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ABSTRACT 
 

The estimation of regular velocity fields from irregular distributed GPS stations 

corresponds to the problem of scattered data approximation with free form surfaces. 

The method of Multilevel B-spline Approximation is a powerful tool to solve this 

problem. The iterative evaluation of approximation surfaces leads to a best fit 

approximation of the station velocities. The algorithm for the Multilevel B-spline 

Approximation has to be extended by the methods of error propagation to evaluate 

statistically the quality of the interpolated velocity field. 

Multilevel B-spline Approximation is applied to generate a velocity field based on 

roughly 50 GPS stations in Romania. The investigation area includes several CEGRN 

stations, campaign stations in the framework of the COLLABORATIVE RESEARCH 

CENTER 461 “STRONG EARTHQUAKES” and a few permanent GPS stations. The 

application of the law of error propagation provides an opportunity to analyse the 

accuracy of the velocity field.  
 

1. INTRODUCTION 
 

The aim of the geodetic subproject B1 “Three dimensional plate kinematics” of the 

COLLABORATIVE RESEARCH CENTER (CRC) 461 “STRONG EARTHQUAKES” 

is the determination of three dimensional plate movements for Romania as well as 

strain rates of the tectonic units.  

 

Three dimensional movements of the earth surface can be determined by regional GPS 

networks. In the framework of the CRC 461 in cooperation with the NETHERLANDS 

RESEARCH CENTER OF INTEGRATED SOLID EARTH SCIENCES (ISES) a 

network including roughly 50 stations was established in Romania between 1997 and 

2003 (see Fig. 1). Station velocities are estimated using observations of 16 GPS field 

campaigns between 1995 and 2006. 

 

As usual the GPS stations are located very scattered. For analysing the movement and 

deformation of the investigation area it is necessary to determine a regular grid or 

continuous surface using approximation techniques. The methods of freeform surfaces 

and scattered data interpolation provide both lots of possibilities for the estimation of 

approximation surfaces. The Multilevel B-spline Approximation unifies both methods



 
Fig. 1. GPS network used in CRC 461 

 

and provides the possibility to include a computation of strain rates. Due to application 

of the law of propagation of variances to the approximation algorithm and strain 

calculation standard deviations can be obtained for the velocity field and the strain 

rates. 

 

 

2. DATA APPROXIMATION WITH MULTILEVEL B-SPLINES 
 

Scattered data approximation with Multilevel B-splines was published the first time in 

1997 and could be applied and improved successfully for tasks in computer graphics. A 

very briefly introduction of this approximation technique will be given in this chapter. 

For studying the details the reader is referred to (Lee et. al., 1997), (Weis and Lewis, 

2001) and (Nuckelt, 2006). 

 
 

Fig. 2. The configuration of control lattice Φ 

 

2.1. BASIC THEORY OF B-SPLINE APPROXIMATION 

 

The rectangular domain  nymxy{(x contains a set of scattered 

points   
ccc zyxP ,, . To approximate the scattered data a approximation function f 



is formulated as an uniform bicubic B-spline function, which is defined by a control 

lattice Φ overlaid on the domain Ω (see Fig. 2). 

 

The control lattice can be assumed as a set of  3)  (n  3)  (m  points. Let ij  be the 

value of the ij-th control point on lattice Φ located at  ji,  for 

 1m , 0, 1,-  i  and 1n , 0, 1,-  j  . The approximation function f is defined in 

terms of these control points by 
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where   1x  i  ,   1yj  ,  x-xs   and  y-yt  . 3

kN  and 3

lN  are uniform cubic 

B-spline basis functions defined as 
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where 10  t . They serve to weigh the contribution of each control point to ),( yxf  

based on its distance to ),( yx . With this formulation the problem of deriving function f 

is reduced to solving for the control points in Φ. To determine the unknown control 

lattice first only one data point  
ccc zyx ,,  in P is considered. The function value of 

 
cc yx ,  relates to the sixteen surrounding control points in its neighbourhood, shown in 

Fig. 3a. For function f to take on the value cz  at ),( yx  the control points must satisfy 
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where 1-xs c  and 1-yt c . There are many values for the kl ’s that satisfy (2). In 

the least-squared sense   

3
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k l kl  is minimized to set the deviation of f zero over the 

domain Ω. The solution is derived with 
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Now all data points in P are considered. For each point a set of  4  4  control points in 

its neighbourhood can be determined with (3). These neighbourhoods may overlap for 

sufficiently close data points. Thus the shared control points obtain different values. 

The multiple assignments to a control point   can be resolved by considering the data 

points in its  4  4 neighbourhood (Fig. 3b). Only these points may influence the value of 

  by (3). Let ijP  be the set of these data points of the control point ij . 



              
 

 

Fig. 3. Positional relationship between data points and control points 

 

For each point  
ccc zyx ,,  in ijP  formula (3) gives ij  a different value in c : 
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 cc yyt  . To compromise among the values, ij  is chosen to minimize the error 

  
c ccijcije

2
)(  . The term  

ccijc    is the difference between real and 

expected contributions of ij  to function f at  
cc yx , . Differentiating the error )( ije   

with respect to ij  leads to 
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Only for the surrounding data points ijP  the control point ij  has an influence on 

function f. The approximation function f is 2
C -continuous because it is a bicubic B-

spline surface generated by the control lattice Φ. 

 

2.2 ADAPTED APPROXIMATION ALGORITHM 

 

The basic theory is called B-spline Approximation (BA) algorithm. A tradeoff exists 

between the shape smoothness and accuracy of the approximation function generated 

by the BA algorithm. Due to several improvements the algorithm is modified, for details 

the reader is referred to (Lee et. al., 1997). 

 

MULTILEVEL B-SPLINE APPROXIMATION 

 

A hierarchy of control lattices 0 , 1 , …, n  is generated. The spacing between 

control points for 0  is given and the spacing is halved from one lattice to the next. 

Approximation starts with the coarsest lattice 0 . The resulting function 0f serves a 

initial approximation and leaves the deviation ),(0

1

ccc yxfzz   for each point 

(b) neighbourhood of a control point (a) neighbourhood of a data point 



 
ccc zyx ,,  in P . The next finer control lattice is used to obtain function 

1f  that 

approximates the difference   
ccc zyxP

1

1 ,,  . The sum 10 ff   yields a smaller 

deviation ),(),( 10

2

ccccc yxfyxfzz   for each point  
ccc zyx ,,  in P . In general 

for a level k  in the hierarchy a function kf  will be derived using control lattice k  to 

approximate the data   
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B-SPLINE REFINEMENT 

 

The evaluation of f requires the determination of function kf  from control lattice k  

for each level k and their addition over the domain Ω. B-spline refinement allows f to be 

represented by only one B-spline function rather than the sum of several B-spline 

functions. An  3)  (n  3)  (m   control lattice   is refined to a 

 3)  (2n  3)  (2m  control lattice '  whose control point spacing is half as large as that 

of  . Let ij  and ij'  be the ij-th control points in   and ' , respectively. Then, the 

position of control point ij  in   coincides with the position of control point ji 2,2'  in 

' . The values of the control points in '  are obtained from those in  , see (Lee et. al., 

1997). In each refine level h the resulting control lattice h  is obtained by addition of 

the refined lattice 1'  h  (respectively ' ) and the from   
c

h

cch zyxP  ,,  generated 

h .  

 

Fig. 4 depicts the complete Multilevel B-spline Approximation (MBA) algorithm to 

generate the approximation function f. The algorithm consists of four main operations 

in each refine level: 

 

I. Compute a control lattice   from P 

II. Compute the deviation )( FPP  

III. Compute  '  

IV. Refine  into '  

 

2.3 PROPAGATION OF VARIANCES 

 

The law of propagation of variances has to be applied to the four main operations of the 

MBA algorithm to obtain information about the accuracy of the approximated function 

f, in our case the approximated velocity field.  

 

For the functional relationship XFY  of the stochastic variables X and Y the law of 

propagations of variances is formulated by 

 
T

XXYY FFQQ           (6) 



 
 

Fig. 4. Approximation function evaluation in the MBA algorithm 

 

The so called Jacobi matrix F contains the linearised functional relationships between X 

and Y. XXQ  and YYQ  are the covariance matrices of X and Y. For each step in the 

approximation algorithm the matrices F and XXQ  have to be prepared for computing 

YYQ . 

 

The determination of F can be implemented directly into the approximation algorithm. 

Each operation consists of linear functions, thus differentiations and Taylor expansions 

are not necessary. A detailed description of the propagation of variances for Multilevel 

B-spline Approximation is given in (Nuckelt, 2007). 

 

2.4 STRAIN ANALYSIS 

 

Based on the continuous description of an object the theory of continuum mechanics 

can be applied to perform strain analyses for this object. The necessary continuous 

description is provided by the velocity field generated by Multilevel B-spline Approxi-

mation algorithm. The displacement gradient tensor uGrad  with  
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can be obtained directly from the control lattice of the approximation function: 
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where X  and Y  indicate the differentiated mapping function from real coordinates 

 YX ,  into the coordinate system  yx,  of the control lattice. Fig. 5 illustrates the 

relation between control points   and the considered point ),(),( yxpYXp   in 

formula (8). The vertical gradient can not be determined, because geodetic observations 

are provided only for the surface. Thus authentic strain analyses can be performed only 

for the two dimensional surface. 

 

The infinitesimal deformation tensor   and the infinitesimal rotation tensor   can be 

derived from uGrad . The principal strains are the results of computing eigenvalues 

and eigenvectors of  . The shear strains can be derived also from   and  . The law of 

propagation of variances is applied also to each computation of the strain analysis. 

 

                      
(a) x – direction                                          (b) y – direction 

 

Fig. 5. Determination of gradients in x and y direction from the control lattice 

 

For a complete explanation of the propagation of variances for the determination of 

uGrad , the tensor calculation and the determination of principal and shear strains  is 

referred to (Nuckelt, 2007). 

 



3. THREE DIMENSIONAL VELOCITY FIELD FOR ROMANIA 
 

The velocity field is generated from the estimated velocities of the GPS stations shown in 

Fig. 1. The GPS observation data were processed using Bernese GPS Software 5.0 

(Hugentobler et. al., 2005). The station velocities were estimated from daily coordinate 

solutions. These linear velocities were inserted into the Multilevel B-spline 

approximation to generate the three dimensional velocity field and perform the strain 

analyses. The obtained velocity field plus standard deviations are shown in Fig. 6 and 7. 

 

 
 

Fig. 6. plane velocity field plus standard deviations 

 

The obtained velocity field fits very good the station velocities. Fig. 6 depicts areas of 

significant horizontal movements. The Moesian platform (southwest corner in Fig. 6) 

moves clearly direction southwest. For the part in the north a west movement is shown. 

The Transylvanian basin inside the Carpathian arc performs a shift to the west. The 

biggest velocities (up to 5 mm/year) are shown for the south-eastern part of the 

Carpathian arc. The vertical velocity field in Fig. 7 visualises areas of significant uplift 

and subsidence. Transylvanian basin, Brasov basin, Focsani basin and the areas close to 

the Black Sea are evidently subsiding regions. In opposition to this areas the Carpathian 

arc, Moesian platform and European platform (in the north-eastern part) are uplift 

areas. 

 

The horizontal as well as the vertical movements match more or less with geological 

studies (Tarapoanca et. al., 2003). The moderate uplift of Vrancea area (the most south-

eastern part of the Carpathian arc) coincides with a geodynamic model developed in the 

CRC 461. This model proposes the progressive delamination of a soft coupled vertical 

slab beneath this area (Sperner et. al., 2005). 

 

The approximation with Multilevel B-splines generates smooth best fitting surfaces 

which represent the velocity field. The accuracies of the GPS stations propagate to the 

velocity field. Due to the properties of the algorithm areas close to the data points (GPS 



stations) obtain bigger standard deviation than other areas, because control points 

within the  4  4 neighbourhood of the data points are more often included into the 

approximation process than the other control points. The areas of biggest standard 

deviations surround the most inaccurate GPS stations. More detailed analyses in terms 

of accuracy are given in (Nuckelt, 2007) 

 

    
         (a) velocities                                              (b) standard deviations 

 

Fig. 7. Vertical velocity field 

 

The computed principal and shear strains are shown in Fig. 8. The coloured surfaces 

put under the strain crosses represent their formal errors. The pattern of these surfaces 

is similar to Fig. 7(b). The areas of bigger errors coincide, because the velocity field as 

well as the strain parameter are based on the same control lattice of the Multilevel B-

spline approximation. This lattice itself depends on the GPS stations. That’s why you 

can see the station configuration and their different accuracies also in these figures. 

 

Large principle and shear strain are observable in the centers of both Figures 8(a) and 

8(b). Strains are obtained for regions where different movements occur, e. g. the most 

south-eastern part of the Carpathian arc. Large extensions and shear strains are shown 

in this zone. In the adjacent area to the east large extensions in different directions are 

observable. In areas of uniform displacement strains do not occur, e. g. the Moesian 

platform and the whole southern area, respectively. 

 

 

4. CONCLUSIONS 
 

Multilevel B-spline approximation is an appropriate tool to generate three dimensional 

velocity fields based on estimated velocities of scattered GPS stations. The advantage of 

this algorithm is the simultaneous approximation of several values. Furthermore the 

law of propagation of variances and algorithms of strain analyses can be implemented 

easily. 



    
(a) principal strain                                               (b) shear strain 

 

Fig. 8. Horizontal strains plus standard deviations 

 

The accuracy of the obtained velocity field depends on the quality of the input data. The 

high accuracy as well as the inaccuracy of a GPS station is propagated into the 

approximated velocity field and strain parameters. 
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