PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On transport and deposition of aerosol particles in the human breathing system - selected problems

Autorzy
Identyfikatory
Warianty tytułu
PL
Transport i depozycja cząstek aerozolowych w układzie oddechowym człowieka - wybrane aspekty
Języki publikacji
EN
Abstrakty
EN
Transport and deposition of aerosol particles in the human breathing system is one of the most important processes, which may affect human health from hazardous and therapeutic point of view. A description of the process is extremely difficult due to its multi-parametrical character. The strict medical knowledge about anatomy, physiology and pathophysiology of breathing as well as the engineering knowledge about the fluid flow and aerosol mechanics are needed for comprehensive understanding of the process. Due to the lack of the precise data obtained from in vivo measurements performed on living patients, the in vitro and in silica modeling become an interesting alternative as a source of the information. The aim of this work is a critical analysis of existing techniques and approaches for modeling and an attempt to eliminate their major limitations. The additional goal is to examine the airflow aspects of the process neglected in a main stream of publications which are : unsteadiness of the airflow through breathing cycle, influence of the health conditions on the airflow and aerosol deposition, and influence of the aerosol aggregates geometry on their deposition in the breathing system. For this purpose, first the brief description of the breathing system is provided and the main geometrical models of the system are reviewed. Information about physiology and pathophysiology of the breathing system are presented for better understanding of the background of the process. In the next step, the fundamental approach to modeling of the airflow mechanics is presented, with special focus on the turbulence models. The results of the in silica simulation of the flow in selected sub-elements of the breathing system are presented and discussed. Then, the background of aerosol dynamics is reviewed. Existing models of aerosol aggregates dynamics are discussed. New model, based on the rigid body mechanics approach, was evolved by the author. Finally, the results of the in silica and in vitro modeling of the process of aerosol transport and deposition in selected sub-elements of the human breathing system proving the author's theses are presented and discussed.
PL
Transport i depozycja cząstek aerozolowych w układzie oddechowym człowieka są jednymi z ważniejszych zagadnień, mogącymi wpłynąć na stan zdrowia zarówno z punktu widzenia zagrożeń toksykologicznych, jak i możliwości terapeutycznych opisywanych procesów. Opis procesu jest niezmiernie trudny ze względu na jego wieloparametryczny charakter. Wiedza medyczna, obejmująca anatomię, fizjologię i patofizjologię oddychania, na równi z wiedzą z zakresu mechaniki płynów i mechaniki układów rozproszonych jest potrzebna do pełnego zrozumienia procesu. Ze względu na brak szczegółowych danych otrzymanych z badań przeprowadzonych na żywych pacjentach (in vivo), badania in vitro i in silica stają się obiecującymi równoważnymi źródłami informacji o procesie. Celem pracy jest krytyczna analiza istniejących technik i podejść do modelowania procesu. Dodatkowym celem pracy jest uwypuklenie pewnych aspektów procesowych dotyczących transportu i depozycji cząstek aerozolowych w drogach oddechowych człowieka, pomijanych w głównym nurcie publikacji naukowych na ten temat, tj.: zmienności przepływu powietrza podczas cyklu oddechowego, wpływu stanu zdrowia na przepływ aerozolu oraz wpływu geometrii agregatów aerozolowych na ich transport i depozycję w układzie oddechowym. W tym celu w pierwszych rozdziałach pracy przedstawiono krótki zbiorczy opis anatomii układu oddechowego wraz z opisem fizjologii i patofizjologii oddychania. W następnych rozdziałach omówiono podstawy teoretyczne modelowania przepływu powietrza w drogach oddechowych, ze szczególnym uwzględnieniem modeli burzliwości. Przedstawiono i przedyskutowano wyniki modelowania in silica przepływu w wybranych elementach układu oddechowego. Następnie zebrano i zaprezentowano podstawy mechaniki aerozoli. Przedstawiono przegląd istniejących modeli agregatów aerozolowych i zaprezentowano nowy model bazujący na mechanice bryły sztywnej, wyprowadzony przez autora rozprawy. W rozdziale ostatnim zebrano i przedstawiono wyniki modelowania in silica i in vitro procesu transportu i depozycji cząstek aerozolowych w układzie oddechowym człowieka.
Rocznik
Strony
3--215
Opis fizyczny
Bibliogr. 406 poz., tab., rys., wykr.
Twórcy
autor
  • Chair of Engineering of the Inegrated Processes
Bibliografia
  • References to chapter 1
  • 1. Bisgaard, H., O'Callaghan, C., Smaldone, G.C. Drug Delivery - to the Lung. New York: Marcel Dekker, Inc., 2002.
  • 2. Bechtold-Peters, K., Luessen, H. Pulmunary Drug Delivery. Aulendorf (Germany): Editio Cantor Verlag, 2007.
  • 3. Gradoń, L., Marijnissen, J.C.M. Optimization of Aerosol Drug Delivery. London: Kluwer Academic Publisher, 2003.
  • 4. Kunzli, N., et al. Public-health impact of outdoor and traffic - related air pollution: a European assessment. Lancet. 2000, Vol. 256, pp. 759-801.
  • 5. Brunekreef, B., et al. Air pollution from true traffic and lung function in children living near motorways. Epidemiology. 1997, Vol. 8, pp. 298-303.
  • References to chapter 2
  • 1. West, J.B. Respiratory Physiology The Essentials. Philadelphia: Wolters Kluwer Lippincott Williams & Wilkins, 2008.
  • 2. Macklem, P.T., Proctor, D.F., Hogg, J.C. The stability of perypherial airways. Respir. Physiol. 1970, Vol. 8, pp. 191-203.
  • 3. Yoneda, K. Pilocarpine stimulation of the bronchiolar Clara cell secretion. Lab. Inest. 1977, Vol. 37, pp. 447-452.
  • 4. Cumming, G., et al. Biological branching systems with special reference to the lung airways. Bull. Physiopathol. Resp. 1971, Vol. 7, pp. 31-40.
  • 5. Horsfield, K., Cumming, G. Morphology of the bronchial tree in man. J. Appl. Physiol. 1968, Vol. 24, pp. 373-383.
  • 6. Strahler, A.N. Equilibrium theory of erosional slopes approached by frequency distribution analysis. Am. J. Sci, 1950, Vol. 248, p. 673.
  • 7. Weibel, E.R. Morphometry of the human lung. Heidelberg: Springer-Verlag, 1963.
  • 8. Fraser, R.S. The normal chest. [book auth.] R.G. Fraser, et al. Diagnosis of diseases of the chest, 3rd ed. Philadelphia: WB Saunders, 1988, pp. 5-16.
  • 9. Cosio, M.G., Saetta, M. Normal Airway Structure. [book auth.] P.J. Barnes, et al. Asthma. Philadelphia: Lippincott-Raven Publishers, 1997, pp. 171-183.
  • 10. Monkhouse, W.S., Whimster, W.F. An account of the longitudinal mucosal corrugations of the human tracheo-bronchial tree, with observations on those of some animals. J. Anat. 1976, Vol. 122, pp. 681-695.
  • 11. Vanpeperstraete, F. The cartilaginous skeleton of the bronchial tree. Adv. Anat. Embryol. Cell Biol. 1974, Vol. 48, pp. 1-80.
  • 12. von Hayek, H. The human lung. New York: Hafner Publishing Co., 1960.
  • 13. Krahl, V.E. Anatomy of the manimalian lung. [book auth.] W.O. Fenn and H. Rahn. Handbook of physiology, section 3, respiration, vol. 1. Washington DC: American Physiological Society, 1964, pp. 213-284.
  • 14. Starcher, B.C. Elastin and the lung. Review article. 1986, Thorax, Vol. 41, pp. 577-585.
  • 15. Hakansson, C.H., et al. Functional anatomy of the musculature of the trachea. Acta Morphol. Neerl-Scand 1976, Vol. 14, pp. 291-297.
  • 16. Wailoo, M., Emery, J.L. Structure of the membranous trachea in children. Acta Anat. 1980, Vol. 106, pp. 254-261.
  • 17. Matsuda, K., Thurlbeck, W.M. A morphometric study of bronchial and bronchiolar walls in children. Am. Rev. Respir. Dis. 1972, Vol. 105, pp. 908-913.
  • 18. Cole, P. Upper respiratory airflow. In: Proctor DF, Andersen I, eds. The nose upper airways physiology and the atmospheric environment. Amsterdam: Elsevier Biomedical Press, 1982.
  • 19. Proctor, D.F. Adams, G.K. Physiology and pharmacology of nasal function and mucus section. Pharmacol. Therapy. 1976, 2B, p. 492.
  • 20. Becker, W., Naumann, H.H., Pfaltz, C.R. Ear, nose, and throat diseases: a pocket reference. New York: Thieme Medical Publishers, Inc., 1994.
  • 21. Graney, D.O., Baker, S.R. Nose: anatomy. [book auth.] C.W. Cummings, et al. Otolaryngology-head and neck surgery. St. Louis: Mosby - Year Book, 1993, p. 631.
  • 22. Eccles, R. Nasal airways, [book auth.] W.W. Busse and S.T. Holgate. Asthma and rhinitis. Cambridge; Blackwell Scientific Publication, 1995, p. 73.
  • 23. Langes, J. Clinical anatomy of the nose, nasal cavity and paranasal sinuses. New York: Thime Medical Publishers, 1989.
  • 24. Rhys Evans, P.H. Anatomy of the nose and paranasal sinuses. [book auth.] A.G. Kerr, J. Groves and D. Wright. Scott-Brown's otolaryngology. London: Butterworth & Co, 1987, p. 162.
  • 25. Mehta, H., Busse, W.W. Upper Airways, [book auth.] P.J. Barnes, et al. Asthma. Philadelphia. Lippincott-Raven Publishers, 1997, p. 157.
  • 26. Drake-Lee, A.B, Physiology of the nose and paranasal sinuses. [book auth.] A.G. Kerr, J. Groves and D. Wright. Scott-Brown's otolaryngology. London: Butterworth & Co, 1987, p. 162.
  • 27. Geurkink, N. Nasal anatomy, physiology, and function. J. Allergy Clin. Immunol. 1983, Vol. 72, pp. 123-128.
  • 28. Kelly, J.T., Prasad, A.K., Wexler, A.S. Detailed flow patterns in the nasal cavity. J. Appl. Physiol. 2000, Vol. 89, pp. 323-337.
  • 29. Proctor, D.F. The mucociliary system, [book auth.] D.F. Proctor and I.B. Andersen. The nose, upper airway physiology and the atmospheric environment. Amsterdam: Elsevier Biomedical Press, 1982, p. 245.
  • 30. Leopold, D.A. The relationship between nasal anatomy and human olfaciion. Laryngoscope. 1988, Vol. 30, p. 1232.
  • 31. McBurney, D., Gent, J. On the nature of taste qualities. Psychol. Bull. 1979, Vol. 98, p. 297.
  • References to chapter 3
  • 1. Rohrer, F. Der stromungswiderstand in den menschtichen atemwegem. Pflugers Arch. Ges. Physiol., 1915, Vol. 162, pp. 225-159.
  • 2. Weibel, E.R. Morphometry of the human lung. New York: Academic Press, 1963.
  • 3. Horsfield, K., Cumming, G. Morphology of the bronchial tree in man. 1968, J. Appl. Physiol., Vol. 24, pp. 373-383.
  • 4. Cumming, G., et al. Biological branching systems with special references to the lung airways. 1971, Bull. Physiopathol. Resp., Vol. 7, pp. 31-40.
  • 5. Hansen, J.E., Ampaya, E.P. Human air space shapes, size, areas, volumes. 1975, J. Appl. Physiol., Vol. 38(6), pp. 990-995.
  • 6. Pattle, R.E. Inhaled particles and vapours (Edited by Davies, N.C.). Oxford: Pergamon Press, 1961.
  • 7. Heyder, J., Rudolf, G. Deposition of aerosol particle in the human nose. 1977, Inhaled Particles, Vol. 4, pp. 107-126.
  • 8. Stahlhofen, W., Rudolf, G., James, A.C. Intercomparison of experimental regional aerosol deposition data. 1989, J. Aerosol Med.,Vol. 2, pp. 285-308.
  • 9. Swift, D.L., Proctor, D.F. Access of air to the respiratory tract. [book auth.] J.D. Braian, D.F. Proctor and L.M. Reid. Respiratory Defense Mechanisms: Part I. New York: Dekker, 1977, pp. 63-93.
  • 10. Girgadin, M., Bilgen, E., Arbour, P. Experimental study of velocity fields in a human nasal fossa by laser anemometry. Ann. Otol. Rhinol Laryngol. 1983, Vol. 92, pp. 231-236.
  • 11. Itoh, H., et al. Mechanisms of aerosol deposition in a nasal model. Journal of Aerosol Science, 1985, Vol. 16, pp. 529-534.
  • 12. Hornung, D.E., et al. Airflow patterns in a human nasal model. Arch. Otolaryngol. Head. Neck. Surg., 1987, Vol. 113, pp. 169-172.
  • 13. Strong, J.C., Swift, D.L. Deposition of ultrafine particles in a human nasal cast. In Aerosols: Their generation. behavior and application. UK: Loughborough: s.n., 1987.
  • 14. Gradon, L., Podgorski, A. Experimental study on fibrous particle deposition in the human nasal cast. Journal of Aerosol Science, 1992, Vol. 23(1), pp. 469-472.
  • 15. Moskal, A., et al. Deposition of fractal-like aerosol aggregates in a model of human nasal cavity. Inhalation Toxicology, 2006, Vol. 18, pp. 725-731.
  • 16. Swift, D.L. Inspiratory interial deposition of aerosol in human nasal casts: Implication for the proposed NCRP lung model. Radiation Protection Dosimetry, 1991, Vol. 38(1/3), pp. 29-34.
  • 17. Guilmette, R.A., Gagliano, T. Construction of a model of human nasal airway using in vivo morphometric. Annals of Occupational Hygine, 1994, Vol. 38, pp. 69-75.
  • 18. Cheng, Y.S., et al. Deposition of ultrafine particles in the nasal and tracheobronchial airways. Journal of Aerosol Science, 1998, Vol. 29(1), pp. 941-942.
  • 19. Haussermann, S., et al. The influence of breathing patterns on particle deposition in nasal replicate cast. Journal of Aerosol Science, 2002, Vol 33, pp. 923-933.
  • 20. Schreck, S., et al. Correlations between flow resistance and geometry in a model of the human nose, J. Appl. Physiol., 1993, Vol. 75, pp. 1767-1775.
  • 21. Hahn, I., Scherer, P.W., Mozell, M.M. Velocity profiles measured for airflow through a large-scale model of human nasal cavity. J. Appl. Physiol., 1993, Vol. 75, pp. 2273-2287.
  • 22. Kelly, J.T., Prasad. A.K., Wexler. A.S. Detailed flow patterns in the nasal cavity. J. Appl. Physiol., 2000, Vol. 89, pp. 323-337.
  • 23. Tu, J., et al. CFD Simulation of Air/Particle Flow in the Human Nasal Cavity. Yokohama: s.n., 2004. 5th International Conference on Multiphase Flow, ICMF'04, p. Paper No. 209.
  • 24. Kim, S.K., Chung, S.K. An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV. Measurements Science and Technology, 2004, Vol. 14, pp. 1090-1096.
  • 25.Churchill, S.E., et al. Morphological variation and airflow dynamics in the human nose. American Journal of Human Biology, 2004, Vol. 16(6), pp. 625-638.
  • 26. Horchler, I., Meinke, M., Schroder, W. Numerical simulation of the flow field in a model of the nasal cavity. Computers and Fluids, 2003, Vol. pp. 32, 39-45.
  • 27. Zhao, K., et al. Effect of anatomy on human nasal airflow and odorant transport patterns implications for olfaction. Chemical Senses, 2004, Vol. 29(5), pp. 365-379.
  • 28. Weinhold, I., Mlynski, G. Numerical simulation of airflow in the human nose. European Archives of Otorinolaryngology, 2004, Vol. 261, pp. 452-455.
  • 29. Shi, H., Kleinstreuer, C., Zhang, Z. Laminar airflow and nanoparticle or vapor deposition in human nasal cavity model. ASME Journal of Biomechanical Engineering, 2006, Vol. 128, pp. 697-706.
  • 30. Shi, H., Kleinstreuer, C., Zhang, Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. Journal of Aerosol Science, 2007, Vol. 38, pp. 398-419.
  • 31. Liu, Y., et al. Numerical simulation of aerosol deposition in 3-D human nosal cavity using RANS, RANS/EIM, and LES. Journal of Aerosol Science, 2007, Vol. 38, pp. 683-700.
  • 32. Lippmann, M., Albert, R.E. The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract. Am. Ind. Hyg. Assoc. J., 1969, Vol. 30, pp. 257-275.
  • 33. Lippmann, M. Regional deposition of particles in the human respiratory tract, [book auth.] D.H.K. Lee and et al. Handbook of Physiology - Reaction to Environmental Agents. Bethesda: Am. Physiol. Soc., 1977, Vol. 213-232.
  • 34. Foord, N., Black, A., Walsh, M. Regional deposition of 2.5-7.5 μm diameter inhaled particles in healthy male non-smokers. J. Aerosol Sci., 1978, Vol. 9, pp. 343-357.
  • 35. Chan, T.L., Lippmann, M. Experimental measurement and empirical modeling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J., 1980, Vol. 41, pp. 399-409.
  • 36. Emmett, P.C., Altken, R.J., Hannan, W.J. Measurements of the total and regional deposition of inhaled particles in the human respiratory tract. J. Aerosol Sci., 1982, Vol. 13, pp. 549-560.
  • 37. Stahlhofen, W., Gebhart, J., Hayder, J. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract. Am. Ind. Hyg. Assoc. J.,1980, Vol. 41, pp. 385-398a.
  • 38. Stahlhofen, W., Gebhart, J., Heyder, J. Biological variability of regional deposition of aerosol particles in the human respiratory tract. Am. Ind. Hyg. Assoc. J., 1981, Vol. 42, pp. 348-352.
  • 39. Stahlhofen, W., et al. New regional deposition data of human respiratory tract. 1983.
  • 40. Swift, L.D, Apparatus and method for measuring regional distribution of therapeutic aerosols and comparing delivery systems. Journal of Aerosol Science, 1992, Vol. 23(S1), pp. 495-498.
  • 41. Cheng, K.H., et al. An experimental method for measuring aerosol deposition efficiency in the human oral airway. Am. Ind. Hyg. Assoc. J., 1997, Vol. 58, pp. 207-213.
  • 42. Cheng, K.H., et al. Measurements of airway dimensions and calculation of mass transfer characteristics of human oral passage. Journal of Biomedical Engineering, 1997, Vol. 119, pp. 207-213.
  • 43. Velasquez, D.J., Gabrio, M. Metered dose inhaler aerosol deposition in a model of the human respiratory system and comparison with clinical deposition studies. J. Aerosol Med., 1998, Vol. 11, pp. 23-28.
  • 44. Cheng, Y.S., Zhou, Y., Chen, T.B. Particle deposition in a cast of human oral airways. Aerosol Science and Technology, 1999, Vol. 31, pp. 286-300.
  • 45. Lin, C.T., et al. Mouthpiece diameter affects deposition efficiency in cast models of the human oral airways. Journal of Aerosol Medicine, 2001, Vol. 14(3), pp. 335-341.
  • 46. Zhang, Z., Martonen, T. Comparison of theoretical and experimental particle deposition data with human airway casts. Cell Biochem. Biophys., 1995, Vol. 27, pp. 97-108.
  • 47. Martonen, T.B., Zhang, Z., Yu, G. et al. Three dimensional computer modeling of the human upper respiratory tract. Cell Biochem. Biophys., 2002, Vol. 35, pp. 255-261.
  • 48. Sosnowski, T.R., Moskal, A., Gradoń, L. Dynamics of Oropharyngeal Aerosol Transport and Deposition With the Realistic Flow Pattern. Inhalation Toxicology, 2006, Vol. 18, pp. 773-780.
  • 49. Li, W.I., et al. Aerodynamics and aerosol particle deaggregation phenomena in model oral-pharyngeal cavities. Journal of Aerosol Science, 1996, Vol. 8, pp. 1269-1286.
  • 50. Niven, R.W., et al. Developement and use of an in vitro system to evaluate inhaler devices. Int. J. Pharm., 1994, Vol. 101, pp. 81-87.
  • 51. Heenan, A.F., et al. An investigation of the relationship between the flow field and regional deposition in realistic extra-thoracic airways. Journal of Aerosol Science, 2004, Vol. 35, pp. 1013-1023.
  • 52. McRobbie, D., Pritchard, S., Quest, R.A. Studies of the Human Oropharyngeal Airspaces using Magnetic Resonance Imagining I. Validation of a three-Dimensional MRI Method for Producing Ex Vivo Virtual and Physical Casts of the Oropharyngeal Airways During Inspiration. Journal of Aerosol Medicine, 2003, Vol. 4, pp. 401-4115.
  • 53. Stapleton, K.W., et al. On the suitability of k - ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. Journal of Aerosol Science, 2000, Vol. 6, pp. 739-749.
  • 54. Scherer, R.C., Titze, I.R. Pressure-flow relationships in a model of the laryngeal airway with a diverging glottis. [book auth.] D.M. Bless and J.H. Abbs. Vocal Fold Physiology: Contemporary Research and Clinical Issues. San Diego: College Hill Press, 1983, pp. 179-193.
  • 55. Lowe, A.A., Fleethman, J.A. Two- and three-dimensional analyses of tongue. airway, and soft palate size. [book auth.] M.L. Norton and A.C.D. Brown. Alias of the Difficult Airway. s.l.: Mosby Year Book, 1991, pp. 74-82.
  • 56. Matlda, E.A., et al. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. Journal of Aerosol Science, 2004, Vol. 35, pp. 1-19.
  • 57. Grgic, B., Finlay, W.H., Heenan, A. Regional aerosol deposition and flow measurements in an idealized mouth an throat. Journal of Aerosol Science, 2005, Vol. 35, pp. 21-32.
  • 58. Jin, H.H., Fan, J.R., Cen, K.F. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. Journal of Aerosol Science, 2007, Vol. 38, pp. 257-268.
  • 59. Zhang, Z., Kleinstreuer, C., Kim, C.S. Micro-particle transport and deposition in human oral airway model. Journal of Aerosol Science, 2002, Vol. 33, pp. 1635-1652.
  • 60. Brouns, M., et al. Tracheal stenosis: a flow dynamics study. J. Appl. Physiol., 2007, Vol. 102, pp. 1178-1184.
  • 61. Jayaraju, S.T., et al. Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat. 2008, Journal of Aerosol Science, 2008, Vol. 39, pp. 862-875.
  • 62. Xi, J., Longest, P.W. Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of Oral Airways. Annals of Biomedical Engineering, 2007, Vol. 35, pp. 560-581.
  • 63. Zhang, V., Finlay, W.H., Matida, E.A. Particle deposition measurements and numerical simulation in a highly idealized mouth-throat. Journal of Aerosol Science, 2004, Vol. 35, pp. 789-803.
  • 64. Moskal, A., Sosnowski, T.R., Gradon, L. Modeling of Aerosol Particle Deposition in the Idealized Throat Model for Unsteady Inspiratory Flow Conditions. Scottsdale: Respiratory Drug Delivery, 2008. Biological, Pharmaceutical, Clinical, and Regulatory Issues Relating to Optimized Drug Delivery by Aerosol. pp. 973-976.
  • 65. Longest, P.W., et al. Developing a Better Understanding of Spray System Design Using a Combination of CFD Modeling and Experiment. Scottsdale: Respiratory Drug Delivery, 2008, Biological, Pharmaceutical. Clinical, and Regulatory Issues Relating to Optimized Drug Delivery by Aerosol., pp. 151-161.
  • 66. Landahl, H.D., Herrmann, R.G. Sampling of liquid aerosols by wires, cylinders and slides and the efficiency of impaction of the droplets. Journal of Colloid Science, 1949, Vol. 4, pp. 103-136.
  • 67. Pui, D.Y.H., Novas, F.R., Liu, B.Y.H. Experimental study of particle deposition in bends of circular cross section. Aerosol Science and Technology, 1987, Vol. 7, pp. 301-315.
  • 68. McFarland, A.R., et al. Aerosol deposition in bends with turbulent flow. Environmental Science and Technology, 1997, Vol. 37, pp. 3371-3377.
  • 69. Breuer, M., Baytekin, H.T., Matida, E.A. Prediction of aerosol deposition in 90 bends using LES and an efficient Lagrangian tracking method. Journal of Aerosol Science, 2006, Vol. 37, pp. 1407-1428.
  • 70. Moskal, A., Sosnowski, T.R., Gradon, L. Inhalation and Deposition of Nanoparticles. Fundamentals, Phenomenology and Practical Aspects. [book auth.] L. Gradon and J. Marinisen Environmental and Medical aerosol nanoparticles and their interaction with the respiratory system. 2008.
  • 71. Fuller, G.C., Harris, E. A., Withy, S.J. Gas-mixing efficiency in a mathematical model of the lung. Clin. Phys. Physiol. Meas., 1990, Vol. 11(2), pp. 149-158.
  • 72. Johnston, J.R., Schroter, R.C. Deposition of particles in model airways. 1979, J. Appl. Physiol., 1979, Vol. 47, pp. 947-953.
  • 73. Kim, C.S., Iglesias, A.J. Deposition of inhaled particles in bifurcating airways models: I. Inspiraiory deposition. Journal of Aerosol Medicine, 1989, Vol. 2, pp. 1-14.
  • 74. Kim, C.S., Garcia, L. Particle deposition in cyclic bifurcating tube flow. Aerosol Science and Technology, 1991, Vol. 14, pp. 302-315.
  • 75. Kim, C.S., et al. Particle deposition in bifurcating airways models with varying airway geometry. Journal of Aerosol Science, 1994, Vol. 25, pp. 567-581.
  • 76. Kim, C.S., Fisher, D.M. Deposition of aerosol particles in successively bifurcating airways models. Aerosol Science and Technology, 1999, Vol. 31, pp. 198-220.
  • 77. Schorter, R.C., Sudlow, M.F. Flow patterns in models of the human bronchial airways. Respir. Physiol., 1969, Vol. 7, pp. 341-353.
  • 78. Snyder, B., Olson, D.E. Flow development in model airway bronchus. J. Fluid Mech., 1989, Vol. 207, pp. 379-392.
  • 79. Gradoń, L., Orlicki, D. Deposition of inhaled aerosol particles in a generation of the tracheobronchial tree. J. Aerosol Sci., 1990, Vol. 1, pp. 3-19.
  • 80. Moskal, A., Gradon, L. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. Journal of Aerosol Science, 2002, Vol. 33, pp. 1525-1539.
  • 81. Zhang, Z., Kleinstreuer, C., Kim, C.S. Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. Journal of Aerosol Science, 2002, Vol. 33, pp. 257-281.
  • 82. Hofmann, W., Balazhazy, I., Heistracher, T. The relationship between secondary flows and particle deposition pattern in airway bifurcation. Journal of Aerosol Science and Technology, 2002, Vol. 35, pp. 958-968.
  • 83. Vinchurkar, S., Longest, P.W. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Computers and Fluids, 2008, Vol. 37, pp. 317-331.
  • 84. Comer, J.K., Kleinstreuer, C., Zhang, Z. Flow structures and particle deposition patterns in double-bifurcation airway models. Part I. Air flow fields. Journal Fluid Mechanicsv 2001, Vol. 435, pp. 22-54.
  • 85. Longest, P.W., Vinchurkar, S., Martonen, T. Transport and deposition of respiratory aerosols in model of childhood asthma. Journal of Aerosol Science, 2006, Vol. 37, pp. 1234-1257.
  • 86. Longest, P.W., Xi, J. Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. Journal of Aerosol Science, 2007, Vol. 38, pp. 111-130.
  • 87. Longest, P.W., Vinchurkar, S. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data, Medical Engineering & Physics, 2007, Vol. 29, pp. 350-366.
  • 88. Hegedus, Cs.J., Balashazy, I., Farkas, A. Detailed mathematical description of the geometry of airway bifurcations. Respiratory Physiology & Neurobiology, 2004, Vol. 141, pp. 99-114.
  • 89. Weibel, E.R., Sapoval, B., Filoche, M. Design of peripheral airways for efficient gas exchange Respiratory Physiology & Neurobiology, 2005, Vol. 148, pp. 3-21.
  • 90. Darquenne, C., Paiva, M. One-dimensional simulations of aerosol transport and deposition in the human lung. J. Appl. Physiol., 1994, Vol. 77(6), pp. 2889-2898.
  • 91. Haber, S., Tsuda, A. The effect of flow generated by rhythmically expanding pulmonary acinus on aerosol dynamics. Journal of Aerosol Science, 1998, Vol. 29(3), pp. 309-322.
  • 92. Gil, J., et al. Alveolar volume-surface areo relation in air - and saline-filled lungs fixed by vascular perfusion. J. Appl. Physiol, 1979, Vol. 45(5), pp. 990-1001.
  • 93. Levitzky, M.G. Pulmonary physiology. New York: McGraw-Hill, 1991.
  • 94. Weibel, E.R. Functional morphology of lung parenchyma. [book auth.] A. Fishman, et al. Handbook of physiology, III, mechanics of breathing. part I. Bethesda: MD: American Physiological Society, 1986, pp. 89-111.
  • 95. Dailey, H.L., Ghadiali, S.N. Fluid-structure analysis of microparticle transport in deformable pulmunary alveoli. Journal of Aerosol Science, 2007, Vol. 38, pp. 269-288.
  • 96. Sosnowski. T.R., Moskal, A., Gradoń, L. Mechanizm of Aerosol Particle Deposition in the Oro-Pharynx Under Non-Steady Airflow. Ann. Occup. Hyg., 2007, Vol. 1, pp. 19-25.
  • 97. Pharmacopeia, United States. USP (United States Pharmacopeia). 1995.
  • References to chapter 4
  • 1. West, J.B, Respiratory Physiology. The essentials. Baltimore; Wolter Kluwer. Lippincott Williams & Wilkins, 2008.
  • 2. Fung, Y.C. Binmechanics. Mechanical properties of living tissues. New York: Springer, 2004.
  • 3. Glaab, T., et al. Invasive and noninvasive methods for studying pulmonary function in mice. Respiratory Research, 2007, Vol. 8, p. 63.
  • 4. West, J.B, Pulmonary Pathophysiology. The essentials. 7th edition. New York, Wolter Kluwer, Lippincott Williams & Wilkins, 2005.
  • References to chapter 5
  • 1. Tannehil, J.C., Anderson, D.A., Pletcher, R.H. Computational Fluid Mechanics and Heat Transfer. Washington: Taylor & Francis, 1997.
  • 2. Finlay, W.H. The Mechanics of Inhaled Pharmaceutical Aerosols. An Introduction. s.l.: Academic Press, 2001.
  • 3. Panton, R.L. Incompressible Flow. s.l.: Jon Wiley & Sons, 1996.
  • 4. Womersley, J.R. Method for the calculation of velocity rate of flow and viscous drag in arleries when the pressure gradient is known. 1955, J. Physiol., Vol. 127, pp. 553-563.
  • 5. Zhang, Z., Kleinstreuer, C. Transient airflow structures and particle transport in a sequentially branching lung airway model. 2002, Physics of fluids, Vol. 14(2), pp. 862-880.
  • 6. Finlay, W.H., et al. Lung delivery of aerosolized Dextran. 2000, Am. J. Resp. Crit. Care. Med., Vol. 161, pp. 91-97.
  • 7. Moskal, A., Gradoń, L. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. 2002, J. of Aerosol Sci., Vol. 33, pp. 1525-1539.
  • 8. Pedley, T.J. Piscous boundary layers in reversing flow. 1976, J. Fluid Mech., Vol. 74, pp. 59-79.
  • 9. Sosnowski, T.R., Moskal, A.,Gradoń, L. Dynamics of Oropharyngeal Aerosol Transport and Deposition With the Realistic Flow Pattern. 2006, Inhalation Toxicology, Vol. 18, pp. 773-780.
  • 10. van Driest, E.R. On Turbulent Flow near a Wall. 1956, J. Aeronaut. Sci., Vol. 23, pp. 1007-1011.
  • 11. Pletcher, R.H. Prediction of Incompressible Turbulent Separating Flow. 1978, J. Fluids Eng., Vol. 100, pp. 427-433.
  • 12. Nee, V.W., Kowasznay, L.S.G. The Calculation of the Incompressible Turbulent Boundary Layer by a Simple Theory. 1968, Phys. Fluids, Vol. 12, pp. 473-484.
  • 13. Baldwin, B.S., Barth, T.J. One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows. s.l.: NASA, 1990, TM-10284S.
  • 14. Spalart, P.R., Allmaras, S.R. A One-Equation Turbulence Model for Aerodynamic Flows. Reno, NEWADA: s.n., 1992. AIAA. pp. 92-0439.
  • 15. Harlow, F.H., Nakayama, P.I. Transport of Turbulence Energy Decay rate. Los Alamos: s.n., 1968. Los Alamos Scientific Laboratory Report LA-3854.
  • 16. Jones, W.P., Launder, B.E. The Prediction of Laminarization with a Two-Equation Model of Turbulence. 1972, Int. J. Heat Mass Transfer, Vol. 15, pp. 301-314.
  • 17. Launder, B.E., Sharma, B.I. Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow near a Spinnind Disc. 1974, Lett. Heat Mass Transfer, Vol. 1, pp. 131-138.
  • 18. Lam, C.K.G., Bremhorst, K.A. Modified Form of k-eps Model for Predicting Wall Turbulence. 1981, J. Fluids Eng., Vol. 103, pp. 456-460.
  • 19. Chien, K.Y. Predictions of Channel and Boundary-Layer Flows with a Law-Reynolds-Number Turbulence Model. 1982, AIAA J., Vol. 20, pp. 33-38.
  • 20. Wilcox, D.C. Turbulence modelling for CFD. California: DCW Industries, 1993.
  • 21. Wilcox, D.C. Reassesment of the Scale Determining Equation for Advanced Turbulence Models. 1988, AIAA J., Vol. 26, pp. 1299-1310.
  • 22. Li, Z., Kleinstreuer, C., Zhang, Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. 2007, J. of Aerosol Sci., Vol. 38, pp. 625-644.
  • 23. Ball, C.C., Uddin, M., Pollard, A. High resolution turbulence modelling of airflow in an idealised human extra-thoracic airway. 2008, Computers & Fluids, Vol. 37, pp. 943-964.
  • 24. Leonard, A. Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows. 1974, Advances in Geophysics, Vol. 18A, pp. 237-248.
  • 25. Aldama, A.A. Filtering Techniques for Turbulent Flow Simulation. New York: Springer-Verlag, 1990.
  • 26. Smagorinski, J. General Circulation Experiments with the Primitive Equations, I: The Basic Experiment. 1963, Mon. Weather Rev., Vol. 91, pp. 99-164.
  • 27. Germano, M., et al. A dynamic subgridscale eddy viscosity model. 1991, Physics of Fluids A. Vol. 3(7), pp. 1760-1765.
  • 28. Lilly, D.K. A proposed modification of the Germano subgrid scale closure method. 1992, Physics of Fluids A, Vol. 4(3), pp. 633-635.
  • 29. Moin, P., Kim, J. Numerical Investigation of Turbulent Channel Flow. 1982, J. Fluid Mech., Vol. 118, pp. 341-377.
  • 30. Breuer, M., Baytekin, H.T., Matida, E.A. Prediction of aerosol deposition in 90 deg bends using LES and an efficient Lagrangian tracking method. 2006, Journal of Aerosol Science, Vol. 37, pp. 1407-1428.
  • 31. Lilly, D.K. The representation of small-scale turbulence in numerical simulation experiments. s.l.: H.H. Goldstine (Ed.), 1967. Proceedings of the IBM Scientific Computing Symposium on Enviromental Sciences (pp. 195-210) IBM Forum no. 320-1951.
  • 32. Breuer, M. Large-eddy simulation of the sub-critical flow past a circular cylinder flow. 1998, International Journal for Numerical Methods in Fluids, Vol. 28, pp. 1281-1302.
  • 33. Jin, H.H., et al. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. 2007, Journal of Aerosol Science, Vol. 38, pp. 257-268.
  • 34. Moskal, A., Sosnowski, T.R., Gradoń, L. Modeling of Aerosol Particles Deposition in the Idealized Throat Model for Unsteady Inspiratory Flow Conditions. 2008, RDD.
  • 35. Jayaraju, S.T., et al. Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth-throat. 2008, Journal of Aerosol Science, Vol. 39, pp. 862-875.
  • 36. Wikieł, R. Investigation of deposition efficiencics of aerosol particles in the upper parts of a human respiratory tract. Warsaw: Msc Thesis, Warsaw University of Technology, Department of Chemical and Process Engineering, 2008, p. in Polish.
  • 37. Anderson, J.D. Jr. Computational Fluid Dynamics The Basics With Applications. New York: McGraw-Hill Inc., 1995.
  • 38. Horschler, I., Meinke, M., Schroder, W. Numerical simulation of the flow field in a model of the nasal cavity. 2003, Computers & Fluids, Vol. 32, pp. 39-45.
  • 39. Poinsot, T.J., Lele, S.K. Boundary conditions for direct simulations of compressible viscous flows. 1992, J. Comp. Phys., Vol. 101, pp. 104-129.
  • 40. Park, K.I., Brucker, C., Limberg, W. Experimental study of velocity fields in a model of human nasal cavity by dpiv. [book auth.] B. Ruck and et al. Proc 7th Int. Conf. Laser. Anem., Adv. and Appl. Karlsruhe: s.n., 1997, pp. 617-626.
  • 41. Tu, J., et al. CFD Simulation of Air/Particle Flow in the Human Nasal Cavity. Yokohama: s.n., 2004. 5th International Conference on Multiphase Flow, ICMF'04, p. Paper No. 209.
  • 42. Hahn, I., Scherer, P.W., Mozell, M.M. Velocity profiles measured for airflow through a large-scale model of human nasal cavity. 1993, J. Appl. Physiol., Vol. 75, pp. 2273-2287.
  • 43. Keyhani, K., Scherer, P.W., Mozell, M.M. Numerical simulation of airflow in the human nasal cavity. 1995, J. Biomechanical Engineering, Vol. 117, pp. 429-441.
  • 44. Keyhani, K., Scherer, P.W., Mozell, M.M. A numerical model of nasal odorant transport for the analysis of human olfaction. 1997, J. Theoretical Biology, Vol. 186, pp. 279-301.
  • 45. Liu, Y., et al. Numerical simulation of aerosol deposition in 3-D human nasal cavity using RANS, RANS/EIM, and LES. 2007, Journal of Aerosol Science, Vol. 38, pp. 683-700.
  • 46. Shi, H., Kleinstreuer, C., Zhang, Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. 2007, Journal of Aerosol Science, Vol. 38, pp. 398-419.
  • 47. Xi, J., Longest, P.W. Numerical predictions of submicrometer aerosol deposition in the nasal cavity using novel drift flux approach. 2008, International Journal of Heat and Mass Transfer, pp. 5562-5577.
  • 48. Moskal, A., et al. Deposition of Fractal-Like Aerosol Aggregates in a Model of Human Nasal Cavity. 2006, Inhalation Toxicology, Vol. 18, pp. 1-7.
  • 49. Li, W.I., et al. Aerodynamics and aerosol particle deaggregation phenomena in model oral-pharyngeal cavities. 1996, Journal of Aerosol Science, Vol. 8, pp. 1269-1286.
  • 50. Engel, T., et al. 1990, Euro. Resp. J., Vol. 3, pp. 1037-1041.
  • 51. Yu, G., Zhang, Z., Lessmann, R. Fluid flow and Particle Diffusion in the Human Upper Respiratory System. 1998, Aerosol Science and Technology, Vol. 28, pp. 146-158.
  • 52. Kleinstreuer, C., Zhang, Z. Laminar-to-turbulent fluid-particle flows in a human airway model. 2003. International Journal of Multiphase Flow, Vol. 29, pp. 271-289.
  • 53. Zhang, Y., Finlay, W.H., Matida, E.A. Particle deposition measurements and numerical simulation in a highly idealized mouth-throat. 2004, Journal of Aerosol Science, Vol. 35, pp. 789-803.
  • 54. Matida, E.A., et al. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. 2004, Journal of Aerosol Science, Vol. 35, pp. 1-19.
  • 55. Longest, P.W., Vinchurkar, S. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. 2007, Medical Engineering & Physics, Vol. 29, pp. 350-366.
  • 56. Breuer, M., Baytekin, H.T., Matida, E.A. Prediction of aerosol deposition in 90 bends using LES and an efficient Lagrangian tracking method. 2006, Journal of Aerosol Science, Vol. 37, pp. 1407-1428.
  • 57. Jin, H.H., Fan, J.R., Cen, K.F. Large eddy simulation of inhaled particle deposition within the human upper respiratory tract. 2007, Journal of Aerosol Science, Vol. 38, pp. 257-268.
  • 58. Jayaraju, S.T., et al. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstructured grids. 2007, Journal of Aerosol Science, Vol. 38, pp. 494-508.
  • 59. Xi, J., Longest, P.W. Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of Oral Airways. 2007, Annals of Biomedical Engineering, Vol. 35, pp. 560-581.
  • 60. Longest, W.P., et al. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. 2008, Journal of Aerosol Science, Vol. 39, pp. 572-591.
  • 61. Finlay, W.H., Stapleton, K.W., Yokota, J. On the use of computational fluid dynamics for simulating flow and particle deposition in a human respiratory tract. 1996, J. Aerosol Med., Vol. 9, pp. 329-341.
  • 62. Stapleton, K.W., et al. On the suitability of k-eps turbulence modeling for aerosol deposition in the mouth and throat: A comparison with experiment. 2000, Journal of Aerosol Science, Vol. 31, pp. 739-749.
  • 63. Grgic, B., Finlay, W.H., Heenan, A. Regional aerosol deposition and flow measurements in an idealized mouth an throat. 2004, Journal of Aerosol Science, Vol. 35, pp. 21-32.
  • 64. Gradoń, L., Orlicki, D. Deposition of inhaled aerosol particles in a generation of the tracheobronchial tree. 1990, J. Aerosol Sci., Vol. 1, pp. 3-19.
  • 65. Comer, J.K., Kleinstreuer, C., Zhang, Z. Flow structures and particle deposition patterns in double-bifurcation, airway models. Part I. Air flow fields. 2001, Journal Fluid Mechanics. Vol. 435, pp. 22-54.
  • 66. Calay, R.K., Kurujareon, J., Holdo, A.E. Numerical simulation of respiratory flow patterns within human lung. 2002, Respiratory Physiology & Neurobiology, Vol. 130, pp. 201-221.
  • 67. Nowak, N., Kakadu, P.P., Annapragada, A.V. Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs. 2003, Annals of Biomedical Engineering, Vol. 31, pp. 374-390.
  • 68. Kleinstreuer, C., Zhang, Z., Kim, C.S. Combined inertial and gravitational deposition of microparticles in small model airways of a. human respiratory system. 2007, Journal of Aerosol Science. Vol. 38, pp. 1047-1061.
  • 69. Longest. P.W., Xi, J. Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. 2007, Journal of Aerosol Science. Vol. 38, pp. 111-130.
  • 70. Vinchurkar, S., Longest, P.W. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. 2008, Computers and Fluids, Vol. 37, pp. 317-331.
  • 71. Farkas, A., Balashazy, I. Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. 2007, Journal of Aerosol Science, Vol. 38, pp. 865-884.
  • 72. Yang, X.L., et al. The effect of inlet velocity profile on the bifurcation COPD airway flow. 2006, Computers in Biology and Medicine, Vol. 36, pp. 181-194.
  • 73. Lambert, R.K., et al. A computational model for expiratory flow. 1982, J. Appl. Physiol., Vol. 52, pp. 44-56.
  • 74. Penconek, A. Modeling influence of smooth muscle dynamics on maximal respiratory flow in asthma. Warsaw: Msc Thesis, Warsaw University of Technology, Department of Chemical and Process Engineering, (in Polish), 2008.
  • 75. Penconek, A., Moskal, A. 2009, Apartura i Inżynieria Chemiczna, p. in press.
  • 76. Anafi, R.C., Wilson, T.A. Empirical model for dynamic force-lenght behavior of airway smooth muscle. 2002, J. Appl. Physiol., Vol. 92, pp. 455-460.
  • 77. Lambert, R.K. Sensitivity and specificity of the computational model for maximal expiratory flow. 1984, J. Appl. Physiol., Vol. 57, pp. 958-970.
  • 78. Lai-Fook, S.J. A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. 1979, J. Appl. Physiol., Vol. 46, pp. 419-429.
  • 79. James, A.L., et al. The use of the internal perimeter to compare airway size and to calculate smooth muscle shortening. 1988, Am. Rev. Respir. Dis., Vol. 138, pp. 136-139.
  • 80. Gunst, S.J., et al. Parenchymal interdependence and airway response to metacholine in excised dog lobes. 1988, J. Appl. Physiol., Vol. 65, pp. 2490-2497.
  • 81. Gunst, S.J., Stropp. J.Q. Pressure-volume and length-stress relationship in canine bronchi in vitro. 1988, J. Appl. Physiol., Vol. 64, pp. 2522-2531.
  • 82. Shen, X., et al. Mechanism for the mechanical response of airway smooth muscle to length scillations. 1997, J. Appl. Physiol., Vol. 83, pp. 731-738.
  • 83. Lambert, R.K., Wilson, T.A. Smooth muscle dynamics and maximal expiratory flow in asthma. 2005, J. Appl. Physiol., Vol. 99, pp. 1885-1890.
  • 84. Reynolds, D.B. Steady expiratory flow-pressure relationship in a model of the human bronchial tree. 1982, J. Biomech. Eng., Vol. 104, pp. 153-158.
  • 85. Zhang, Z., Kleinstreuer, C., Kim, C.S. Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. 2002, Journal of Aerosol Science, Vol. 33, pp. 257-281.
  • 86. Fenn, W.O., Rahn, H. Handbook of physiology, Section 3: Respiration. Washington DC: American Physiological Society, 1965.
  • 87. Sosnowski, T.R., Moskal, A., Gradoń, L. Influence of flow variations on dispersion of pharmaceutical particles and their deposition in the Standard Throat Model (STU). St. Paul, Minnesota, USA: s.n., 2006. 7th International Aerosol Conference, p. 926.
  • 88. Glezen, W.P., Loda, F.A., Denny, F.W. Parainfluenza viruses. [book auth.] A.S. Evans, Viral infections of humans. New York: Plenum Medical Book Company, 1982, pp. 441-454.
  • 89. Chanock, R.M., et al. Respiratory syncytial virus. [book auth.] A.S. Evans. Viral infections of humans. New York: Plenum Medical Book Company, 1982, pp. 471-489.
  • 90. Edwards, D.A., Dundar, C. Bioengineering of therapeutic aerosols. 2002, Annual Review of Biomedical Engineering, Vol. 4, pp. 93-107.
  • 91. Draquenne, C., Paiva, M. One-dimensional sitmilation of aerosol transport and deposition in the human lung, 1994, J. Appl. Physiol., Vol. 77(6), pp. 2889-2898.
  • 92. Taulbee, D.B. Simultaneous diffusion and sedimentation of aerosol particles from Poiseuille flow in a circular tube. 1978, Journal of Aerosol Science, Vol. 9, pp. 17-23.
  • 93. Tsuda, A., Butler, J.P., Fredberg, J.J. Effects of alveolated duet structure on aerosol kinetics I. Diffusional deposition in the absence of gravity. 1994, J. Appl. Physiol., Vol. 76, pp. 2497-2509.
  • 94. Darquenne, C., Paiva, M. Two- and three-dimensional simulations of aerosol transport and deposition in alveolar zone of the human lung. 1996, J. Appl. Physiol., Vol. 80, pp. 1401-1414.
  • 95. Darquenne, C. A realistic two-dimensional model of aerosol transport and deposition in the alveolar zone of the human lung. 2001, Journal of Aerosol Science, Vol. 32, pp. 1161-1174.
  • 96. Zeltner, T.B., et al. Retention and clearance of 0.9 mm particles inhaled by hamsters during rest or exercise. 1991, J. Appl. Physiol., Vol. 70, pp. 1137-1145.
  • 97. Schulz, H., et al. Covective and diffusive gas transport in canine itrapulmonary airways. 1992, J. Appl. Physiol., Vol. 72, pp. 1557-1562.
  • 98. Haber, S., Tsuda, A. The effect of flow generated by rhythmically expanding pulmonary acinus on aerosol dynamics. 1998, Journal of Aerosol Science, Vol. 29(3), pp. 309-322.
  • 99. Happel, J., Brener, H. Low Reynolds Number Hydrodynamics. The Nederlands: Noordhoff, 1983.
  • 100. Moskal, A. Estimation of aerosol deposition in the model of human alveolus. Saloniki: s.n., 2008, European Aerosol Conference.
  • 101. Gradoń, L., Orlicki, D., Podgórski, A. Deposition and retention of ultarfine aerosol particles in the human respiratory system. Normal and pathological cases. 2000, JOSE, Vol. 6, pp. 189-207.
  • 102. Dailey, H.L., Ghadiali, S.N. Fluid-structure analysis of microparticle transport in deformable pulmunary alveoli. 2007, Journal of Aerosol Science, Vol. 38, pp. 269-288.
  • 103. Yuan, H., Ingenito, E.P., Suki, B. Dynamic properties of lung parenchyma: Mechanical contributions of fiber network and interstitial cells. 1997, Journal of Applied Physiology, Vol. 83, pp. 1420-1431.
  • 104. Drozdov, A.D. Viscoclastic structures: Mechanics of growth and aging. San Diego: Academic Press., 1998.
  • 105. Karcher, H., et al. A three-dimensional viscoelastic model for cell deformation with experimental verification. 2003, Biophysical Journal, Vol. 85, pp. 336-3349.
  • 106. Schlesinger, R.B., Lippmann, M. Particle deposition in Casts of the Human Upper Tracheobronchial Tree. 1972, Am. Ind. Hygiene Assoc. J., Vol. 33, pp. 237-251,
  • 107. Schlesinger, B., et al. Particle Deposition in a Hollow Cast of the Human Tracheobronchial Tree. 1977, Journal of Aerosol Science, Vol. 8, pp. 429-441.
  • 108. Johnston, J.R., Schroter, R.C. Deposition of particles in model airways, 1979, Journal of Applied Physiology, Vol. 47, pp. 947-953.
  • 109. Chan, T.L., Lippmann, M. Experimental measurement and empirical modeling of the regional deposition of inhaled particles in humans. 1980, Am. Ind. Hyg. Assoc. J., Vol. 41, pp. 399-409.
  • 110. Cheng, K.H., et al. An experimental method for measuring aerosol deposition efficiency in the human oral airway. 1997, Am. Ind. Hyg. Assoc. J., Vol. 58, pp. 207-213.
  • 111. Cheng, Y.S., Zhou, Y., Chen, T.B. Particle deposition in a cast of human oral airways. 1999, Aerosol Science and Technology, Vol. 31, pp. 286-300.
  • 112. Heenan, A.F., et al. An investigation of the relationship between the flow field and regional deposition in realistic extra-thoracic airways. 2004, Journal of Aerosol Science, Vol. 35, pp. 1013-1023.
  • 113. Haussermann, S., et al. The influence of breathing patterns on particle deposition m nasal replicate cast. 2002, Journal of Aerosol Science, Vol. 33, pp. 923-933.
  • 114. Grgic, B., Martin, A.R., Finlay, W.H. The effect of unsteady flow rate increase on in vitro mouth-throat deposition of inhaled boluses. 2006, Journal of Aerosol Science, Vol. 37, pp. 1222-1233.
  • 115. Gradoń, L., Moskal, A., Sosnowski, T.R. Estimation of separation efficiencies of aerosol particles in the upper parts of human respiratory tract. 2007, Chemical and Process Engineering. Vol. 28, pp. 465-473.
  • 116. Haussermann, S., Bailey, A., Maul, C. A system to reproduce human breathing patterns - its development and validation .2000, Journal of Aerosol Medicine, Vol. 13(3), pp. 199-204.
  • 117. Sosnowski, T.R., Moskal, A., Gradoń, L. Deposition of pharmaceutical powders in the oropharyngeal casl during inspiration. 2. Experiments. Ghent: s.n., 2005. Abstracts of European Aerosol Conference ed. W. Maenhaut, Belgium, p. 762.
  • References to chapter 6
  • 1. Loth, E. Numerical approaches for motion of dispersed particles, droplets and bubbles. 2000, Progress in energy and combustion science, Vol. 26, pp. 161-223.
  • 2. Csandy, G.T. Turbulent diffusion for heavy particles in the atmosphere. 1963, Journal of Atmospheric Sciences, Vol. 20, pp. 201-208.
  • 3. Basset, A.B. A Treatise on Hydrodynamics. Vol. 2, New York: Dover, 1888.
  • 4. Boussinesq, J. Theorie Analytique de la Chaleur. Vol. 2, Paris: L'Ecole Polytechnique, 1903.
  • 5. Oseen, C.W. Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft, 1927.
  • 6. Podgórski, A. On the transport, deposition and filtration of aerosol particles in fibrous filters: selected problems. Warsaw: Publishing House of the Warsaw University of Technology, 2002.
  • 7. He, C., Ahmadi, G. 1999, J. Aerosol Sci., Vol. 30, p. 739.
  • 8. Brandon, D.J., Aggarwal, S.K. 2001, Aerosol Sci. Technol., Vol. 34, p. 340.
  • 9. Hunter, R.J. Foundations of Colloid Science. Vol. I, Oxford: Oxford University Press., 1987.
  • 10. Uhlenbeck, E.G., Ornstein, S.L. On the theory of the Brownian motion. 1930, Phys. Rev., Vol. 36, pp. 823-841.
  • 11. Chandrasekhar, S. Stochastic problems in physics and astronomy. 1943, Rev. Modem Phys., Vol. 15, pp. 1-89.
  • 12. Gupta, D., Peters, M. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. 1985, J. Colloid Interface Sci., Vol. 104, pp. 375-389.
  • 13. Podgórski, A. Brownian dynamics - II. Algorithms for Stochastic simulations of solid spherical aerosol particles motion near a solid wall. 2001, Abstract of the Europ. Aerosol Conf., pp. S713-714.
  • 14. Podgórski, A., Moskal, A. Dyspersja submikronowych cząstek aerosolowych w filtrach włókninowych. 2001, Inż. Chem. Proc., Vol. 22, p. 1139.
  • 15. Podgórski, A., Moskal, A. Brownian dynamics - IV. Dispersion of submicron solid aerosol particles in random and ordered fibrous filters structures. 2001, J. Aerosol Sci., Vol. 32 S1, p. 714.
  • 16. Iwan. D.W., Mason. B.A. Jr. Equivalent linearization for systems subjected to non-stationary random excitation. 1980, Int. J. Non-Linear Mech., Vol. 15, pp. 71-82.
  • 17. Abuzeid, S., Busnaina, A.A., Ahmadi, G. Wall deposition of aerosol particles in a turbulent channel flow. 1991, J. of Aerosol Sci., Vol. 22(1), pp. 43-62.
  • 18. Chen, S., et al. Numerical simulalion of aerosol collection in filters with staggered parallel rectangular fibers. 2002, Computational Mechanics, Vol. 28, pp. 152-161.
  • 19. Moskal, A., Gradoń, L. Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle. 2002, J. of Aerosol Sci., Vol. 33, pp. 1525-1539.
  • 20. Peters, M.H., Ying, R. 1991, Chem. Eng. Comm., Vol. 108, p. 165.
  • 21. Mora, Fernandez da la, Rosner, J. 1982, J. Fluid Mech., Vol. 125, p. 379.
  • 22. Spielman, L.A., Fridlander, S.K. 1974, J. Colloid Interface Sci., Vol. 46, p. 22.
  • 23. Gradoń, L., Orlicki. D. Deposition of inhaled aerosol particles in a generation of the tracheobronchial tree. 1990, J. Aerosol Sci., Vol. 1, pp. 3-19.
  • 24. Moskal, A., Gradoń, L. Deposition of ultrafine aerosol particles in the sequence of bifurcations of the human tracheobronchial tree. Oscilatory flows and pathology of breathing. 2001, J. Aerosol Medicine., Vol. V14, p. N3.
  • 25. Bałazy, A. Aerosol Filtration in Fibrous Filters: Submicrometer and Nano-Sized Particles, Bioaerosols and Fractal-like Aggregates. Warsaw: Ph.D Thesis; Warsaw Universiry of Technology. 2006.
  • 26. Fridlander, S.K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. New York: Oxford University Press, 2000.
  • 27. Brasil, A.M., Farias, T.L., Carvalho, M.G. Evaluation of the Fractal Properties of Cluster - Cluster Aggregates. 2000, Aerosol Science and Technology, Vol. 33, pp. 440-454.
  • 28. Mauderly, J.L., et al. Particles in the Occupational Setting. [book auth.] P. Gehr and J. Heyder. Particle-Lung Interactions, New York: Marcel Dekker, 2000, pp. 89-170.
  • 29. Zimmer, A.T., Maynard, A.D. Investigation of the aerosols produced by a high speed, hand-held grinder using various substrates. 2002, Ann. Occup. Hyg., Vol. 46, pp. 663-672.
  • 30. DeCarlo, P.F., et al. Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. 2004, Aerosol Science and Technology, Vol. 38, pp. 1185-1205.
  • 31. Maynard, A.D., Kuempel, E.D. Airborne nanostructured particles and occupational health. 2005, J. Nanoparticles Res., Vol. 7, pp. 587-614.
  • 32. Xiong, C., Fridlander, S.K. Morphological Properties of Atmospheric Aerosol Aggregates. 2001, PNAS, Vol. 98(21), pp. 11851-11856.
  • 33. Kittelson, D.B. Engines and Nanoparticles: a Review. 1998, Journal of Aerosol Science, Vol. 29(5/6), pp. 575-588.
  • 34. Neeft, J.P.A., Makkee, M., Moulijn, J.A. Diesel Particulate Emission Control. 1996, Fuel Processing Technology, Vol. 47, pp. 1-69.
  • 35. Kreyling, W.G., Semmler, M., Moller, W. Dosimetry and toxicology of ultrafine particles. 2004, J. Aerosol Med., Vol. 17, pp. 140-152.
  • 36. Mackowski, D.W. Monte Carlo simulation of hydrodynamic drag and thermophoresis of fractal aggregates of spheres in the free-molecule flow regime. 2006, J. of Aerosol Sci., Vol. 37, pp. 242-259.
  • 37. Forrest, S.R., Witten, T.A. Long-Range Correlations in Smoke-Particle Aggregates. 1979, Journal of Physics A: Mathematics and General, Vol. 12, pp. 109-117.
  • 38. Rogak, S.N., Flagan, R.C. Stokes Drag on Self-Similar Clusters of Spheres. 1990, Journal of Coloidal and Interface Science, Vol. 134(1), pp. 206-218.
  • 39. Meakin, P. Fractal Aggregates. 1988, Advances in Colloid and Interface Science., Vol. 28(4), pp. 249-331.
  • 40. Hausdorff, F. Dimension und Auber Mass. 1919, Mathematische Annalen, Vol. 79, pp. 157-179.
  • 41. Gmachowski, L. Hydrodynamics of Aggregated Media. 1996, Journal of Colloid and Interface Science, Vol. 178, pp. 80-86.
  • 42. Broide, M.L., Cohen, R.J. Measurements of Cluster-Size Distribution Arising in Salt-Induced Aggregation of Polystyrene Microspheres. 1992, Journal of Colloid and Interface Science. Vol. 153(2), pp. 493-508.
  • 43. Gregory, J. The Density of Particle Aggregates. 1997, Water Science Technology. Vol. 36(4), pp. 1-13.
  • 44. Oh, C., Sorensen, C.M. 1997, J. Aerosol Sci., Vol. 28, p. 937.
  • 45. Gmachowski, L. Estimation of the dynamic size of fractal aggregates. 2000, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 170, pp. 209-216.
  • 46. Lattuada, M., Wu, H., Morbidelli, M. A simple model for the structure of fractal aggregates. 2003, Journal of Colloid and Interface Science, Vol. 268, pp. 106-120.
  • 47. Wu, M.K., Fridlander, S.K. Note on the Power Law Equation for Fractal-like Aerosol Aggregates. 1993, Journal of Colloid and Interface Science, Vol. 159, pp. 246-248.
  • 48. Li, X., Logan, B.E. 1997, Environ. Sci. Technol., p. 1229.
  • 49. Sorensen, C.M., Roberts, G.C. 1997, J. Colloid Interface Sci., Vol. 186, p. 1114.
  • 50. Chen, Z.Y., Meakin, P., Deutch, J.M. 1987, Phys. Rev. Lett., Vol. 59, p. 2121.
  • 51. Bushell, G.C., et al. On techniques for the Measurement of the Mass Fractal Dimension of Aggregetes. 2002, Advances in Colloid and Interface Science, Vol. 95, pp. 1-50.
  • 52. Rogak, S.N., Flagan, R.C. Coagulation of Aerosol Agglomerates in the Transition Regime. 1992, Journal of Colloids and Interface Science, Vol. 151(1), pp. 203-224.
  • 53. Moskal, A., Payatakes, A.C. Estimation of the diffusion coefficient of aerosol particle aggregates using Brownian simulation in the continitum regime. 2006, Journal of Aerosol Science, Vol. 37, pp. 1081-1101.
  • 54. Baron, P.A., Sorensen, C.M., Brockmann, J.E. Nonspherical Particle Measurements: Shape. Factors, Fractals, and Fibres. [book auth.] P.A. Baron, K. Willeke and Eds. Aerosol Measurement. Principles, Techniques, and Applications. New York: John Wiley & Sons, Inc., 2001, pp. 705-750.
  • 55. Veerapaneni, S., Wiesner, M.R. Hydrodynamics of Fractal Aggregates with Radially Varing Permeability. 1996, Journal of Colloid and Interface Science, Vol. 177, pp. 45-57.
  • 56. Cohen, R.D., Wiesner, M.R. 1990, J. Surf. Sci. Technol., Vol. 6, p. 25.
  • 57. Wiesner, M.R. 1992, Water. Res., Vol. 26, p. 379.
  • 58. Vanni, M. Creeping flow Over Spherical Permeable Aggregates. 2000, Chemical Engineering Science, Vol. 55, pp. 280-296.
  • 59. Wentzel, M., et al. Transmission Electron Microscopical and Aerosol Dynamical Characterization of Soot Aerosols. 2003, Journal of Aerosol Science, Vol. 34, pp. 1347-1370.
  • 60. Brasil, A.M., Farias,T.L., Carvalho, M.G. A Recipe for Image Characterization of Fractal-like Aggregates. 1999, Journal of Aerosol Science, Vol. 30(10), pp. 1379-1389.
  • 61. Glover, S.M., et al. Bridging Flocculation Studied by Light Scattering und Settling. 2000, Chemical Engineering Journal, Vol. 80, pp. 3-12.
  • 62. Sorensen, C.M. Light Scattering by Fractal Aggregates: A Review. 2001, Aerosol Science and Technology, Vol. 35, pp. 648-687.
  • 63. Johanson, C.P., Li, X., Logan, B.E. Settling Velocities of Fractal Aggregates. 1996, Environmental Science and Technology, Vol. 30, pp. 1911-1918.
  • 64. Sharypov, D.A., et al. Experimental study of soot particles sedimentation. 2003, Abstracts of the Europ. Aerosol Conf., Vol. 1, p. 317.
  • 65. Van Gulijk, C., et al. Measuring Diesel Soot With a Scanning Mobility Particle Sizer and an Electrical Low-Pressure Impactor: Performance Assessment With a Model for Fractal-like Agglomerates. 2004, Journal of Aerosol Science, Vol. 35, pp. 633-655.
  • 66. Park, K., Kittelson, D.B., McMurry, P.H. Structural Properties of Diesel Exhaust Particles Measured by Transmission Electron Microscopy (TEM): Relationships to Particle Mass and Mobility. 2004, Aerosol Science and Technology, Vol. 38, pp. 881-889.
  • 67. Hijaazi, A., Zoaeter, M. Brownian dynamics simulation for rod-like particles in the dilute flowing solution. 2002, European Polymer Journal, Vol. 38, pp. 2207-2211.
  • 68. Beard, A., Schlick, T. Inertial stochastic dynamics. I. Long-time step methods for Langevin dynamics. 2000, J. Chem. Phys., Mol. 12(17), pp. 7313-7322.
  • 69. Coffey, W.T., et al. Langevine equation method for the rotational Brownian motion and orientation in liquids. 2002, J. Phys. A.: Math. Gen., Vol. 35, pp. 6789-6803.
  • 70. Brinkman, H.C. A Calculation of the Viscosity and the Sedimentation Constant for Solution of Large Chain Molecules Taking Into Account the Hampered Flow of the Solvent Through These Molecule. 1947, Physica, Vol. 13, pp. 447-448.
  • 71. Debye, P. The Relation Between Intrinsic Viscosity and Molecular Weightin Polymer Solutions. 1947, Physical Review., Vol. 71, p. 486.
  • 72. Kim, A.S., Yuan, R. Hydrodynamics of an Ideal Aggregate with Quadratically Increasing Permeability. 2005, Journal of Coloid and Interface Science, Vol. 285, pp. 315-328.
  • 73. Ooms, G., Mijnlieff, P.F., Beckers, H.L. Frictional Force Exerted by a Flowing Fluid on a Permeable Particle, with Particular Reference to Polymer Coils. 1970, Journal of Chemical Physics, Vol. 53(11), pp. 4123-4130.
  • 74. Happel, J., Brenner, H. Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Englewood Cliffs, N. J.: Prentice Hall, Inc., 1965.
  • 75. Masliyah, J., et al. Crecping Flow Over a Composite Sphere: Solid Core With Porous Shell. 1987, Chemical Engineering Science, Vol. 42, pp. 245-253.
  • 76. Happel, J. 1958, AIChE J., Vol. 4, p. 197.
  • 77. Lee, D.J., et al. On the Free-Settling Test for Estimating Activated Sludge Floc Density. 1996, Water Research, Vol. 30(3), pp. 541-550.
  • 78. Thill, A., et al. Flocs Restructuring during Aggregation: Experimental Evidence and Numerical Simulation. 2001, Journal of Colloid and Interface Science, Vol. 243, pp. 171-182.
  • 79. Kim, A.S., Stolzenbach, K.D. The Permeability of Syntetic Fractal Aggregates with Realistic Three-Dimensional Structure. 2002, Journal of Colloid and Interface Science, Vol. 253, pp. 315-328.
  • 80. Tang, P., Raper, J.A. Modelling the Setlling Behavior of Fractal Aggregates - a Review. 2002, Powder Technology, Vol. 123, pp. 114-125.
  • 81. Vainshtein, P., Shapiro, M., Gutfinger, C. Mobility of Permeable Aggregates: Effects of Shape and Porosity. 2004, Journal of Aerosol Science, Vol. 35, pp. 383-404.
  • 82. Bałazy, A., Podgórski, A. Application of Brownian Dynamics Method to Determine the Deposition Efficiency of Fractal-like Aggregates in Fibrous Filters. 2005, Inżynieria i Apartura Chemiczna, Vol. 4, pp. 6-8 (in Polish).
  • 83. Smoluchowski, M.Z, 1917, Phys. Chem., Vol. 92, p. 129.
  • 84. Kirkwood, J.G., Riesman, J. The Intrisic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution. 1948, Journal of Chemical Physics, Vol. 16(6), pp. 565-573.
  • 85. Riseman, J., Kirkwood, J.G. 1950, J. Chem. Phys., Vol. 18, pp. 512-516.
  • 86. Oseen, C.W, Hydrodynamik. Leipzig: Akademisches Verlag, 1927.
  • 87. Burgers, J.M. Second Report on Viscosity and Plasticity. Amsterdam; Academy of Science, Nordemann, 1938.
  • 88. Yamakawa, H. Modern Theory of Polymer Solutions. New York: Harper and Raw, 1971.
  • 89. Lattuada, M., Wu, H., Morbidelli, M. Hydrodynamic radius of fractal clusters. 2003, Journal of Collid and Interface Science, Vol. 268, pp. 96-105.
  • 90. Bloomfield, V., Dalton, W.O., Van Holde, K.E. Friction Coefficients of Multisubunit Structures. I. Theory. 1967, Biopolymers, Vol. 5, pp. 135-148.
  • 91. van Saarloos, W. On the Hydrodynamic Radius of Fractal Aggregates. 1987, Physica A, Vol. 147, pp. 280-296.
  • 92. Beer, F.P., Johnson, E.R. Jr. Vector Mechanics for Engineers Dynamics. Boston: Mac Graw Hill, 1997.
  • 93. Żywczyk, Ł. Wykorzystanie technik Molecular Dynamics do badania współczynnika cieniowania. Warsaw: Msc. Thesis. Warsaw University of Technology, Department of Chemical and Process Engineering; in Polish. 2009.
  • 94. Filippov, A.V. Drag and Torque on clusters on N arbitrary spheres at low Reynolds number. 2000, Journal of Colloid and Interface Science, Vol. 229, pp. 184-195.
  • 95. Doi, M., Edwards, S.F. The theory of polymer dynamics. Oxford: Oxford University Press, 1986.
  • 96. Hunter, R.J. Foundations of colloid science. Vol. I, Oxford: Oxford University Press, 1987.
  • References to chapter 7
  • 1. Gehr, P., Heyder, J. Particle-Lung Interaction. New York: Marcel Dekker, 2000.
  • 2. Hounam, R.F., Black, A., Walsh, M. Deposition of aerosol particles in the nasopharyngeal region of the human respiratory tract. 1969, Nature, Vol. 221, pp. 1254-1255.
  • 3. Heyder, J., Rudolf, G. Deposition of aerosol particles in the human nose. 1977, Inhaled Particles, Vol. 4, pp. 107-126.
  • 4. Stahlhofen, W., Rudolf, G., James, A.C. Intercomparison of experimental regional aerosol deposition. 1989, Journal of Aerosol Medicine, Vol. 2, pp. 285-308.
  • 5. Gradoń, L., Podgórski, A. Experimental study on fibrous particles deposition in the human nasal cast. 1992, Journal of Aerosol Science, Vol. 23, pp. pp. 469-472.
  • 6. Cheng, Y.S., et al. Deposition of ultrafine particles in the nasal and tracheo bronchial airways. 1998, Journal of Aerosol Medicine, Vol. 14, pp. 941-942.
  • 7. Cheng, Y.S., et al. Characterization of nasal spray pumps deposition pattern in a replica of the human nasal airways. 2001, Journal of Aerosol Meddicine, Vol. 14, pp. 267-280.
  • 8. Zwartz, G.J., Smuin, S.R., Guilmette, R.A. Effect of the nasal vestibule on particle deposition in a model of human nasal airway. 2000, Journal of Aerosol Science, Vol. 31S1, pp. 132-133.
  • 9. Haussermann, S., et al. The influence of breathing patterns on particle deposition in a nasal replicate cast. 2002, Journal of Aerosol Science, Vol. 33, pp. 923-933.
  • 10. Moskal, A., Gradoń, I., Temporary and apatial deposition of aerosol particles in the upper human airways during breathing cycle. 2002, Journal of Aerosol Science, Vol. 33, pp. 1525-1539.
  • 11. Sosnowski, T.R., Moskal, A., Gradoń. L. Dynamics of oropharyngeal aerosol transport and deposition with the realistic flow pattern. 2006, Inahalation Toxicology, Vol. 18, pp. 1-9.
  • 12. Martonen, T.B., et al. 3-D particle transport within the human upper respiratory tract. 2002, Journal of Aerosol Science, Vol. 33, pp. 1095-1110.
  • 13. Tu, J., et al. CFD simulation of air/particles flow in the human nasal cavity. Yokohama. Japan: s.n., 2004, 5th Int. Conf. on Multiphase Flow, p. 209.
  • 14. Moskal, A., et al. Deposition of fractal-like aerosol aggregates in a model of human nasal cavity. 2006, Inhalation Toxicology, Vol. 18, pp. 725-731,
  • 15. Finlay, W.H. The Mechanics of Inhaled Pharmaceutical Aerosols. San Diego: Academic Press, 2002.
  • 16. Martonen, T.B., et al. Lung models: Strengths and limitations. 2000, Resp. Care, Vol. 45(6), pp. 712-736.
  • 17. Chan, T.L., Lippmann, M. Experimental measurements and empirical modeling of the regional deposition of inhaled particles in humans. 1980, Am. Ind. Hyg. Assoc. J., Vol. 41, pp. 399-409.
  • 18. Yu, C.P., Diu, C.K., Soong, T.T. Statistical analysis of aerosol deposition in nose and mouth. 1981, Am, Ind. Hyg. Assoc. J., Vol. 42, pp. 726-733.
  • 19. Cheng, Y.S., Zhou, Y., Chen, B.T. Particles deposition in a cast of human oral airways. 1999, Aerosol Sci. Tech., Vol. 31, pp. 286-300.
  • 20. Stapleton, K.W., et al. On the suitability of k-epsilon turbulence modeling for aerosol deposition in the mouth and throat: A comparison with experiment. 2000, Journal of Aerosol Science, Vol. 36(6), pp. 739-749.
  • 21. Heenan, A.F., et al, An investigation of the relationship between the flow field and regional deposition in realistic extra-thoracic airways. 2004, Journal Aerosol Science, Vol. 35(8), pp.1013-1023.
  • 22. Matida, E.A., Finlay, W.H., Grgic, L.B. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. 2004, Journal of Aerosol Science, Vol. 35(1), pp. 1-19.
  • 23. Zhang, Y., Finlay, W.H. Experimental measurement of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat. 2005, Journal of Aerosol Medicine, Vol. 18, pp. 460-473.
  • 24. Mauderly, J.L., et al. Particles in the occupational setting. [book auth.] P. Gehr and J. Heyder. Particle-lug interactions. New York: Marcel Dekker, 2000, pp. 89-170.
  • 25. Zimmer, A.T., Maynard, A.D. Investigation of the aerosols produced by a high speed, hand-held grinder using various substrates. 2002, Ann. Occup. Hyg., Vol. 46, pp. 663-672.
  • 26. Maynard, A.D., Kuempel, E.D. Airborne nanostructured particles and occupational heatth. 2005, J. Nanoparticle Res., Vol. 7, pp. 587-614.
  • 27. Kreyling, W.G., Semmler, M., Moller, W. Dosimetry and toxicology of ultrafine particles. 2004, Journal of Aerosol Medicine, Vol. 17, pp. 140-152.
  • 28. Sosnowski, T.R., Moskal, A., Gradoń, L. Mechanisms of Aerosol Particle Deposition in the Oro-Pharynx Under Non-Steady Airflow. 2007, Ann. Occup. Hyg., Vol. 51(1), pp. 19-25.
  • 29. Sulej, M. Influence of the shape of the respiratory curve on the deposition of aerosol particles in human upper airways replica. Warsaw: Msc. Thesis, Warsaw University of Technology, Department of Chemical and Process Engineering, in Polish, 2009.
  • 30. Wikieł, R. Investigation of deposition efficiencies of aerosol particles in the upper parts of a human respiratory tract. Warsaw: Msc. Thesis, Warsaw University of Technology, Department of Chemical and Process Engineering, in Polish, 2008.
  • 31. Grgic, B., Finlay, W.H., Heenan, A.F. Regional aerosol deposition and flow measurements in an idealized mouth and throat. 2004, Journal of Aerosol Science, Vol. 35, pp. 21-32.
  • 32. Sosnowski, T.R., Moskal, A., Gradoń, L. Deposition of pharmaceutical powders in the oropharyngeal cast during inspiration. 2. Experiments. Ghent, Belgium: s.n., 2005. Abstracts European Aerosol Conference, p. 726.
  • 33. Gradoń, L., Orlicki, D. Deposition of inhaled aerosol particles in a generation of the tracheobronchial tree. 1990, Journal of Aerosol Science, Vol. 1, pp. 3-19.
  • 34. Zhang, Z., et al. Vaporizing microdroplet inhalation, transport, and deposition in human upper airway model. 2004, Aerosol Sci. Technol., Vol. 38, pp. 36-49.
  • 35. Heistracher, T., Hofmann, W. Flow and deposition patterns in successive airway bifurcations. 1997, Ann. Occup. Hygiene, Vol. 41, pp. 537-542.
  • 36. Longest, W.P., Vinchurkar, S. Effect of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. 2007, Medical Engineering & Physics, Vol. 29, pp. 350-366.
  • 37. Balashazy, I., Hofmann, W., Heistracher, T. Local particle deposition patterns may play a key role in the development of lung cancer. 2003, Transl. Physiol., Vol. 94, pp. 1719-1725.
  • 38. Zhang, Z., et al. Aerosol transport and deposition in a triple bifurcation bronchial airway model with local tumors. 2002, Inahl. Toxicol., Vol. 14, pp. 1111-1133.
  • 39. Martonen, T.B., Musante, C.J. Importance of cloud motion on cigarette smoke deposition in lung airways. 2000, Inhal. Toxicol., Vol. 12, pp. 261-280.
  • 40. Zhang, Z., et al. Comparison of micro-and nano-size particle deposition in a human upper airway model. 2005, Journal of Aerosol Science, Vol. 36, pp. 211-233.
  • 41. Hofmann, W., Golser, R., Balashazy, I. Inspiratory deposition efficiency of ultrafine particles in a human airway bifurcation model. 2003, Aerosol Sci. Technol, Vol. 37, pp. 988-994.
  • 42. Zhang, Z., Kleinstreuer, C. Airflow structures and nano-particle deposition in a human upper airway model. 2004, J. Comput. Phys., Vol. 198, pp. 178-210.
  • 43. Zhang, Z., Martonen, T.B. Deposition of ultrafine aerosols in human tracheobronchial airways. 1997, Inahal. Toxicol., Vol. 9, pp. 99-110.
  • 44. Zhang, Z., Kleinstreuer, C., Kim, C.S. Effects of asymmetric branch flow rates on aerosol deposition in bifurcating airways. 2000, J. Med. Eng. Technol., Vol. 24, pp. 192-202.
  • 45. Balashazy, I., Hofmann, W. Deposition of aerosol in asymmetric airway bifurcations. 1995, Journal of Aerosol Science, Vol. 26, pp. 273-292.
  • 46. Longest, W.P., Vinchurkar, S., Martonen, T. Transport and deposition of respiratory aerosols in models of childhood asthma. 2006, Journal of Aerosol Science, Vol. 37, pp. 1234-1257.
  • 47. Farkas, A., Balashazy, I. Simulation of the effect of local obstruction and blockage on airflow and aerosol deposition in central human airways. 2007, Journal of Aerosol Science, Vol. 38, pp. 865-884.
  • 48. Martonen, T.B., Katz, I.M, Deposition patterns of polydisperse aerosols within human lungs. 1993, Journal of Aerosol Medicine, Vol. 6, pp. 251-274.
  • 49. Edwards, D.A. The macrotransport of aerosol particles in the lung. Aerosol deposition phenomena. 1995, Journal of Aerosol Science, Vol. 26, pp. 293-317.
  • 50. Nowak, N., Kakade, P.P., Annapragada, A.V. Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs. 2003, Annals of Biomedical Engineering, Vol. 31, pp. 374-390.
  • 51. Zhang, Z., Kleinstreuer, C. Transient airflow structures and particle transport in a sequentially branching lung airway model. 2002, Phys. Fluids, Vol. 14, pp. 862-880.
  • 52. Comer, J.K., et al. Aerosol transport and deposition in sequentially bifurcating airways. 2000, J. Biomech. Eng., Vol. 122, pp. 152-158.
  • 53. Shi, H., Kleinstreuer, C., Kim, C.S. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions, 2004, Phys. Fluids, Vol. 16, pp. 199-213.
  • 54. Oldham, M.J., Phaltn, R.F., Heistracher. T. Computational fluid dynamic predictions and experimental results for particle deposition in an airway model. 2000, Aerosol Sci. Technol., Vol. 32, pp. 61-71.
  • 55. Moskal, A. Estimation of aerosol deposition in the model of human alveolus. Saloniki: s.n., 2008, European Aerosol Conference.
  • 56. Dailey. H.L., Ghadiali, S.N. Fluid-structure analysis of microparticle transport in deformable pulmunary alveoli. 2007, Journal of Aerosol Science, Vol. 38, pp. 269-288.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0056-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.