PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Geokinematics of Central Europe: new insights from CERGOP-2/Environment Project

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Geodetic and Geodynamic Programmes of the CEI (Central European Initiative) / Procedings of the EGU G11 Symposium (15-20. 04. 2007; Vienna, Austria)
Języki publikacji
EN
Abstrakty
EN
The CERGOP2 project funded by the European Union from 2003 to 2006 under the 5th Framework Programme benefits from repeated measurements of the coordinates of epoch and permanent GPS stations forming the CEGRN network in Central Europe, starting 1994. We report on the results of the systematic processing of the available data up to 2005. The analysis work has yielded the velocities of some 60 sites, covering a variety of Central European tectonic provinces, from the Adria indenter to the Tauern window, the Pannonian basin, the Vrancea Seismic Zone and the Carpathian Mountains. The estimated velocities define kinematical patterns which outline, with varying spatial resolution depending on the station density and history, the present day tectonic flow in Central Europe.The CEGRN data show that the majority of active contraction originating from the Eurasia Nubia plate boundary and the microplate between them is taken up primarily in the Eastern Alps, the Dinarides, and the Pannonian Basin. After removal from the ITRF2000 velocities of a rigid rotation accounting for the mean motion of stable Europe, the residual velocities have random orientations with 0.3 mm/yr scatter. This Iow figure provides an upper estimate for the level of rigidity of the European Platform. A 2.3 mm/yr north-south oriented convergence rate is implied by our data between Adria and the Southern Alps, and a narrow - -60 km wide- contraction zone in the Southern Alps is identified, consistently with earlier results. An eastward extrusion north of the contraction zone corresponds with the extension of the Tauern Window. In the southeastern boundary of the microplate, 4-4.5 mm/yr motion of Adria decreases to -1 mm/yr through the microplate, its boundary, and the Dinarides mountain range towards the southwestern part of the Pannonian Basin. Our data suggest that if the Pannonian Basin is subject to deformation, then it is most likely to be compressional than extensional. We conclude that compression and associated contraction due to the Adria collision with the Alps and the Dinarides is likely to fade away in the Western and Northern Carpathians, where our velocities and strain rates show no significant deformation.
Czasopismo
Rocznik
Tom
Strony
7--46
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
  • Departament of Geology, Paleontology and Geophysics, University of Padova, Italy
Bibliografia
  • Altiner, Y., 1999. Analytical Surface Deformation Theory. Berlin - Heidelberg, Springer Verlag, 102 pp.
  • Anderson, H., Jackson, J., 1987. Active tectonics of the Adriatic region, Geophys. J. R. astr. Soc., 91, 937-983.
  • Bada, G., Cloetingh, S. A..P. L., Gerner, P., Horváth, F., 1998. Sources of recent tectonic stress in the Pannonian region: inferences from finite element modelling, Geophys. J. Int., 134, 87-102.
  • Barlik M., Borza T., Busics L, Fejes I., Pachelski W., Rogowski J., Sledzinski J., Zielinski J., 1994. Central Europe Regional Geodynamics Project. Reports on Geodesy No.2(10), 7-24.
  • Becker, M., E. Cristea, M. Figurski, L. Gerhatova, G. Grenerczy, J. Hefty, A. Kenyeres, T. Liwosz, G. Stangl, 2002. Central European intraplate velocities from CEGRN campaigns, Reports on Geodesy., 1(61), 83-91.
  • Becker, M., Kirchner, M., P. Zeimetz, 2004. Site and equipment calibration for GPS observation facilities in the CERGOP-2/Environment project. Proceedings 3rd CERGOP-2 Conference, Sofia, Sept. 30- Oct., 2004, Reports on Geodesy, Warsaw University of Technology, ISSN 0867-3179, No. 4 (71), 23-34, Warsaw.
  • Becker M., Caporali A., Figursky, M., Grenerczy, Gy., Kenyeres, A., Hefty, J., Marjanovic, M., Stangl, G., 2002. A Regional ITRF Densification by Blending Permanent and Campaign Data - The CEGRN campaigns and the Central European Velocity Field. Vistas for Geodesy in the New Millennium, eds. J. Ádám, K.-P. Schwarz, International Association of Geodesy Symposia, Vol. 125, pp. 53-58, Springer-Verlag, Berlin-Heidelberg-New York.
  • Becker, M., Schönemann, E., Zeimetz, P. 2006a. Gelöste und ungelöste Probleme der Antennenkalibrierung, GPS und GALILEO - Methoden, Lösungen und neueste Entwicklungen, Schriftenreihe des DVW, Band 49, Wißner Verlag, 189-210, ISBN 3-89639-521-1.
  • Becker, M., Drescher, R., Schönemann, E., Gutwald, J, 2006b. Improvements in CEGRN station monitoring and in the CEGRN velocity field. Proceedings of final CERGOP-2 Working Meeting, Graz, Austria, July 13. - 14., Reports on Geodesy No. 3 (78), in press.
  • Bilich, A., Larson, K. M., Axelrad, P., 2004. Observations of signal-to-noise ratios (SNR) at geodetic GPS site CASA: Implications for phase multipath, Proceedings of the Centre for European Geodynamics and Seismology, 23, 77-83.
  • Boucher, C., Altamimi, Z., Sillard, P., Feissel-Vernier, M., 2004. The ITRF 2000. IERS Technical note No. 31. Fankfurt am Main, Verlag des Bundesamtes für kartographie und Geodäsie.
  • Cai, J., 2004. Statistical Inference of the Eigenspace Components of a Symmetric Random deformation tensor. Deut. Geod. Komm. Reihe C, Heft Nr. 577 131 pp.
  • Calais, E., Nocquet, J.M., Jouanne, F., Tardy, M., 2002.Current strain regime in the Western Alps from continuous GPS measurements, 1996-2001, Geology, 30-7, 651-654.
  • Caporali, A., 2003. Average strain rate in the Italian crust inferred from a permanent GPS network - I.Statistical analysis of the time-series of permanent GPS stations. Geophysical Journal International, 155, 241-253 ISSN: 0956-540X.
  • Caporali A., Martin S, Massironi M., 2003. Average strain rate in the Italian crust inferred froma a permanent GPS network -II.Strain rate vs. Seismicity and Structural Geology, Geophysical Journal International, 155, 254-268 ISSN: 0956-540X.
  • Caporali A., Massironi, M., Nardo, A., 2006. Constraining the seismic budget of Adria indentation and the dynamics of fault interaction with geodetic strain rate data, paper presented at Wegener 2006 meeting, Sept., 2006, Nice, France.
  • Castellarin, A., Cantelli, L., Fesce, A.M., Mercier, J.L., Picotti, V., Pini, G.A., Prosser, G., Selli, L., 1992. Alpine compressional tectonics in the Southern Alps. Relationships with the N-Apennines. Annales Tectonicae, VI (1), 62-94.
  • Csontos, L., 1995. Tertiary tectonic evolution of the Intra-Carpathian area: a review, Acta Vulcanologica, 7(2) 1-13.
  • DeMets, C., Gordon, R. G., Argus, D, F., Stein, S., 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191 -2194.
  • Dinter, G., Nutto, M., Schmitt, G., Schmidt, U., Ghitau, D., Marcu, C., 2001. Three dimensional deforination analysis with respect to plate kinematics in Romania, Reports on Geodesy, 2(57): 29-42.
  • Drewes, H., 1998. Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematics and crustal deformation models. In: Forsberg, R., Feissel, M., Dietrich, R. (eds.): Geodesy on the Move, Gravity, Geoid, Geodynamics, and Antarctica, IAG Symposia Vol. 119, Springer, pp. 377-382.
  • Elosegui, P., Davis, J. L., Jaldehag, R. K., Johansson, J. M., Niell, A. E., Shapiro, I. L, 1995. Geodesy using the global positioning system: The effects of signal scattering on estimates of site position. J. of Geophys. Res., 100:9921-9934.
  • Fellin, S., Martin, S., Massironi, M., 2002. Polyphase tertiary fault kinematics and Quaternary reactivation in the Central-Eastern Alps (Western Trentino). Journal of Geodynamics 34, 31-46.
  • Fejes I., 1993. The GRL hierarchy of the GPS Reference Frame. Proc. IRIS'93 Workshop "Reference Frame Establishment and Technical Developments in Space Geodesy", pp.181-186. Ed. T. Yoshino, Communication Research Laboratory, Tokyo, Japan.
  • Fejes L, 2006. Consortium for Central European GPS Geodynamic Reference Network (CEGRN Consortium). In The Adria Microplate: GPS Geodesy, Tectonics, and Hazards, eds. N. Pinter, G. Grenerczy, J. Weber, S. Stein, D. Medak, Springer, Dordrecht, 183-194.
  • Fodor, L., 1995. From transpression to transtension: Oligocene-Miocene structural evolution of the Vienna Basin and the East Alpine - Western Carpathian junction, Tectonophysics, 242,151-182.
  • Ge L., Han S., Rizos C., 2002. GPS multipath change detection in permanent GPS stations, Survey Review, 36(283), 306-322.
  • Görres, B., Campbell, J., Becker, M., Siemes, M., 2006. Absolute Calibration of GPS Antennas: Laboratory results and comparison with field and robot techniques. GPS Solutions, 10, 2006,136-145.
  • Grenerczy, Gy., Kenyeres, A., Fejes, L, 2000. Present crustal movement and strain distribution in Central Europe inferred from GPS measurements, J. of Geophys. Res. 10589,21,835-21,846.
  • Grenerczy, Gy., Sella, G., Stein, S., Kenyeres , A., 2005. Tectonic implications of the GPS velocity field in the northern Adriatic region, Geophys. Res. Lett., 32, L16311, doi:10.1029/2005GL022947.
  • Grenerczy, Gy., Kenyeres, A., 2006. GPS velocity field from Adria to the European Platform, in The Adria Microplate: GPS Geodesy, Tectonics, and Hazards, Editors: N. Pinter, G. Grenerczy, D. Medak, S. Stein, and J. C. Weber, Springer, Dordrecht, pp. 321-334.
  • Gruenthal, G., Stromeyer, D., 1992. The recent crustal stress field in Central Europe: Trajectories and finite element modeling. J. of Geophys. Res. 97, NO. B8,11,805-11,820.
  • Hefty, J., Igondova, M., 2006, Geokinematical implications inferred from analysis of permanent stations in Central Europe region. Proc. of EGU General Assembly Symposium G6,Vienna, 2006. Reports on Geodesy (in print).
  • Hefty, J.: 2006. Work-package 7 of the CERGOP-2/Environment: GPS data analysis and the definition of reference frame. Final report: April 2003 - July 2006. Reports on Geodesy (in print).
  • Hefty J., Gerhátová L,, Igondová M., Kováe M., Hreka M., 2004. The Network of Permanent GPS Stations in Central Europe as the Reference for CERGOP Related Acthities, Reports on Geodesy No. 2. (69) 115-123.
  • Hefty J., 2005, Kinematics of Central European GPS Geodynamic Reference Network as the Result of Epoch Campaigns During Nine Years, Reports on Geodesy No. 2. (73), 23- 32.
  • Hoeven van der, A.G.A., Ambrosius, B.A.C., Spakman, W., Mocanu, V., 2003. Crustal motions in the Eastern Carpathians (Vrancea) measured by GPS, Geophysical Research Abstracts, 5:03918.
  • Horv'ath, F. Cloetingh, S. A. P. L., 1996. Stress-induced late-stage subsidence anomalies in the Pannonian basin, Tectonophysics, 266, 287-300.
  • Hugentobler, U., Dach, R, and Fridez, P, (eds) 2004. Bernese GPS software, Version 5.0. Draft. Bern: Astronomical Institute, University of Berne.
  • Koch, K.R., 1999. Parameter estimation and hypotheses testing in linear models. Heidelberg, Springer, 333 pp.
  • Jolivet, L., and Faccenna, C., 2000. Mediterranean extension and the Africa-Eurasia collision: Tectonics, 19,1095-1106.
  • Kenyeeres, A., 2006. EPN Project Time series for geokinematics. Product available at www.epncb.oma.be.
  • Kirchner, M., Becker, M.: Design of New Permanent Observarion Facilities for the CERGOP-2/Environment Project. In: Reports on Geodesy Vol. 69, No. 2, pp. 25-31, Proceedings of the EGU Symposium G11 "Geodetic and Geodynamic Programmes of the CEI (Central European Initiative)". Nice, France, April 25.-30.
  • Kirchner, M., Becker, M., Häfele, P., 2004. Calibration and Validation of New GPS Observation Equipment for the CERGOP-2/Environment Project. In: Reports on Geodesy Vol, 69, No. 2, pp. 271-284, Proceedings of the EGU Symposium G11 "Geodetic and Geodynamic Programmes of the CEI (Central European Initiative)". Nice, France, April 25.-30.
  • Kirchner M., Becker M., 2005, The use of signal strength measurements for quality assessment of GPS observations, Reports on Geodesy No. 2 (73), 245-253.
  • Lévai P., Borza T., Fejes I., Kujawa L., Mojzes M" 1998, CERGOP Study Group No. 2: Site Quality Monitoring. (Final Report). Reports on Geodesy No.10 (40), 114-167.
  • Mulic M., Bilajbegovic, A., Altiner, Y., 2006. Study of the effects of processing strategy variations on GPS position estimates, Geophysical Research Abstracts, Vol. 8, 04734, European Geosciences Union.
  • Neubauer, F., Fritz, H., Genser, J., Kurz, W., Nemes, F., Wallbrecher, E., Wang, X., Willingshofer, E,, 2000. Structural evolution within an extruding wedge: model and application to the Alpine-Pannonian system, in: Urai, J., Lehner, F., and van Zee, W. (Eds.): Aspects of tectonic faulting (Festschrift in Honour of Georg Mandl), Springer, 141-153.
  • Niell, A.E., 1996. Global mapping functions for the atmosphere delay at radio wavelengths, J. of Geophys. Res. 101B2, 3227-3246. OLG, 2006: CEGRN Data Center Graz, http://cergops2.iwf.oeaw.ac.at/CEGproj result.html Oncescu, M.C., 1984. Deep structure of the Vrancea region, Romania, inferred from simultaneous inversion for hypocenters and 3-D velocity structure, Annales Geophysicae, 2, 23-28.
  • Peresson, H. Decker, K., 1997. The Tertiary dynamics of the northern Eastern Alps (Austria); changing palaeostresses in a collisional plate boundary, Tectonophysics, 272, 125-157.
  • Pinter, N., Gy. Grenerczy, D. Medak, S. Stein, and J. C. Weber (Editors), 2006. The Adria Microplate: GPS Geodesy, Tectonics, and Hazards, Springer, Dordrecht, 1-413.
  • Ratschbacher, L., Frisch, W., Linzer, H.-G., Merle, O., 1991. Lateral extrusion in the Eastern Alps, part 2. Structural analysis, Tectonics, 10, 257-271.
  • Reinecker, J. and Lenhard, W. A., 1999. Present-day stress field and deformation in eastern Austria, Int. Jour. Earth Sci., 88, 532- 550.
  • Reinecker, J., Heidbach, O., Tingay, M., Sperner, B., Muller, B., 2005. The release 2005 of the World Stress Map (available online at www.world-stress-map.org).
  • Scarascia, R., Cassinis, R., 1997. Crustal structures in the central- eastern Alpine sector: a revision of the available DSS data. Tectonophysics, 271,157-188.
  • Schönemann, E., Becker, M., 2005: GPS Antenna Calibration and Site Dependent Behaviour, Proceedings of 6th CERGOP-2 Working Conference and CEGRN Consortium Meeting, Sarajevo, Bosnia-Herzegovina, November 9-10, 2005, Reports on Geodesy, No. 4, (75), 33-46.
  • Schönemann, E., Becker, M., J. Gutwald, J. , 2006: A software module for quality control of CEGRN site. Proceedings of the EGU Symposium G6 "Geodetic and Geodynamic Programmes of the CEI (Central European Initiative)". Vienna, Austria, April 2.-4. 2006, Reports on Geodesy No. l (76), 1-8.
  • Stangl, G., 2002. Creating a common CEGRN solution. The rules behind. Reports on geodesy No. l (61), 23-25. Stein, S., Gordon, R., 1984. Statistical tests of additional plate boundaries from plate motion inversions, EPSL, 69, 401-412.
  • Stephenson, R.A., Wilson, M., de Boorder, H., Starostenko, V., 1996. EUROPROBE Intraplate Tectonics and Basin Dynamics of the Eastern European Platform - Preface, Tectonophysics, 268, i-iv.
  • Ward, S., 1994. Constraints on the seismotectonics of the central Mediterranean from Very Long Baseline Interferometry, Geophys. J. Int., 11, 441-452.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWAB-0001-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.