PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wymiana masy w układach emulsji wielokrotnych

Autorzy
Identyfikatory
Warianty tytułu
EN
Mass transfer in multiple emulsion systems
Języki publikacji
PL
Abstrakty
PL
Prezentowana praca poświęcona jest zagadnieniu wymiany masy w hierarchicznie rozproszonych układach, takich jak emulsje wielokrotne i ich postać utrwalona – mikrosfery. Przedstawiona w niej została koncepcja jednostopniowego wytwarzania emulsji wielokrotnych oraz wyniki modelowania szybkości uwalniania składnika aktywnego (leku) z emulsji i mikrosfer, które zostały zweryfikowane doświadczalnie. Zaproponowana metoda wytwarzania emulsji wielokrotnych pozwala na otrzymywanie stabilnych struktur w krótkim czasie (kilkudziesięciu sekund) w jednym aparacie, w przeciwieństwie do tradycyjnych metod dwustopniowych. Pożądane właściwości wytwarzanych emulsji wielokrotnych (rozkład rozmiarów kropel, zawartość kropel fazy wewnętrznej w kroplach fazy membranowej) uzyskuje się poprzez dobór odpowiednich warunków hydrodynamicznych w kontaktorze helikoidalnym. Do przewidywania szybkości uwalniania składnika z emulsji wielokrotnych zaproponowano ogólny model teoretyczny transportu masy w układach rozproszonych. Założenia modelu zweryfikowano, opierając się na przeprowadzonych badaniach doświadczalnych uwalniania. Celem badań było określenie wpływu struktury emulsji wielokrotnych (rozmiary kropel i ich upakowanie), powiązanej z warunkami ich wytwarzania, oraz oporów transportu w zewnętrznym środowisku uwalniania na szybkość i charakter profili uwalniania. Stwierdzono istotny wpływ obu tych czynników na szybkość uwalniania leku z emulsji wielokrotnych. Badania uwalniania potwierdziły zakładany mechanizm dyfuzyjnego uwalniania składnika aktywnego z emulsji wielokrotnych. W przypadku uwalniania leku z mikrosfer, otrzymywanych w wyniku chemiczno-termicznego utrwalania emulsji, struktura mikrosfer oraz warunki wnikania w fazie zewnętrznej miały wpływ zarówno na szybkość uwalniania, jak i na charakter profili uwalniania. Podczas badań stwierdzono dwuetapową kinetykę procesu, tj. wstępne i zasadnicze uwalnianie. Występowanie etapu wstępnego i czas jego trwania zależały od intensywności mieszania środowiska zewnętrznego. Analiza efektów erozji stałej fazy membranowej (matrycy) pozwoliła na identyfikację mechanizmu erozji homogenicznej. Wyniki badań uwalniania leku z emulsji wielokrotnych przedyskutowano, opierając się na ogólnym modelu teoretycznym. W toku analizy danych doświadczalnych i wyników modelowania, występującemu w modelu ogólnym objętościowemu współczynnikowi wnikania nadano sens parametru struktury. Parametr ten jest właściwy dla danej klasy emulsji, tj. emulsji wytwarzanej w określonych warunkach, zachowuje w odniesieniu do niej wartość stałą i pochodzi z optymalizacji danych doświadczalnych. Znajomość parametru struktury umożliwia poprawne przewidywanie szybkości uwalniania. Podobny wzorzec modelowania obowiązywał dla mikrosfer, w przypadku których model zaproponowany do przewidywania szybkości uwalniania stanowił rozwinięcie modelu słusznego dla emulsji wielokrotnych. Model ten uwzględnia zidentyfi kowany mechanizm erozji matrycy mikrosfer i na podstawie doświadczalnie określonego parametru zmian struktury pozwala na przewidywanie szybkości uwalniania dyfuzyjno-erozyjnego. Ze względu na uniwersalną formułę równań bilansowych, zaproponowany model umożliwia przewidywanie kinetyki uwalniania z różnych systemów typu matrycowego (uwalnianie dwuetapowe lub pulsujące) przez sprzężenie identycznych układów równań odpowiednimi warunkami brzegowo-początkowymi.
EN
The paper deals with mass transfer in hierarchical dispersed systems, such as multiple emulsions and microspheres. The preparation and stabilization method of multiple emulsions entrapping an active agent and results of release process modelling were discussed. The proposed method of multiple emulsions preparation is a one-step method in contrast to the classical two-step procedure. Stable multiple emulsions are formed within only several seconds. Multiple emulsions of required characteristics (drop size distribution, volume fraction of internal droplets and encapsulation efficiency of active agent) are formed depending on the operating parameters in the helical contactor. Key factors affecting multiple emulsion preparation were : phases ratio, rotational flow and annular gap width. The operating conditions were optimized to find the best characteristic multiple emulsions (the largest interfacial area) for release experiments. For interpretation of experimental data and prediction of release profiles from multiple emulsions and microspheres, a theoretical model has been proposed and developed. The presented mass transfer model accounts for the internal structure of delivery system and hydrodynamic conditions of the surrounding release medium. The model was validated by experimental data of an active agent (drug) release from multiple emulsions and microspheres obtained via multiple emulsions thermal cross linking and hardening. The experimental results of release profiles indicated the importance of the internal structure of multiple emulsions/microspheres, as well as intensity of external surrounding mixing on the release rate. The mathematical model of the release process from multiple emulsions corresponds to active agent diffusion inside the drops of membrane phase. For describing the release process from microspheres, a theoretical model was developed to account for the validated mechanism of the release process. This model considers the release process via combined erosion and diffusion within polymeric matrix exhibiting two-stage release kinetics of primary release with induction phase and continuous release. Experimental analysis of erosion effects indicated homogenous erosion mechanism. Quantitative analysis of the model simulations showed that the volumetric mass transfer coefficient characterizing the emulsion/microsphere structure must be optimized from experimental data. When we know the values of this parameter for the specified classes of product structures, we can predict the release rate for similar structures and about the same during loading at any release conditions without the need for exploratory in vitro experiments. The model developed for the prediction of release kinetics from eroding delivery systems exhibiting two-stage release patterns can also be used for pulsatile release process designing.
Rocznik
Strony
3--126
Opis fizyczny
Bibliogr. 344 poz., tab., rys., wykr.
Twórcy
autor
  • Zakład Kinetyki i Termodynamiki Procesowej
Bibliografia
  • Abate A.R., Weitz D.A, 2009: High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics, Small 5, s. 2030-2032.
  • Abdekhodaie M.J., Cheng Y.L., 1996: Diffusional release of a dispersed solute from a spherical polymermatrix, J. Memb. Sci., 115, s. 171-178.
  • Abdekhodaie M.J., Cheng Y.L., 1997: Diffusional release of a dispersed solute from planar and spherical matrices into finite external volume, J. Controlled Release, 43, s. 175-182.
  • Akanni K.A., Evanss J.W., Abramson I.S., 1987: Effective transport in heterogeneous media, Chem. Eng. Sci., 42, s. 1945-1987.
  • Allouche J., Tyrode E., Sadtler V., Choplin L., Salager J-L., 2003: Single- and two-step emulsification to prepare a persisient multiple emulsion with a surfactant-polymer mixture, Ind. Eng. Chem. Res., 42, s. 3982-3988.
  • Arora R, Tandon P.N., 2009: Mathematical models for drug delivery to chronic patients, Appl. Math. Modelling, 33, s. 692-705.
  • Aserin A., 2008: Multiple emulsions: Technology and Applications, Wiley, Hoboken, USA.
  • Asher W.J., Vogler T.C., 1980: Detoxification by means of the controlled in vivo secretion triggered rupture of liquid membrane capsules. US Patent 4183 960.
  • Atkins P.W., 1998: Physical chemistry, Oxford University Press, Oxford.
  • Baker R.W., Lonsdale H.K., 1974: Controlled release: mechanisms and rates. In: Controlled release of biologically active agents, A.C. Tanquarry, R.E. Lacey (red.), Plenum Press, New York, s. 15-71.
  • Batycky R.P., Hanes J., Langer R., Edwards D.A., 1997: A theoretical model of erosion and macromolecular drug release from biodegrading microspheres, J. Pharm. Sci., 86, s. 464-1477.
  • Becher J., 1958: The effect of the nature of the emulsifying agent on emulsion inversion, J. Soc. Cosmet. Chem., 9, s. 141-148.
  • Benichou A., Aserin A., Garti N., 2002: Double emulsions stabilized by new molecular recognition hybrids of natural polymers. Polym. Adv. Technol.,13, s. 1019-1031.
  • Benichou A., Aserin A., Garti N., 2007: O/W/O double emulsions stabilized with WPI-polysaccharide conjugates, Colloids Surf. A, 297, s. 211-220.
  • Benna-Zayani M., Kbir-Ariguib N., Trabelsi-Ayadi M., Grossiord J-L., 2008: Stabilisation of W/O/W double emulsion by polysaccharides as weak gels, Colloids Surf. A, 316, s. 46-54.
  • Benoy C.J., Elso L.A., Schneider R., 1972: Multiple emulsions, a suitable vehicle to provide sustained release of cancer chemotherapeutic agents, Br. J. Pharmacol., 45, s. 135-136.
  • Berkovich Y., Aserin A., Garti N., 2004: Practical and mechanistic considerations in the use of W/O/W double emulsions for microencapsulation of fine boron particles. J. Dispersion Sci. Technol., 25, s. 89-99.
  • Bernardo F.P., Saraiva P.M., 2008: A theoretical model for transdermal drug delivery from emulsions and its dependence upon formulation, J. Pharm. Sci., 97. s. 3781-3809.
  • Bertrand N., Leclair G., Hildgen P., 2007: Modeling drug release from bioerodible microspheres using a cellular automaton, Int. J. Pharm., 343, s. 196-207.
  • Binks B.P., Fletcher P.D.I., Holt B.L., Kuc O., Beaussoubre P., Wong K., 2010: Compositional ripening of particle- and surfactant-stabilised emulsions: a comparison, Phys. Chem. Chem Phys., 12, s. 2219-2226.
  • Boyadzhiev L., Bezenshek E., 1983: Carrier mediated extraction: application of double emulsion technique for mercury removal from waste water, J. Membr. Sci., 14, s. 13-18.
  • Bozkir A., Hayata G., 2004: Preparation and evaluation of multiple emulsions water-in-oil-in water (W/O/W) as delivery system for influenza virus antigens, J. Drug Targeting, 12, s. 157-164.
  • British Patent, 1979: Process for preparing a multiple emulsion having a dispersing form of water phase/oil-phase/water phase. No 1541463, Lion Dentifrice Co.
  • Burges D.J., Hickey A.J., 1994: Microsphere technology and applications, In: Encyclopedia of pharmaceutical technology, J. Swarbrick, J.C. Boylan (red.), Marcel Dekker, New York, s. 1-29.
  • Burkersroda F. von, Schedl L., Gopferich A., 2002: Why degradable polymers undergo surface erosion or bulk erosion, Biomaterials, 23, s. 4221-4231.
  • Cabrera M.I., Luna J.A., Grau R.J.A., 2006: Modeling of dissolution-diffusion controlled drug release from planar polymeric systems with finite dissolution rate and arbitrary drug loading, J. Membr. Sci., 280, s. 693-704.
  • Cahn R.P., Li K.N. 1974: Separation of phenol from waste water by the liquid membrane technique, Sep. Sci., 9, s. 505-519.
  • Calderbank P.H., Moo-Young M.B., 1961: The continuous phase heat and mass-transfer properties of dispersions, Chem. Eng. Sci., 16, s. 39-54.
  • Carlos H.V., Lawson L.B., Li Y, Papadopoulos K.D., 2003: Internal coalescence as a mechanism of instability in water-in-oil-in-water double-emulsion globules, Langmuir, 19, s. 244-249.
  • Carlotti M., Gallarate E.M., Sapino S., Ugazio E., Morel S., 2005: W/O/W multiple emulsions for dermatological and cosmetic use obtained with ethylene oxide free emulsifiers, J. Dispersion Sci Technol., 26, s. 183-192.
  • Casamatta G., Chavarie C., Angelino H., 1978: Hydrocarbon separation through a liquid membrane: modelling of permeation in an emulsion drop. AIChE J., 24, s. 945-949.
  • Charlier A., Leclerc B., Couarraze G., 2000: Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations, In:. J. Pharm., 200, s. 115-120.
  • Chen Y., McCall T.W., Baichwal A.R., Meyer M.C., 1999: The application of an artificial neural network and pharmacokinetic sitmulations in the design of controlled-release dosge forms, J. Controlled Release, 59, s. 33-41.
  • Chiang W., Fuller G.C., Frankenfeld J.W., Rhodes C.T., 1978: Potential of liquid membranes for drug overdose treatment: in vitro studies, J. Pharm. Sci., 67, s. 63-66.
  • Cho Y.-H., Park J., 2003: Evaluation of process parameters in the O/W/O multiple emulsion method for flavor encapsulation, J. Food Sci., 68, s. 534-538.
  • Clausse D., Fouconnier B., Gomez J.A., 2002: Ripening phenomena in emulsions - A calorimetry investigation, J. Dispersion Sci. Technol., 23, s. 379-391.
  • Cole M.L., Whateley T.L., 1997: Release rate profiles of theophylline and insulin from stable multiple W/O/W emulsions, J. Controlled Release, 49, s. 51-58.
  • Colinart P., Delepine S., Trouve G., Renon H., 1984: Water transport in emulsified liquid membrane processes, J. Membr. Sci. 20, s. 167-187.
  • Colombo P., Bettini R., Peppas N.A., 1999: Observation of swelling process and diffusion front position during swelling in hydroxypropyl methyl cellulose (HPMC) matrices containing a soluble drug, J. Controlled Release, 61. s. 83-91
  • Colombo P., Bettini R., Santi P., Ascentiis A.D., Peppas N.A., 1996: Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport, J. Controlled Release, 39, s. 231-237.
  • Cooney D.O., 1972: Effect of geometry on the dissolution of pharmaceutical tablets and other solids: surface detachment kinetics controlling, AIChE J., 18, s. 446-449.
  • Correia P.F.M.M, de Carvalho J.M.R., 2001: A comparison of models for 2-chlorophenol recovery from aqueous solulions by emulsion liquid membranes, Chem. Eng. Sci., 56, s. 5317-5325.
  • Cortesi R., Esposito E., Osti M., Squarzoni G., Menegatti E., Davis S.S., Nastruzzi C., 1999: Dextran cross-linked gelatin microspheres as a drug delivery system, Eur. J. Pharm. Biopharm., 47, s. 153-60.
  • Costa P., Sousa Lobo J.M., 2001: Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci.,13, s. 123-133.
  • Cournariea F., Savellib M-P., Rosilioa V., Bretezb F., Vauthiera Ch., Grossiorda J-L., Seiller M., 2004: Insulin-loaded W/O/W multiple emulsions: comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil, Eur. J. Pharm. Biopharm., 58, s. 477-482.
  • Couvreur P., Blanco-Prieto M-J., Puisieux F., Roques B., Fattal E., 1997: Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides, Adv. Drug Delivery Rev., 28, s. 85-96.
  • Crank J., 1975: The mathematics of diffusion, Clarendon Press, Oxford.
  • Crank J., Park G.S., 1968: Diffusion in polymers, John Wright and Sons Ltd. at the Stonebridge Press, Bristol.
  • Davis S.S., Burbage A.S., 1977: Electron micrography of water-in oil-in-water emulsions, J. Colloid Interface Sci., 62, s. 361-363.
  • Davis S.S., Illum L., Walker I.M., 1987: The in vivo evaluation of emulsion formulations administrated intramuscularly, Int. J. Pharm., 38, s. 133-137.
  • Davis S.S., Walker I.M., 1987: Multiple emulsions as targetable delivery systems, Methods Enzymol., 149, s. 51-64.
  • Davis T.A., Asher W.J., 1983: Process for preparing artificial red cells, US Patent 4376059.
  • Desmet G., Verelst H., Baron G., 1996: Local and global dispersion effects in Couette-Taylor flow-
  • Description and modeling of the dispersion effects, Chem. Eng. Sci., 51, s. 1287-1298.
  • Devani M.J., Ashford M., Craig D.Q.M., 2004: The emulsification and solubilisation properties of polyglycolysed oils in selfemulsifying formulations, J. Pharm. Pharmacol., 56, s. 307-316.
  • Devani M.J., Ashford M., Craig D.Q.M., 2005: The development and characterisation of triglyceride-based 'spontaneous' multiple emulsions, Int. J. Pharm., 300. s. 76-88.
  • Dickinson E., Evison J., Gramshaw J.W., Schwope D., 1994: Flavor release from a protein-stabilized water-in-oil-in-water emulsion, Food Hydrocolloids, 8, s. 63.
  • Dłuska E., Hubacz R., Wroński S., 2005: Liquid-liquid Couette-Taylor flow contactor for multiple emulsions, Book of selected papers of the 7th Italian Conf. on Chemical and Process Engineering, AIDIC-Conference Series, Italy, May, vol.7, s. 107-114.
  • Dłuska E., Hubacz R., Wroński S., 2006: Simple and multiple water fuel emulsions preparation in helical flow, Turkish J. Eng. Env. Sci., 30, s. 175-182
  • Dłuska E., Hubacz R., Wroński S., Kamieński J., Dyląg M., Wójtowicz R., 2007: The influence of helical flow on water fuel emulsion preparation, Chem. Eng. Commun., 194, s. 1271-1286.
  • Dłuska E., Markowska A., 2009: One-step preparation method of multiple emulsions entrapping reactive agent in the liquid-liquid Couette-Taylor flow, Chem. Eng. Process., 48, s. 438-445.
  • Dłuska E., Markowska-Radomska A., 2010a: Regimes of multiple emulsions of W1/O/W2 and O1/W/O2 type in the continuous Couette-Taylor flow contactor, Chem. Eng. Technol., 33, s. 113-120.
  • Dłuska E., Markowska-Radomska A., 2010b: A mathematical model for predicting release rate from multiple emulsions and micro/nanospheres, Chem. Eng. Technol., 33. s. 1471-1480.
  • Dłuska E., Wroński S., 2004: Zastosowanie przepływu helikoidalnego do prowadzenia procesów w układzie ciecz-ciecz, Int. Chem. Proc., 25, s. 813-818.
  • Dłuska E., Wroński S., Hubacz R., 2001: Mass transfer in gas-liquid Couette-Taylor flow reactor, Chem. Eng. Sci., 56, s. 1131-1136.
  • Dłuska E., Wroński S., Ryszczuk T., 2004: Interfacial area in gas-liquid Couette-Taylor flow reactor, Exp. Therm. Fluid. Sci., 28, s. 467-472.
  • Dokoumetzidis A., Macheras P., 2006: A century of dissolution research: From Noyes and Whitney to the biopharmaceutics classification system, Int. J. Pharm., 321, s. 1-11.
  • Donev A., Cisse I., Sachs D., Variano E., Stillinger F., Connelly R., Torquato S., Chaikin P.M., 2004: Improving the density of jammed disordered packings using ellipsoids, Science, 303, s. 990-993.
  • Ehtezazi T., Washingion C., 2000: Controlled release of macromolecules from PLA microspheres: using porous structure topology, J. Controlled Release, 68, s. 361-372.
  • El-Shafei G.M.S., El-Said M.M., Attia H.A.E., Mohammed T.G.M., 2010: Environmentally friendly pesticides: Essential oil-based w/o/w multiple emulsions for anti-fungal formulations, Ind. Crop. Prod., 31, s. 99-106.
  • El-Sherif D.M., Lathia J.D., Le N.T., Wheatley M.A., 2004: Ultrasound degradation of novel polymer contrast agents, J. Biomed. Mater. Res., 68A, s. 71-78.
  • Elson L.A., Mitchley B.C.V., Collings A.J., Schneider R., 1970: Chemotherapeutic effect of water-oil-water emulsion of methotrexate on the mouse L1210 leukaemia, Rev. Eur. Etud. Clin. Biol., 15, s. 87-90.
  • Engel R.H., Riggi S.J., Fahrenbach M.J., 1968: Insulin intestinal absorption as water-in-oil-in-water emulsions, Nature, 219, s. 856-857.
  • Ficheux M.R, Bonakdar L., Leal-Calderon F., Bibette J., 1998: Some stabitity criteria for double emulsions, Langmuir, 14, s. 2702-2706.
  • Florence A.T., Whitehill D., 1981: Some features of breakdown in water-in-oil-in-water multiple emulsions. J. Colloid Interface Sci., 79, s. 243-256.
  • Florence A.T., Whitehill D., 1982: The formulation and stability of multiple emulsions, Int. J. Pharm., 11, s. 277-308.
  • Florence A.T., Whitehill D., 1985: Nonaqueous foam structures from osmotically swollen W/O/W emulsion droplets, J. Colloid Interface Sci., 107, s. 584-588.
  • Fox C., 1986: An introduction to multiple emulsions, Cosmet. Toilet., 101, s. 101-112.
  • Frankenfeld J.W., Fuller G.C., Rhodes C.T., 1976: Potential use of liquid membranes for emergency treatment of drug overdose, Drug Dev. Ind. Pharm., 2, s. 405-419.
  • Frankenfeld J.W., Li N.N., 1977: Waste water treatment by liquid ion exchange in liquid membrane systems, Recent Dev. Sep. Sci., 3, Part B, s. 285-292.
  • Freiberg S., Zhu X.X., 2004: Polymer microspheres for controlled drug release. Int. J. Pharm., 282, s. 1-18.
  • Frenkel M., Shwartz R., Garti N., 1983: Multiple emulsions stability: inversion, apparent and weighed HLB, J. Colloid Interface Sci., 94, s. 174-178.
  • Frenning G., 2003: Theoretical investigation of drug release from planar matrix systems: effects of a finite dissolution rate, J. Controlled Release, 92, s. 331-339.
  • Frenning G., 2004: Theoretical analysis of the release of slowly dissolving drugs from spherical matrix systems, J. Controlled Release, 95, s. 109-117.
  • Gallarate M., Trotta M., Battaglia L., Chirio D., 2009: Preparation of solid lipid nanoparticles from W/O/W emulsions: Preliminary studies on insulin encapsulation, J. Microencapsulation, 26, s. 394-402.
  • Gameiro M.L.F., Bento P., Ismael M.R.C., Reis M.T.A., Carvalho J.M.R., 2007: Extraction of copper from ammoniacal medium by emulsion liquid membranes using LIX 54, J. Membr. Sci., 293, s. 151-160.
  • Garti N., 1997a: Double emulsions-scope, limitations and new achievements, Colloids Surf. A, s. 123-124, s. 233-246.
  • Garti N., 1997b: Progress in stabilization and transport phenomena of double emulsions in food applications, Lebensm.-Wiss. u.-Technol., 30, s. 222-235.
  • Garti N., 1998a: A new approach to improve stability and controlled release in double emulsions by use of graft-comb polymeric amphiphiles, Acta Polym., 49, s. 606-616.
  • Garti N., 1998b: New trends in double emulsions for controlled release, Prog. Colloid Polym. Sci., 108, s. 83-92.
  • Garti N., Aserin A., 1996: Double emulsions stabilized by macromolecular surfactants, Adv. Colloid Interface Sci., 65, s. 37-69.
  • Garti N., Aserin R-P.A., 1987: The effect of additives on release from w/o/w emulsions, Colloids Surf. A, 24, s. 83-94.
  • Garti N., Binyamin H., Aserin A., 1999: Double emulsions of water/oil/water stabilized by α-form fat submicrocrystaline particles, J. Am. Oil Chem., Soc., 76, s. 383-389.
  • Garti N., Bisperink C., 1998: Double emulsions: progress and applications, Curr. Opin. Colloid Interface Sci., 3, s. 657-667.
  • Garti N., Frenkel M., Shwartz R., 1983: Multiple emulsions. Part II: Proposed technique to overcome unpleasant taste of drugs, J. Dispersion Sci. Technol., 4, s. 23-252.
  • Garti N., Lutz R., 2006: Double emulsions. In: Encyclopedia of surface and colloid science, vol. 3, P. Somasundaran (red.), second ed., Taylor & Francis, s. 1816-1845.
  • Garti N., Magdassi S., Whitehill D., 1985: Transfer phenomena across the oil phase in water-oil-water multiple emulsions evaluated by coulter counter. Effect of primary emulsifier on permeability. J. Colloid Interface Sci., 104, s. 587-591.
  • Geiger S., Tokgoz S., Fructus A., Jager-Lezer N., Seiller M., Lacombe C., Grossiord J.L., 1998: Kinetics of swelling-breakdown of a W/OAV multiple emulsion: possible mechanisms for the lipophilic surfactant effect, J. Controlled Release, 52, s. 99-107.
  • Giovagnoli S., Blasi P., Schoubben A., Rossi C., Ricci M., 2007: Preparation of large porous biodegradable microspheres by using simple double-emulsion method for caprcomycin sulfate pulmonary delivery, Int. J. Pharm., 333, s. 103-111.
  • González-Ochoa H., Ibarra-Bracamontes L., Arauz-Lara J.L., 2003: Two-stage coalescence in double emulsions, Langmuir, 19, s. 7837-7840.
  • Göpferich A., 1996: Mechanisms of polymer degradation and erosion, Biomaterials, 17, s. 103-114.
  • Göpferich A., Langer R., 1995: Modeling monomer release from bioerodible polymers, J. Controlled Release, 33, s. 55-69.
  • Gordon M.H., Paiva-Martins F., Almeida M., 2001: Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols, J. Agric. Food Chem., 49, s. 2480-2485.
  • Goubault C., Pays K., Olea D., Gorria P., Bibette J., Schmitt V., Leal-Calderon F., 2001: Shear rupturing of complex fluids: Application to the preparation of quasi-monodisperse water-in-oil-in-water double emulsions, Langmuir, 17, s. 5184-5188
  • Grassi M., Coceani N., Magarotto L., 2000a: Mathematical modeling of drug release from microemulsions: Theory in comparison with experiments, J. Colloid Interface Sci., 228, s. 141-150.
  • Grassi M., Colombo I., Lapasin R., 2000b: Drug release from an ensemble of swellable crosslinked polymer particles, J. Controlled Release, 68, s. 97-113.
  • Grassi M., Grassi G., 2005: Mathematical modelling and controlled drug delivery: matrix systems, Curr. Drug Delivery, 2, s. 97-116.
  • Grigoriev D.O., Miller R., 2009: Mono- and multilayer covered drops as carriers, Curr. Opin. Colloid Interface Sci., 14, s. 48-59.
  • Grossiord J.L., Seiller M., 1998: Rheology of w/o/w multiple emulsions: formulation, characterization and breakup mechanisms. In: Multiple emulsions: Structure, properties and applications, Grossiord J.L., Seiller M. (red.), Editions de Sante, Paris, s. 169-192.
  • Grossiord J.L., Seiller M., 2001: W/O/W multiple emulsions: a review of the release mechanisms by break-up of the oily membrane. STP Pharma Sci., 11, s. 331-339.
  • Guery J., Bertrand E., Rouzeau C., Levitz P., Weitz D.A., Bibette J., 2006: Irreversible shear-sctivated aggregation in non-Brownian suspensions, Phys. Rev. Lett., 96, s. 198301/1-198301/4.
  • Halwachs W., Vokel W., Schugerl K., 1980: Removal of toxins from plasma and blood with liquid surfactant membranes, Proc. Int. Solv. Extr. Conf., ISEC'80, Sep. 6-12, Liege, Belgium, s. 80-88.
  • Hamoudeh M., Seiller M., Chauvierre C., Auchere D., Lacour B., Stambouli M., Grossiard I.L., 2006: Formulation of stable detoxifying W/O/W reactive multiple emulsions: In vitro evaluation, J. Drug Deliv. Sci. Tec., 16, s. 223-228.
  • Hanna G.J., Larson K.M., 1985: Influence of preparation parameters on internal droplet size distribution of emulsion liquid membranes, Ind. Eng. Chem. Prod. Res. Dev., 24, s. 269-274.
  • Hans M.L., Lowman A.M., 2002: Biodegradable nanoparticles for drug delivery and targeting, Curr. Opin. Solid State Mater. Sci, 6, s. 319-327.
  • Hanson J.A., Chang C.B., Graves S.M., Li Z., Thomas G.M., Deming T.J., 2008: Nanoscale double emulsions stabilized by single-component block copolypeptides, Nature, 455, s. 85-88.
  • Happel J., 1957: Viscosity of susspensions of uniform spheres, J. Appl. Phys., 28, s. 1288-1292.
  • Hashida M., Heui Laia M., Muranishi S., Sezaki H., 1980: Dosage form characteristics of microspheres-in-oil emulsion: II. Examination of some factors affecting lymphotropicity, Chem. Pharm. Bull., 28, s. 1659-1666.
  • Hearn T.L., Olsen M., Hunter R.L., 1996: Multiple emulsions oral vaccine vehicles for inducing immunity or tolerance, Ann. NY Acad Sci., 778, s. 388-389.
  • Heller J., Baker R.W., 1980: Theory and practice of controlled drug delivery from bioerodible polymers, In: Controlled release of bioactive materials, W. Baker (red.), Academic Press, New York, s. 1-18.
  • Herbert W.J., 1965: A new form of mineral oil antigen adjuvant, Lancet, 2, s. 771-771.
  • Hiementz P., Rajagopalan R., 1997: Principles of colloids and surface chemistry, 3rd ed., Marcel Dekker, New York.
  • Higashi S., Setoguchi T., 2000: Hepatic arterial injection chemotherapy for hepatocellular carcinoma with epirubicin aqueous solution as numerous vesicles in iodinated poppy-seed oil microdroplets: clinical application of water-in-oil-in-water emulsion prepared using a membrane emulsification technique, Adv. Drug Delivery Rev., 45, s. 57-64.
  • Higashi S., Shimizu M., Nakashima T., Iwata K., Uchiyama F., Tateno S., Tamura S., Setoguchi T., 1995: Arterial-injection chemotherapy for hepatocellular carcinoma using monodispersed poppy-seed oil microdroplets containing fine aqueous vesicles of epirubicin. Initial medical application of a membrane-emulsification technique, Cancer, 75, s. 1245-1254.
  • Higuchi T., 1961: Rate of release of medicaments from ointment bases containing drugs in suspensions, J. Pharm. Sci., 50, s. 874-875.
  • Higuchi T., 1963: Mechanisms of sustained action mediation. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci., 52, s. 1145-1149.
  • Hino T., Kawashima Y., Shimabayashi S., 2000: Basic study for stabilizalion of w/o/w emulsion and its application to transcatheter anerial embolization therapy, Adv. Drug Delivery Rev., 45, s. 27-15.
  • Hirtzel C.S., Rajagoplan R., 1985: Invited review - Stability of colloidal dispersions, Chem Eng. Commun. 33, s. 301-324.
  • Ho W.S., Halton T.A. Lightfoot E.N., Li N.N., 1982: Bach Extraction with liquid surfactant membranes, a diffusion controlled model, AIChE J., 28, s. 662-670.
  • Hombreiro-Pérez M., Siepmann J., Zinutti C., Lamprecht A., Ubrich N., Hoffman M., Bodmeier R., Maincent P., 2003: Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling, J. Controlled Release, 88, s. 413-428.
  • Hopfenberg H.B., 1976: Controlled release from erodible slabs, cylinders, and spheres. In: Controlled release polymeric formulations. D.R. Paul, F.W. Harris (red.), ACS No 33, American Chemical Society, Washington, s. 26-32.
  • Hou W., Papadopoulos K.D., 1996: Stability of water-in-oil-in water type globules, Chem. Eng. Sci., 22, s. 5043-5051.
  • Hou W., Papadopoulos K.D., 1997: W1/O/W2 and O1/W/O2 globules stabilized with Span 80 and Tween 80, Colloids Surf. A, 125, s. 181-187.
  • Huang X., Brazel Ch.S., 2001: On the importance and mechanisms of burst release in matrix-controlled drug delivery systems, J. Controlled Release, 73, s. 121-136.
  • Hwang Yi-J., Oh Ch., Oh S-G., 2005: Controlled release of retinol from silica particles prepared in O/W/O emulsion. The effects of surfactants and polymers, J. Controlled Release, 106, s. 339-349.
  • Imdakm A.O., Sahimi M., 1991: Computer simulation of particle transport process in flow through porous media, Chem. Eng. Sci., 46, s. 1977-1993.
  • Intra J., Glasgow J.M., Mai H.Q., Salem A.K., 2008: Pulsatile release of biomoleculcs from polydimethylsiloxane (PDMS) chips with hydrolytically degradable seals, J. Controlled Release, 127, s. 280-287.
  • Iskakov R.M., Kikuchi A., Okano T., 2002: Time-programmed pulsatile release of dextran from calcium-alginate gel beads coated with carboxy-n-propylacrylamide copolymers, J. Controlled Release, 80, s. 57-68.
  • Jaeger H.M., Nagel S.R., 1992: Physics of granular states, Science, 255. s. 1524-1526.
  • Jager-Lezer N., Terrisse I., Bruneau F., Tokgoz S., Ferreira L., Clausse D., Seiller M., Grossiord J.L., 1997: Influence of lipophilic surfactant on the release kinetics of water-soluble molecules entrapped in a W/O/W multiple emulsion, J. Controlled Release, 45, s. 1-13.
  • Jain D., Panda A.K., Majumdar D.K., 2005: Eudragit S100 entrapped insulin microspheres for oral delivery, AAPS Pharm. Sci. Tech., 6, s. E100-E107.
  • Jarrod A.H., Connie B.Ch., Sara M.G., Zhibo L., Thomas G.M., Timothy J.D., 2008: Nanoscale double emulsions stabilized by single-component block copolypeptides, Nature, 455, s. 85-88.
  • Jiao J., Burgess D.J., 2003: Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80, AAPS Pharm. Sci., 5, s. 1-12.
  • Jiao J., Rhodes D.G., Burgess D.J., 2002: Multiple emulsion stability: Pressure balance and interfacial film strenght, J. Colloid Interface Sci., 250, s. 444-450.
  • Kabalnov A., Wennerstroem H., 1996: Macroemulsion stability the oriented wedge theory revisited, Langmuir, 12, s. 276-292.
  • Kaparissides C., Alexandridou S., Kotti K., Chaitidou S., 2006: Recent advances in novel drug delivery systems, J. Nanotechnol., 2, s. 1-11.
  • Karaborni S., Van Os N.M., Esselink K., Hilbers P.A.J., 1993: Molecular dynamics simulations of oil solubilization in surfactant solutions, Langmuir, 9, s. 1175-1178.
  • Kataoka K., Ohmura N., Kouzu M., Simamura Y., Okubo M., 1995: Emulsion polymerization of styrene in continuous Taylor vortex flow reactor, Chem. Eng. Sci., 50, s. 1409-1416.,
  • Kataoka T., Nishiki T., 1986: Dispersed mean drop sizes of (W/0)/W emulsions in a stirred tank. J. Chem. Eng. Jpn., 19, s. 408-412.
  • Kataoka T., Nishiki T., Kimura S., Tomioka Y., 1989: Batch permeation of metal ions using liquid surfactant membranes, J. Membr. Sci., 46, s. 67-80.
  • Kawakatsu T., Trägårdh G., Trägårdh Ch., 2001: Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification, Colloid Surf. A, 189, s. 257-264.
  • Khopade A.J., Jain N.K., 2000: Concanavalin - A conjugated fine-multiple emulsion loaded with 6-mercaptopurine, Drug Delivery, 7, s. 105-112.
  • Khopade A.J., Mahadik K.R., Jain N.K., 1996: Targeting of multiple emulsions to the lungs. Pharmazie, 51, s. 558-562.
  • Khopade A.J., Nandakumar K.S., Jain N.K., 1998: Lectin-functionalized multiple emulsions for improved cancer therapy, J. Drug Targeting, 6, s. 285-292.
  • Kim Cherg-ju., 2000: Controlled release dosage form design, Technomic Publishing Company, Lancaster, Pennsylvania, USA.
  • Kim H., Fassihi R., 1997: Application of binary polymer system in drug release rate modulation. 2. Influence of formulation variables and hydrodynamic conditions on release kinetics, J. Pharm. Sci., K. s. 323-328.
  • Kim J.W., Kang H.H., Suh K.D., Oh S.G., 2003: Stabilization of water-soluble antioxidant in water-in-oil-in-water double emulsions, J. Dispersion Sci. Technol., 24, s. 833-839.
  • Kita Y., Matsumoto S., Yonezawa D., 1977: Viscometric metod for estimating the stability of W/O/W type multiple-phase emulsions, J. Colloid Interface Sci., 62, s. 87-94.
  • Kitagawa T., Nishikawa Y., Frankenfeld J.W., Li N.N., 1977: Waste water treatment by liquid membrane process, Environ. Sci. Technol., 11, s. 602-605.
  • Koizumi T., Panomsuk S.P., 1995: Release of medicaments from spherical matrices containing drug in suspension: Theoretical aspects, Int. J. Pharm., 116, s. 45-49.
  • Koizumi T., Ueda M., Kakemi M., Kameda H., 1975: Rate of release of medicaments from oinment bases containing drugs in suspensions, Chem. Pharm. Bull., 23, s. 3288-3292.
  • Korsmeyer R.W., Gurny R., Doelker E.M., Buri P., Peppas N.A., 1983: Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm., 15, s. 25-35.
  • Kosmidis K., Argyrakis P., Macheras P., 2003: A reappraisal of drug release laws using Monte Carlo simulations: The prevalence of the Weibull function, Pharm. Res., 20, s. 988-995.
  • Kufe D.W,. Major P.P., 1982: Studies on the mechanism of action of cytosine arabinoside, Med. Pediatr. Oncol., 10, Suppl. 1, s. 49-67.
  • Kurnik R.T., Potts R.O., 1997: Modeling of diffusion and crystal dissolution in controlled release systems, J. Controlled Release, 45, s. 257-264.
  • Laaksonen T.J., Laaksonen H.M., Hirvonen J.T., Murtomäki L., 2009: Cellular automata model for drug release from binary matrix and reservoir polymeric devices, Biomaterials, 30, s. 1978-1987.
  • Langer R., Peppas N.A., 1983: Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review, Polym. Rev., C23, s. 61-126.
  • Laugel C., Baillet A., Piemi M.P.Y., Marty J.P., Ferrier D., 1998: Oil-water-oil multiple emulsions for prolonged delivery of hydrocortisone after topical application: comparison with simple emulsions, Int. J. Pharm., 160, s. 109-117.
  • Laugel C., Chaminade P., Baillet A., Seiller M., Ferrier D., 1996: Moisturizing substances entrapped in W/O/W emulsions: analytical methodology for formulation, stability and release studies, J. Controlled Release, 38, s 59-67,
  • Lawson L.B., Papadopoulos K.D., 2004: Effects of a phospholipid cosurfactant on external coalescence in water-in-oil-in-waterdouble-emulsion globules, Colloids and Surf. A, 250, s. 337-342.
  • Lee D., Weitz D.A., 2008: Double emulsion-templated nanoparticle colloidosomes with selective permeability, Adv. Mater., 20, s. 349S-3503.
  • Lee J-M., Lim K-H., Smith D.H., 2002: Formation of two-phase multiple emulsions by inclusion of continuous phase into dispersed phase, Langmuir, 18, s. 7334-7340.
  • Lee P.I, 1980: Diffusional release of a solute from a polymeric matrix-approximate analytical solutions, J. Membr. Sci, 7, s. 255-275.
  • Lee P.I., Peppas N.A., 1987: Prediction of polymer dissolution in swellable controlled-release systems, J. Controlled Release, 6, s. 207-215.
  • Lee S.C., Chang J.H., Ahn B.S., Lee W.K., 1996: Mathematical modeling of silver extraction by an emulsion liquid membrane process, J. Membr. Sci., 114, s. 171-185.
  • Li J., Carr P.W., 1997: Accuracy of empirical correlations for estimating diffusion coefficients in aqueous organic mixtures, Analytical Chemistry, 69, s. 2530-2536.
  • Li N.N., 1968: Membrane separation process, US Patent 3410794 November 12.
  • Li N.N., 1971a: Permeation through liquid surfactant membranes, AIChE J., 17, s. 459-463.
  • Li N.N., 1971b: Separation of hydrocarbon by liquid membrane permeation (I), Ind. Eng. Chem., Process Des. Dev., 10, s. 215-219.
  • Li N.N., Asher J., 1973: Blood oxygenation by liquid membrane permeation, In: ACS Advances in Chemistry Series, Chemical Engineering in Medicine, R.T. Gould (red.), American Chemical Society, New York.
  • Li N.N., Shrier A.L., 1972: Liquid membrane water treating, Recent Dev. Sep. Sci., 1, s. 163-174.
  • Lin Ch-Y., Wang K-H., 2004: The fuel properties of three-phase emulsions as an alternative fuel for diesel engines, Fuel, 82, s. 1367-1375.
  • Lindenstruth K., Muller B.W., 2004: W/O/W multiple emulsions with diclofenac sodium, Eur. J. Pharm. Biopharm., 58, s. 621-627.
  • Liu W., Yang X-L., Ho W.S.W., 2011: Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification, J. Pharm. Sci., 100, s. 75-93.
  • Lobato-Calleros C., Rodriguez E., Sandoval-Castilla O., Vernon-Carter E.J., Alvarez-Ramirez J., 2006: Reduced-fat white fresh cheese-like products obtained from W1/O/W2 multiple emulsions: Viscoelastic and high-resolution image analyses, Food Research International, 39, s. 678-685.
  • Lorbach D., Bart H.J., Marr R., 1986: Mass transfer in liquid membrane permeation, Ger. Chem. Eng., 9, s. 321-327.
  • Lorbach D., Marr R., 1987: Emulsion liquid membranes. Part II. Modelling mass transfer of zinc with bis(2-ethylhexyl)dithiophosphoric acid, Chem. Eng. Process., 21, s. 83-93.
  • Lutz R., Aserin A., Wachtel E.J., Ben-Shoshan E., Danino D., Garti N., 2007: A study of the emulsified microemulsion by saxs, cryo-tem, sd-nmr, and electrical conductivity, J. Dispersion Sci. Technol., 28, s. 1149-1157.
  • Maa Y-F., Hsu Ch., 1996: Liquid-liquid emulsification by rotor/stator homogenization, J. Controlled Release, 38, s. 219-228.
  • Magdassi S., Frenkel M., Garti N., 1985: Correlation between nature of emulsifier and multiple stability, Drug Dev. Ind. Pharm., 11, s. 791-798.
  • Magdassi S., Frenkel M., Garti N., Kasan R., 1984: Multiple emulsions II-HLB shift caused by emulsifier migration to the external interface, J. Colloid Interface Sci., 97, s. 374-379.
  • Magdassi S., Garti N., 1984: Release of electrolytes in multiple emulsions, coalescence and breakdown of diffusion through oil phase, Colloids Surf., 12, s. 367-373.
  • Magdassi S., Garti N., 1986: A kinetic model for release of electrolytes from W/O/W multiple emulsions, J. Controlled Release, 3, s. 273-277.
  • Makles L., 1968: Wax composition and method for making the same, US Patent 3395028.
  • Marín Á.G., Loscertales I.G., Márquez M., Barrero A., 2007: Simple and double emulsions via coaxial jet electrosprays, Phys. Rev. Lett., 98, s. 014502-1-014502-4.
  • Marr R.J., Draxler J., 1992: Emulsion liquid membrane application, In: Membrane Handbook, W.S. Ho, K.K. Sirkar (red.), Chapman & Hall, New York NY, s. 701-717.
  • Martínez L., Villalobos R., Sánchez M., Cruz J., Ganem A., Melgoza L.M., 2009: Monte Carlo simulations for the study of drug release from cylindrical matrix systems with an inert nucleus, Int. J. Pharm., 369, s. 38-46.
  • Mataumoto S., Kang W., 1989: Formation and applications of multiple emulsions, J. Dispersion Sci. Technol., 10, s. 455-482.
  • Matsumoto M., Ema K., Kondo K., Nakashio F., 1990: Copper extraction with liquid surfactant membrane in mixco extractor, J. Chem. Eng. Jpn., 23, s. 402-407.
  • Matsumoto S., 1983: Development of W/O/W-type dispersion during phase inversion of concentrated W/O emulsions, J. Colloid Interface Sci., 94, s. A362-A368.
  • Matsumoto S., Inoue T., Kohda M., Ikura K., I980a: Water permeability of oil layers in W/O/W emulsion under osmolic pressure gradients, J. Colloid Interface Sci., 77, s. 555-563.
  • Matsumoto S., Inoue T., Kohda M., Ota T., 1980b: An attempt to estimate stability of the oil layer in water/oil/water emulsions by means of viscometry, J. Colloid Interface Sci., 77, s. 564-565.
  • Matsumoto S., Kita Y, Yonezava D., 1976: An attempt in preparing water-in-oil-in-water multiple phase emulsions, J. Colloid Interface Sci., 57, s. 353-361.
  • Matsumoto S., Kohda M., 1980: The viscosity of W/O/W emulsions: an attempt to estimate the water permeation coefficient of the oil layer from the viscosity changes in diluted systems on ageing under osmotic pressure gradients, J. Colloid Interface Sci., 73, s. 13-20.
  • Matsumoto S., Kohda M., Murata S., 1977: Preparation of lipid vesicles on the basis of a technique for providing W/O/W emulsions, J. Colloid Interface Sci., 62, s. 149-157.
  • Matsumoto S., Ueda Y. Kita Y, Yonezawa D., 1978: Preparation of water-in-olive oil-in-water multiple phase emulsions in an eatable form, Agric. Biol. Chem., 42, s. 739-744.
  • Matulevicius E.S., Li N.N., 1975: Facilitated transport through liquid membranes, Sep. Purif. Meth., 4, s. 73-96.
  • May S.W., Li N.N., 1974: Encapsulation of enzymes in liquid membrane emulsions, Enzyme Eng., 2, s. 77-82.
  • Metzner A.B., 1965: Diffusive transport rates in structured media, Nature, 208, s. 267-268.
  • Midmore B.R., Herrington T.M., 1999: Silica stabilised multiple emulsions, Progr. Colloid Polym. Sci., 112, s. 115-120.
  • Mine Y., Shimizu M., Nakashima T., 1996: Preparation and stabilization of simple and multiple emulsions using a microporous glass membrane, Colloid Surf. B, 6, s. 261-268.
  • Miyazawa K., Yajima I., Kaneda I., Yanaki T., 2000: Preparation of a new sort capsule for cosmetics, J. Cosmet. Sci., 51, s. 239.
  • Morais J.M., Rocha-Filho P.A., Burgess D.J., 2009: Influence of phase inversion on the formation and stability of one-step multiple emulsions, Langmuir, 25, s. 7954-7961.
  • Muguet V., Seiller M., Barratt G., Clausse D., Marty J.R. Grossiord J.L., 1999: W/O/W Multiple emulsions submitted to a linear shear flow: correlation between fragmentation and release, J. Colloid Interface Sci., 218, s. 335-337.
  • Muguet V., Seiller M., Barratt G., Ozer O., Marty J.P., Grossiord J.L., 2001: Formulation of shear rate sensitive multiple emulsions, J. Controlled Release, 70, s. 37-49.
  • Mulley B.A., Marland J.S., 1970: Multiple drop formation in emulsions, J. Pharm. Pharmacol., 22, s. 243-345.
  • Mulqueen P., 2003: Recent advances in agrochemical formulation, Adv. Coll. Interface Sci., 106, s. 83-107.
  • Muro-Suñé N., Gani R., Bell G., Shirley I., 2005: Model-based computer-aided design for controlled release of pesticides, Comput. Chem. Eng., 30, s. 28-41.
  • Nagarajan R., 1986: Micellization, mixed micellization and solubilization: the role of interfacial interactions, Adv. Colloid Interface Sci., 26, s. 205-264.
  • Nakajima M., Nabetani H., Ichikawa S., Xu Q.Y., 2003: Functional emulsions, US Patent 6538019.
  • Nakashima T., Shimizu M., Kukizaki M., 2000: Particle control of emulsion by membrane emulsification and its applications, Adv. Drug Delivery Rev., 45, s. 47-56.
  • Nakhare S., Vyas S.P, 1995: Prolonged release multiple emulsion based system bearing Rifampicin: in vitro characterisation, Drug Dev. Ind. Pharm., 21, s. 869-878.
  • Nakhare S., Vyas S.P., 1996: Preparation and characterization of multiple emulsion based systems for controlled diclofenac sodium release, J. Microencapsulation, 13, s. 281-292.
  • Napper D.H., 1983: Polymeric stabilization of colloidal dispersions, Academic Press, London.
  • Nazir A., Schroën K., Boom R., 2010: Premix emulsification: A review, J. Membr. Sci., 362, s. 1-11.
  • Nisisako T., 2008: Microstructured devices for preparing controlled multiple emulsions, Chem. Eng. Technol., 31, 1091-1098.
  • Nisisako T., Okushima S., Torii T., 2005: Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system, Soft Matter, 1, s. 23-27.
  • O’Donnell P.B., McGinity J.W., 1996: Properties of multiphase microspheres of poly-(dl-lactic acid) or poly-(dl-lactic-co-glycolic acid) produced by mechanical agitation, sonication or potentiometric dispersion, J. Microencapsulation, 13, s. 667-677.
  • O’Donnell P.B., McGinity J.W., 1997: Preparation of microspheres by solvent evaporation technique, Adv. Drug Delivery Rev., 28, s. 25-42.
  • Oh Ch., Park J-H., Shin S-il., Oh S-G., 2004: O/W/O muitiple emulsions via one-step emulsification process, J. Dispersion Sci. Technol., 25, s. 53-62.
  • Oh J.K., Drumright R., Siegwart D.J., Matyjaszewski K., 2008: The development of microgels/nanogels for drug delivery applications, Prog. Polym. Sci., 33, s. 448-477.
  • Ohwaki T., Machida R., Ozawa H., Kawashima Y., Hino T., Hirofumi T., Niwa T., 1993: Improvement of the stability of water-in-oil-in-water multiple emulsions by the addition of surfactants in the internal aqueous phase of the emulsions, Int. J. Pharm., 93, s. 61-74.
  • Okada H., Ogawa Y., Yashiki T., 1987: Prolonged release microcapsule and its production, US Patent 4 652 441.
  • Okochi H., Nakano M., 2000: Preparation and evaluation of W/O/W type emulsions containing vancomycin, Adv. Drug Delivery Rev., 45, s. 5-26.
  • Okushima S., Nisisako T. Torii T., Higuchi T., 2004: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir, 20, s. 9905-9908.
  • Olivieri L., Seiller M., Bromberg L., Besnard M., Duong T.N.L., Grossiord J.L., 2003: Optimization and a thermally reversible W/O/W multiple emulsion for shear-induced drug release, J. Controlled Release, 88, s. 401-412.
  • Olivieri L., Seiller M., Bromberg L., Ron E., Couvreur P., Grossiord J.L., 2001: Study on the breakup under shear of new thermally reversible water-in-oil-in-water multiple emulsion, Pharm. Res., 18, s. 689-693.
  • Omotosho J.A., Florence A.T., Whateley T.L., 1990: Absorption and lymphatic uptake of 5-fluorouracial in the rat following oral administration of o/w/o multiple emulsions, Int. J. Pharm., 61, s. 51-56.
  • Omotosho J.A., Law T.L., Whateley T.L., Florence A.T., 1986: The stabilization of W/O/W emulsions by interaction between albumin and non-ionic surfactants, Colloids Surf, 20, s. 133-144.
  • Onuki Y., Morishita M., Takayama K., 2004: Formulation optimization of water-in-oil-water multiple emulsion for intestinal insulin delivery, J. Controlled Release, 97, s. 91-99.
  • Oza K.P., Frank S.G., 1986: Microcrystalline cellulose stabilized emulsions, J. Dispersion Sci. Technol., 1, s. 543-561.
  • Pal R., 1996: Multiple O/W/O emulsions, Langmuir, 12, s. 2220-2225.
  • Pal R., 2007: Rheology of double emulsions, J. Colloid Interface Sci., 307, s. 509-515.
  • Paliavicini M.G., 1984: Cytosine arabinoside: molecular pharmacokinetic considerations, Pharmacol. Ther., 25, s. 207-211.
  • Park Y., Skelland A.H.P., Forney L.J., Kim J-H., 2006: Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process, Water Research, 40, s. 1763-1772.
  • Paul D.R., McSpadden S.K., 1971: Diffusional release of a solute from a polymer matrix, J. Membr. Sci., 1, s. 33-48.
  • Pays K., Giermanska-Kahn J., Pouligny B., Bibette J., Leal-Calderon F., 2002: Double emulsions: How does release occur?, J. Controlled Release, 79, s. 193-205.
  • Pays K., Kahn J., Pouligny B., Bibette J., Leal-Calderon F., 2001: Coalescence in surfactant stabilized double emulsions, Langmuir, 17, s. 7758-7769.
  • Peppas N.A., 1985: Analysis of Fickian and non-Fickian drug release from polymers, Pharm. Adv. Helv., 60, s. 110-111.
  • Peppas N.A., Sahlin J.J., 1989: A simple equation for the description of solute release, III. Coupling of diffusion and relaxation, Int. J. Pharm., 51, s. 169-172.
  • Piemi M.P.Y., de Luca M., Grossiord J.L., Seiller M., Marty J-P., 1998: Transdermal delivery of glucose through hairless rat skin in vitro: effect of multiple and simple emulsions, Int. J. Pharm, 171, s. 207-215.
  • Raynal S., Grossiard J.L., Seiler M., Clausse D., 1993: A topical W/O/W multiple emulsion containing several active substances: formulation characterization and study of release, J. Controlled Release, 26, s. 129-140.
  • Reis M.T.A., Carvalho J.M.R., 2004: Modelling of zbc extraction from sulphate solutions with bis(2-ethylhexyl)thiophosphone acid by emulsion liquid membranes, J. Membr, Sci., 237, s. 97-107.
  • Reis M.T.A., de Freitas O.M.F., Ferreira L.M., Carvalho J.M.R., 2006: Extraction of 2-(4-hydroxyphenyl)ethanol from aqueous solution by emulsion liquid membranes, J. Membr. Sci., 269, s. 161-170.
  • Ritger P.L., Peppas N.A., 1987: A simple equation for description theoretical models of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Controlled Release, 5, s. 23-36.
  • Rojas E.C., Jennifer A.S., Vijay T.J., Papadopoulos K.D., 2008: Temperature-induced protein release from water-in-oil-in-water double emulsions, Langmuir, 24, s. 7154-7160.
  • Rojas E.C., Papadopoulos K.D., 2007: Induction of instability in water-in-oil-in-water double emulsions by freeze-thaw cycling, Langmuir, 23, s. 6911-6917.
  • Rondón-González M., Madariaga L.F., Sadtler V., Choplin L., Márquez L., Salager J-L., 2007: Emulsion catastrophic inversion from abnormal to normal morphology. 6. Effect of the phase viscosity on the inversion produced by continuous stirring, Ind. Eng. Chem. Res., 46, s. 3595-3601.
  • Rosano H.L., Gandolfo F.G., Hidrot J.D.P., 1998: Stability of W1/O/W2 multiple emulsions - Influence of ripening and interfacial interactions, Colloids Surf. A, 138, s. 109-121.
  • RosemanT.J., Higuchi W.I., 1970: Release of medroxyprogesterone acetate from a silicone polymer, J. Pharm. Sci., 59, s. 353-357.
  • Rothstein S.N., Federspiel W.J., Little S.R., 2009: A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices, Biomaterials, 30, s. 1657-1664.
  • Saifritz W., 1925: Studies in emulsions, J. Phys. Chem., 29, s. 738-749.
  • Sajjadi S., Jahanzad F., Yianneskis M., Brooks B.W., 2003: Phase inversion in abnormal O/W/O emulsions. 2. Effect of surfactant hydrophilic-lipophilic balance. Ind. Eng. Chem. Res., 42, s. 3571-3577.
  • Scherze I., Knöfel R., Muschiolik G., 2005: Automated image analysis as a control tool for multiple emulsions, Food Hydrocolloids, 19, s. 617-624.
  • Schmitt V., Leal-Calderon F., Bibette J., 2003: Preparation of monodisperse particles and emulsions by controlled shear. Top. Curr. Chem., 227, s. 195-215.
  • Sela Y., Magdassi S., Garti N., 1994: Polymeric surfactants based on polysiloxanes-graft-poly (oxyethylene) for stabilization of multiple emulsions, Colloids and Surf. A, 83, s. 143-150.
  • Shahiwala A., Vyas T.K., Mansoor A.M., 2007: Nanocarriers for systemic and mucosal vaccine delivery, Recent Pat. Drug Delivery Formulation, 1, s. 1-9.
  • Sheppard E., Tcheurekdjian N., 1977: Comments and on multiple-phase emulsions, J. Colloid Interface Sci., 62, s. 564-565.
  • Sherman P., 1968: Emulsion Science, Academic Press, London, s. 206-212.
  • Shum H-Ch., Bandyopadhyay A., Bose S., Weitz D.A., 2009: Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite, Chem. Mater., 21, s. 5548-5555.
  • Shum H-Ch., Kim J-W., Weitz D.A., 2008: Microfluidic fabrication of monodisperse biocompatible and biodegradable polymersomes with controlled permeability, J. Am. Chem Soc., 130, s. 9543-9549.
  • Siegel R.A., 2000: Theoretical analysis of inward hemispheric release above and below drug solubilay, J. Controlled Release, 69, s. 109-126.
  • Siepmann J., Ainaoui A., Vergnaud J.M., Bodmeier R., 1998: Calculation of the-dimensions of drug-polymer devices based on diffusion parameters, J. Pharm. Sci., 87, s. 827-832.
  • Siepmann J., Faisant N., Benoit J-P., 2002: A new mathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations, Pharm. Res., 19, s. 1885-1893.
  • Siepmann J., Göpferich A., 2001: Mathematical modeling of bioerodible, polymeric drug delivery systems, Adv. Drug Deliv. Rev., 48, s. 229-247.
  • Siepmann J., Kranz H., Bodmeier R., Peppas N.A., 1999: HPMC matrices for controlled drug delivery: A new model combining diffusion, swelling and dissolution mechanisms and predicting the release kinetics, Pharm. Res., 16, s. 1748-1756.
  • Siepmann J., Peppas N.A., 2000: Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the "Sequential Layer" Model), Pharm. Res., 17, s. 1290-1298.
  • Siepmann J., Peppas N.A., 2001: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC), Adv. Drug Deliv. Rev., 48, s. 139-157.
  • Siepmann J., Siepmann F., 2008: Mathematical modeling of drug delivery, Int. J. Pharm., 364, s. 328-343.
  • Skelland A.H.P., Meng M.M., 1996: A new solution to emulsion liquid membrane problems by non-Newtonian conversion, AIChE J., 42, s. 547-561.
  • Skelland A.H.P., Meng M.M., 1999: Non-Newtonian conversion solves problems of stability. permeability, and swelling in emulsion liquid membranes, J. Membr. Sci., 158, s. 1-15.
  • Stroeve P., Varanasi P.P., 1984: Extraction with double emulsions in a batch reactor: effect of continuous-phase resistance, AIChE J., 30, s. 1007-1009.
  • Sugiura S., Nakajima M., Yamamoto K., Iwamoto S., Oda T., Satake M., Seki M., 2004: Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification, J. Colloid Interface Sci., 270, s. 221-228.
  • Sugiura S., Nakajima M., Yamamoto K., Iwamoto S., Tatsuya O., Satake M., Seki M., 2003: Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification, J. Colloid Interface Sci., 270, s. 221-228.
  • Supsakulchai A., Ma G.H., Nagai N., Omi S., 2003: Preparation of uniform titanium dioxide (TiO2) polystyrenebased composite particles using the glass membrane emulsification process with a subsequent suspension polymerization, J. Microencapsulation, 20, s. 1-18.
  • Suzuki K., Shuto I., Hagura Y., 1996: Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions, Food Sci. Technol. Int., 2, s. 43-47.
  • Tadros T.F., 2005: Applied Surfactants: Principles and Applications, Wiley-VCH Verlag GmbH, Weinheim.
  • Tadros T.F., 2009: Emulsions sciences and technology: a general introduction. In: Emulsions sciences and technology, Wiley-VCH Verlag GmbH, Weinheim, s. 1-56.
  • Takahara J., Takayama K., Nagai T., 1997: Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations, J. Control. Release, 49, s. 11-20.
  • Taylor P.J., Miller C.L., Pollock T.M., Perkins F.T., Westwood M.A., 1969: Antibody response and reactions to aqueous influenza vaccine, simple emulsion vaccine and multiple emulsion vaccine. A report to the Medical Research Council Committee on influenza and other respiratory virus vaccines, J. Hyg. (Lond), 67, s. 485-490.
  • Tedajo G.M., Seiller M., Prognon P., Grossiord J.L., 2001: pH compartmented w/o/w multiple emulsion: a diffusion study, J. Controlled Release, 75, s. 45-53.
  • Teramoto M., Sakai T., Yanagawa K., Ohsuga M., Miyake Y., 1983: Modeling of the permeation of copper through liquid surfactant membranes, Sep. Sci. Technol., 18, s. 735-764.
  • Teramoto M., Takihana H., 1981: Extraction of amine by W/O/W emulsion system, J. Chem. Eng. Jpn.,14, s. 122-128.
  • Teramoto M., Takihana H., 1983: Extraction of phenol and cresol by liquid surfactant membrane, Sep. Sci. Technol., 18, s. 397-419.
  • Tongwen X., Binglin H., 1998: Mechanism of sustained drug release in diffusion-controlled polymer matrix-application of percolation theory, Int. J. Pharm., 170, s. 139-149.
  • Toorisaka E., Ono H., Arimori K., Kamiya N., Goto M., 2003: Hypoglycemic effect of surfactant-coated insulin solubilized in a novel solid-in-oil-in-water (S/O/W) emulsion, Int. J. Pharm., 252, s. 271-274.
  • Touati M., Benna-Zayani M., Kbir-Ariguib N., Trabelsi-Ayadi M., Grossiord J.L., Stambouli M., 2006: Extraction of cadmium from phosphoric acid media by di(2-ethylexyl) dithiophosphoric acid, 4th World Congress on Emulsions, Lyon.
  • Tyrode E., Allouche J., Choplin L., Salager J-L., 2005: Emulsion catastrophic inversion from abnormal to normal morphology. 4. Following the emulsion viscosity during three inversion protocols and extending the critical dispersed-phase concept, Ind. Eng. Chem. Res., 44, s. 67-74.
  • Uezu K., Irie S., Yoshimura O., Goto M., Nakashio F., 1997: Extraction of rare earth metals using liquid surfactant membranes in a Mixcoextractor, Chem. Eng. Res. Res., 75, s. 513-518.
  • Uno T., Yamaguchi T., Li X.K., Suzuki Y., Hashimoto H., Harada Y., Kimura T., Kazui T., 1997: The pharmacokinetics of water-in-oil-in-water-type multiple emulsion of a new tacrolimus formulation, Lipids, 32, s. 543-548.
  • Urbina-Villalba G., 2009: An algorithm for emulsion stability simulations: Account of flocculation, coalescence, surfactant adsorption and the process of Ostwald ripening, Int. J. Mol. Sci.,10, s.761-804.
  • Urbina-Villalba G., Garcia-Sucre M., 2000: Brownian dynamics simulation of emulsion stability, Langmuir, 16, s. 7975-7985.
  • Urbina-Villalba G., Lozsan A., Rahn K., Romero-Cano M., 2009: Calculation of the stability ratio of suspensions using emulsion stability simulations, Comput. Phys. Commun., 180, s. 2129-2139.
  • Ursica L., Tita D., Palici I., Tita B., Vlaia V., 2005: Particle size analysis of some water/oil/water multiple emulsions, J. Pharm. Biomed. Anal., 37, s. 931-936.
  • Utada A.S., Lorenceau E., Link D.R., Kaplan P. D., Stone H.A., Weitz D.A., 2005: Monodisperse double emulsions generated from a microcapillary device, Science, 308, s. 537-541.
  • van Aken G.A., Zoet F.D., 2000: Coalescence in highly concentrated coarse emulsions, Langmuir, 16, s.7131-7138.
  • van der Graaf S., Schroen C.G.P.H., Boom R.M., 2005: Preparation of double emulsions by membrane emulsification - A review, J. Membr. Sci., 251, s. 7-15.
  • Vasconcelos J.M.T., Carvalho J.M.R., 1993: Extraction of zinc by alkylthiophosphoric acids with emulsion liquid membranes, Chem. Eng. Technol., 16, s. 213-211.
  • Vasudevan T.V., Naser M.S., 2002: Some aspects of stability of multiple emulsions in personal cleansing systems, J. Colloid Interface Sci., 256, s. 208-215.
  • Vaziri A., Warburton B., 1994: Slow release of chloroquine phosphate from multiple taste-masked W/O/W multiple emulsions, J. Microencapsulation, 11, s. 641-648.
  • Vaziri A., Warburton B., 1995: Improved stability of w/o/w multiple emulsions by addition of hydrophilic colloid components in the aqueous phases, J. Microencapsulation, 12, s. 1-5.
  • Vergnaud J.M., 1993: Controlled drug release of oral dosage forms, Ellis Horwood, Chichester.
  • Villa C.H., Lawson L.B., Li Y., Papadopoulos K.D., 2003: Internal coalescence as a mechanism of instability in water-in-oil-in-water double-emulsion globules, Langmuir, 19, s. 244-249.
  • Villalobos R., Cordero S., Vidales A.M., Dominguez A., 2006: In silico study on the effects of matrix structure m controlled drug release, Phys. A, 363, s. 305-318.
  • Vlndisavljević G.T., Shimizu M., Nakashima T., 2004: Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification, J. Membr. Sci., 244, s. 97-106.
  • Vladisavljević G.T., Shimizu M., Nakashima T., 2006: Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: Influence of mean pore size, interfacial tension and continuous phase viscosity, J. Membr. Sci., 284, s. 373-383.
  • Vladisavljević G.T, Williams R.A., 2005: Recent developments in manufacturing emulsions and particulate products using membranes, Adv. Colloid Interface Sci., 113, s. 1-20.
  • Vlerken L.E., Amiji M.M., 2006: Multi-functional polymeric nanoparticles for tumour-targeted drug delivery, Expert Opin. Drug Deliv., s. 205-216.
  • Wada R., Hyon S-H., Ikada Y., 1995: Kinetics of diffusion-mediated drug release enhanced by matrix degradation, J. Controlled Release, 37, s. 151-160.
  • Washington C., 1996: Stability of lipid emulsions for drug delivery, Adv. Drug Delivery Rev., 20, s. 130-145.
  • Wei H., Zhong F., Ma J., Wang Z., 2008: Formula optimization of emulsifiers for preparation of multiple emulsions based on artificial neural networks, J. Dispersion Sci. Technol., 29, s. 319-326.
  • Weiss J., Coupland J.N., Brathwaite D., McClements D.J., 1997: Influence of molecular structure of hydrocarbon emulsion droplets on their solubilization in nonionic surfactant micelles, Colloids Surf., A, 121, s. 53-60.
  • Weiss J., Scherze I., Muschiolik G., 2005: Polysaccharide gel with multiple emulsion, Food Hydrocolloids, 19, s. 605-615.
  • Wen L., Papadopoulos K.D., 2000: Visualization of water transport in W1/O/W2 emulsions, Colloids Surf., A, 174, s. 159-167.
  • Whitehill D., 1980: Multiple emulsions and their future uses, Chemist and Druggist, 213, s. 130-135. Wilke C.R., Chang P.C., 1955: Correlation of diffusion coefficients in dilute solution, AICHE J., 1, s. 64-270.
  • Wroński S., Dłuska E., Hubacz R., 2003: Hydrodynamika i transport masy w reaktorze helikoidalnym. Reaktory wielofazowe i wielofunkcyjne dla podstawowych procesów chemicznych, biotechnologicznych i ochrony środowiska, ARGI, Wrocław, 1.2, s. 46-73.
  • Wroński S., Dłuska E., Hubacz R., Ciach T., 2005: Zgł. patentowe PL 375688. Sposób wytwarzania emulsji.
  • Wroński S., Dłuska E., Hubacz R., Molga E., 1999: Mass transfer in gas-liquid Couette-Taylor flow in membrane reactor, Chem. Eng. Sci., 54, s. 2963-2967.
  • Wroński S., Vladimirov V., Adach A., 2006: Modelling of mass transfer from multiple emulsions, Proc. of the 16th Int. Conf. on Proccss Engineering and Chemical Plant Design, Berlin, s. 75-83.
  • Wu X.Y., Zhou Y., 1997: Effect of interparticulate interaction on release kinetics of microsphere ensembles, J. Pharm. Sci., 87, s. 586-593.
  • Wu X.Y., Zhou Y., 1998: Finite element analysis of diffusioanal drug release from complex matrix system. II. Factors influencing release kinetics, J. Controlled Release, 51, s. 57-71.
  • Wu X.Y., Zhou Y., 1999: Studies of diffusional release of a dispersed solute from polymeric matrixes by finite element method, J. Pharm. Sci., 88, s. 1050-1057.
  • Yagodin G.Y., Lopukhin Y., Yurtov E., Guseva T., Sergiemko V., 1983, Extraction of cholesterol from blood using liquid membranes, Proc. Int. Solv. Extr. Conf., ISEC-83, 26 August - 2 September 1983, Denver, CO, s. 385-386.
  • Yamamoto M., Takada S., Ogawa Y., 1986: Method for producing microcapsules, European Patent 0 190 833.
  • Yan N., 1993: A mass transfer model for type-II-facilitated transport in liquid membranes, Chem. Eng. Sci., 48, s. 3835-3843.
  • Zambrano N., Tyrode E., Mira I., Márquez L., Rodriguez M-P., Salager J-L., 2003: Emulsion catastrophic inversion from abnormal to normal morphology. 1. Effect of the water-to-oil ratio rate of change on the dynamic inversion frontier, Ind. Eng. Chem. Res., 42. s. 50-56.
  • Zeng J., Tikare V., Jacob K.I., 2006: Numerical Study of a drug release profile in the transdermal drug delivery system, Langmuir, 22, s. 1333-1340.
  • Zheng S., Beissinger R.L., Wasan D.T., 1991: The stabilization of hemoglobin multiple emulsion for use as a red blood cell substitute, J. Colloid Interface Sci., 144, s. 72-85.
  • Zheng S., Zheng Y., Beissinger R.L., Wasan D.T., McCormick D.L., 1993: Hemoglobin multiple emulsion as an oxygen delivery system, Biochem. Biophys. Adv., 1158, s. 65-74.
  • Zhou Y., Wu X.Y., 1997: Finite element analysis of diffusional drug release from complex matrix systems. I. Complex geometrics and composite structures, J. Controlled Release, 49, s. 277-288.
  • Zhou Y., Wu X.Y., 2002: Theoretical analyses of dispersed-drug release from planar matrices with a boundary layer in a finite medium, J. Controlled Release, 84, s. 1-13.
  • Zhou Y., Wu X.Y., 2003: Modeling and analysis of dispersed-drug release into a finite medium from sphere ensembles with a boundary layer, J. Controlled Release, 90, s. 23-36.
  • Zygourakis K., 1990: Development and temporal evolution of erosion fronts in bioerodible controlled release devices, Chem. Eng. Sci., 45, s. 2359-2366.
  • Zygourakis K., Markenscoff P.A., 1996: Computer-aided design of bioerodible devices with optimal release characteristics: a cellular automata approach, Biomaterials, 17, s. 125-135.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0056-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.