PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of an active dust and gas explosion suppression system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research aimed to test the effectiveness of gas and dust explosion suppression by means of a super fast explosion suppression system with a volume of 5 dm3. Smokeless powder as an explosive charge and sodium bicarbonate as a suppressing material were used. The experiments were carried out using a prototype device - a 5 liter steel container, closed by means of an aluminum membrane. Approximately 1.75 kg of extinguishing powder was placed in the container. The membrane was ruptured by exploding a specially developed charge located inside a perforated steel combustion chamber and mounted over the suppressing powder surface. The system was triggered by a signal from the protected volume, sent by a pressure transducer or by a photodiode reacting to a developing flame. The investigations into the efficiency of the active explosion suppression system were carried out in the 1.3 m3 explosion chamber. The explosion was initiated in a corn starch-air mixture of 0.2 kg/m3 concentration, or in a methane-air mixture of 7.5% and 8.5% CH4 concentration. The explosion suppression process occurred through the action of the extinguishing powder blown out from the extinguisher after the compressed combustion products perforated the membrane.
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 24 poz., tab., rys., wykr.
Twórcy
autor
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25 Street, 00-665 Warsaw, Poland, gieras@itc.pw.edu.pl
Bibliografia
  • [1] D. Bradley, A. Mitheson, The venting of gaseous explosions in spherical vessels. I - theory, Combustion and Flame 32 (1978) 221-236.
  • [2] D. Nolan, Handbook of fire & explosion protection engineering principles for oil, gas, chemical, & related facilities, Tech. rep., Westwood, New Jersey (1996).
  • [3] R. J. Harris, E. F. N. Spon, Gas explosions in buildings and heating plants, London (1983).
  • [4] M. Sapko, E. Weiss, R. Watson, Size scaling of gas explosions: Bruceton experimental mine versus the lake lynn mine u.s. dept. of the interior, Tech. Rep., Bureau of Mines (1987).
  • [5] W. Bartknecht, Explosions, Springer, Berlin/Heidelberg/New York (1981).
  • [6] R. Eckhoff, Dust explosions in process industries, Tech. rep., Oxford, Linacre House (1991).
  • [7] K. Lebecki, K. Cybulski, J. Sliz, Z. Dyduch, P. Wolafski, Large scale grain dust explosions - research in Poland, Shock Waves 5 (1995) 109-114.
  • [8] M. Zdanowski, Zapobieganie pożarom i wybuchom gazowych paliw energetycznych, Tech. rep., issued in cooperation with the Komenda Główna Straży Pożarnych (1983).
  • [9] H. K. Chelliah, Characterization of physical, thermal and chemical contributions of sodium bicarbonate particles in extinguishing counter-flow non-premixed flames, in: 5th ASME/ISME Joint Thermal Engineering Conference, 1999, pp. 1-7.
  • [10] H. K. Chelliah, Effect of sodium bicarbonate particle size on the extinction of non-premixed counter-flow flames, Combustion and Flame 134 (2003) 261-272.
  • [11] W. Hu, J. Smith, T. Doğu, G. Doğu, Kinetics of sodium bicarbonate decomposition, American Institute of Chemical Engineers Journal 32 (1986) 1483-1490.
  • [12] B. Kucnerowicz-Polak, Inhibition of flames by means of extinguishing powders, Ph.D. thesis, Cracow University of Technology (1987).
  • [13] V. Babushok, W. Tsang, G. Linteris, D. Reinelt, Chemical limits to flame inhibition, Combustion and Flame 115 (4) (1998) 551-560.
  • [14] A. Jones, G. O. Thomas, The action of water sprays on fires and explosions: a review of experimental work, Process Safety and Environmental Protection 71 (1993) 41-49.
  • [15] R. Klemens, Dynamics of dust explosions suppression by means of extinguishing powder in various industrial conditions, Journal of Loss Prevention in the Process Industries 20 (2007) 664-674.
  • [16] P. Oleszczak., R. Klemens, Suppression of dust air mixture explosions by means of water spray, proc. of the six international symposium on special topics in chemical propulsion, pp. 157-158, (2005) and advancement in energetic materials and chemical propulsion, Tech. rep., Behell House Inc. New York, pp. 581-599 (2007).
  • [17] M. Gieras, R. Klemens, Studies of dust explosion suppression by water sprays and extinguishing powders, Fire & Safety Magazine Spring (2008) 4-8.
  • [18] G. O. Thomas, Influence of water sprays on explosion development in fuel-air mixtures, Combustion Science and Technology 80 (1991) 47-61.
  • [19] R. R. Skaggs, Assessment of the fire suppression mechanism for hfc-227 ea combined with nahco3, Tech. rep., US Army Research Laboratory, pp. 1-11, Aberdeen Proving Ground (2002).
  • [20] P. E. Moore, Automatic explosion protection systems, in: Proc. of Shenyang International Symposium on Dust Explosions, Shenyang, China, 1987, pp. 316-348.
  • [21] A. J. Hynes, The chemical kinetics and thermodynamics of sodium species in oxygen - rich hydrogen flames, Journal of Chemical Physics 80 (6) (1984) 2585-2596.
  • [22] M. Gieras, Studies on process of dust explosion suppression by water spray, Archivum Combustionis 31 (1-2) (2011) 63-78.
  • [23] M. Gieras, Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature, Journal of Loss Prevention in the Process Industries 19 (2-3) (2006) 263-270.
  • [24] M. Gieras, R. Klemens, Experimental studies of explosions of methane-air mixtures in a constant volume chamber, Combustion Science and Technology 181 (1-13) (2009) 641-653.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0057-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.