to the Earth). The log is used for indirect measurements of speed vector 

module, and, having accounted for relevant corrections, its direction is measured by a 

compass. The speed module (resultant speed) is calculated from this formula: 
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where: 

- V = Vd for the absolute log, 

- V = Vw for the relative log. 

 The speed vector direction relative to the bottom is determined as the course 

made good. When a magnetic compass is used,  the proper angle (course) is calculated 

from this formula 

 

, = zdKK KDd                                                    (2) 

 

where: 

        KK – compass course (measured), 

            - deviation, 

           d - declination, 

            z – angle of total leeway. 

If the course is measured by compasses other than magnetic ones, then course made 

good is calculated from the formula below (for a gyrocompass): 

 

,++ = zpżZKKDd                                                      (3) 

 

where: 

        KŻ – gyrocompass course (or course determined by another compass), 

         pż – total correction of the gyrocompass (or another compass). 

The total leeway angle is determined by this formula 
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where: 

         - drift angle, 

         - leeway angle. 

The total drift or leeway angle, in turn, is computed using this formula 

 Two-component relative log
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 Two-component absolute log
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The components of the vector of speed trough the water will be as follows: 

 

 



 meridian 
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 parallel 
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By analogy, we calculate the current vector components: 

 meridian 
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 parallel 
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hence the components of speed over ground are as follows: 

a) relative log  

 meridian 

 

,
pw NNN VVV                                                       (11) 

 

 parallel 
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a) absolute log 

 meridian 

 

VN = Vd • cos KDd,                                                      (13) 

 

 parallel 

 

VE = Vd • sin KDd.                                                      (14) 

 

In inertial systems acceleration components are measured, while average speeds are 

expressed by these formulas: 
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where: 

 ax , ay  –  acceleration vector components,  

        dt – time interval between speed measurements by a log, 

   V(logu) – speed measured by a log.    



 

The speed components in formulas (7) –  (15) are determined in the same speed units as 

those measured, i.e. knots or m/s. Let us change these units to the appropriate units of 

the axes, i.e. angular units of the meridian and parallel (angular measure of the 

geographical coordinates on  an ellipsoid).  The linear speeds above, found in the SI 

system,  will be expressed in m/s, while angles in radians. Therefore, ship’s speed over 

ground  will be expressed in the Earth’s coordinate system as, respectively: 

 meridian component (N) 

 

V = k • VN,                                                              (16) 

 

 parallel component (E) 

 

V = k • VE,                                                              (17) 

 

where: 
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 - geographic latitude, 

 - geographic longitude, 

a – semi-major axis of the Earth’s ellipsoid,  
e – first eccentricity of the Earth’s ellipsoid, 

RM – radius of meridian curvature, 

RN – radius of first vertical. 

   

2. CALCULATION OF THE POSITION COORDINATES  
 

Coordinates of a dead reckoning position at the moment ti+1 is calculated from the 

following formulas: 

 latitude 

 

   i i i iV t t
i   1 1 ,                                                  (20) 

 

 longitude 

 

   i i i iV t t
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The system of equations (20), (21) can be written as a vector equation  
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where: 

 T
x ],[   - state vector (position coordinates), 

 
T

V ],[  VV  - speed vector. 

With the equation (22) we can formally regard calculations of ship’s position 

coordinates as a recurrent sum of two vectors.    

 

3. ASSESSMENT OF DEAD RECKONING POSITION ACCURACY 
 

The accuracy of a dead reckoned position calculated by using the equation (22) is 

determined according to the following relations [6]. The matrix of coordinates 

covariance at the moment ti+1 equals this sum: 
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where: 

 Pz – dead reckoned position covariance matrix, 

           PV – speed vector covariance matrix. 

A general form of these matrices is as follows: 

 dead reckoned position covariance matrix 
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where: 

        
2

   latitude variance, 

        
2

   longitude variance, 

        - covariance between latitude and longitude. 

At the zero step (t0) we take the values of the position covariance matrix elements from 

the initial position covariance matrix.  

 Speed vector covariance matrix: 
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where: 

       
V

2
 - variance of speed component along the meridian, 

       
V

2
 - variance of speed component along the parallel, 

     
 V V - covariance between the speed components. 

 

Particular quantities are calculated from these formulas: 
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where: 

       Vd - mean error of determining speed over ground; 

     KDd - mean error of determining course made good; we use here the following 

formula: 
222
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The mean error of position (M) is calculated by this relation  
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According to IMO recommendations, the mean circle of error 95% should be used in 

navigation. From the practical point of view, navigation can make use of the double 

mean error 2drms), the probability of which ranges from 95.5-98.2%. We will therefore 

assess position accuracy using the double mean error calculated from this formula 
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Figure 2 shows differences between the deterministic (a) and stochastic (b) method of 

determining ship position coordinates in dead reckoning. 

 

CONCLUSION 
 

From the viewpoint of the mathematical model (formula (22)) the method of dead 

reckoning can be considered as a linear stochastic dynamic system, in which we 

determine position coordinates at any moment of ship’s motion on the basis of speed 

vector measurements. Compared to classical methods, the presented above dead 

reckoning navigation method has a number of advantages. Firstly, it is assumed that 

measurements are random and their certain accuracy (measurement errors of all 

navigational parameters are allowed for). Secondly, it can describe a dynamic system of 

any small time interval between measurements, as an analogue system in particular. 

This permits for a reproduction of an actual curvilinear trajectory of a ship.  In practice 

it is most often assumed that ship’s movement goes along sufficiently long section of 

rhumb lines, which leads to  significant systematic errors (error of the method). Thirdly,  

 



a)      b) 

 
 

Fig. 2. Comparison of dead reckoning positions: a) deterministic, b) estimated. 

 

 it can be successfully used in integrated navigational systems [2], [3], [5]. Fourthly, 

calculations are made directly on the surface of a relevant reference ellipsoid. 

If ship speed vector measurements refer to speed through the water (relative to the 

water), then to calculate position coordinates and its accuracy we will use the vector of 

speed over ground (relative to the bottom) calculated by the formulas (11), (12). In this 

connection, in the formulas (26) – (29) we have to allow for the fact that the vector of 

speed over ground is a sum of two vectors – speed through the water and leeway. 

Elements of the mean error ellipsis can be calculated directly from the covariance 

matrix of position coordinates reckoned at each step of the estimation [4]. 
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