PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie procesów wytwarzania proszków przy użyciu płynów w stanie nadkrytycznym

Autorzy
Identyfikatory
Warianty tytułu
EN
Modelling of particle formation processes using supercritical fluids
Języki publikacji
PL
Abstrakty
PL
Przedmiotem pracy są metody opisu matematycznego przebiegu procesu wytwarzania proszków do zastosowań medycznych przy użyciu płynów w stanie nadkrytycznym. Charakterystyczną cechą rozważanej grupy technologii jest silna zależność własności otrzymywanych cząstek stałych od warunków oraz sposobu prowadzenia procesu precypitacji. Pozwala to na sterowanie przebiegiem produkcji proszków w celu otrzymania produktu o wymaganych własnościach poprzez odpowiedni dobór parametrów procesowych. W pierwszej części pracy przedstawiono krótki przegląd i ocenę technologii płynów w stanie nadkrytycznym w kontekście ich użyteczności do bezpiecznego i kontrolowanego przetwarzania farmaceutyków. W przeglądzie tym przedyskutowano zalety, niedoskonałości i ograniczenia zastosowań poszczególnych metod. Następnie omówiono własności fizykochemiczne płynów w stanie nadkrytycznym i mieszanin z ich udziałem oraz usystematyzowano zależności użyteczne do modelowania tych własności. Przedstawiono także metody opisu równowag fazowych w układach dwu- i trójskładnikowych, w których prowadzi się procesy wytwarzania proszków. W dalszej części pracy rozważono szczegółowo dwie technologie wytwarzania proszków w przemyśle farmaceutycznym. Pierwsza z nich polega na wykorzystaniu zjawiska obniżania rozpuszczalności związków chemicznych w rozpuszczalnikach organicznych przez dodatek płynu w stanie nadkrytycznym. Opis procesu wymaga wykorzystania metod modelowania przebiegu procesów precypitacji z roztworów wodnych w połączeniu zarówno z opisem złożonych zależności termodynamicznych charakteryzujących płyny ściśliwe, jak i ze specyficznym opisem przepływu i mieszania burzliwego. Kluczowym elementem tej części pracy jest metoda zamknięcia równań bilansowych opisujących przebieg procesu precypitacji przy użyciu płynów w stanie nadkrytycznym. Do modelowania własności produkowanych proszków zastosowano procedurę rekonstrukcji rozkładu rozmiaru cząstek. Druga rozważana metoda stanowi połączenie procesu zamrażania rozpyłowego z suszeniem próżniowym i jest stosowana do bezpiecznej produkcji sproszkowanych substancji bioaktywnych. Polega ona na jednoczesnej atomizacji i zamrażaniu wodnego roztworu wytrącanej substancji w wyniku szybkiego rozprężenia silnie sprężonej mieszaniny dwufazowej zawierającej dwutlenek węgla w stanie ciekłym lub nadkrytycznym. W tej części pracy opracowano metodę opisu wpływu burzliwości przepływu i rozprężania mieszaniny na przebieg procesów dyspersji oraz zamarzania kropel roztworu wodnego. Zaproponowana metoda modelowania przebiegu procesu nie wymaga stosowania stałych dopasowujących wyniki obliczeń do danych doświadczalnych, co świadczy o jej uniwersalnym charakterze. Wynikiem niniejszej pracy jest opracowanie metod opisu matematycznego przebiegu procesów wytwarzania proszków dla dwóch technologii przemysłu farmaceutycznego. Zaproponowane modele matematyczne rozważanych procesów zostały zweryfikowane poprzez zastosowanie ich do interpretacji i przewidywania wyników badań doświadczalnych. Wykazano, że zastosowanie przedstawionych metod modelowania pozwala na przewidywanie wpływu warunków prowadzenia procesów precypitacji na własności wytwarzanych proszków. W aspekcie praktycznym wyniki niniejszej pracy mogą zostać wykorzystane jako narzędzia użyteczne do projektowania i optymalizacji technologii wytwarzania farmaceutyków w formie proszków.
EN
The work is focused on the methods of modellling in the influence of turbulence on the course of particle formation processes with the use of supercritical fluids (SCF). Application of supercritical fluid technologies enables production of ultrafine (micro- or nanosized) powders of high purity and narrow particle size distribution. Moreover, supercritical fluids are easily separated form crystalline products providing clean and recycable technologies. This causes that particle formation is presently considered one of the major developments of supercritical fluids technologies, mainly in the pharmaceutical, nutraceutical and cosmetic industries. In particular, the pharmaceutical industry aims at producing ultrafine particles to use as powderized drugs administered by various routes including inhalation and oral modes. As the first process, supercritical antisolvent precipitation is considered. The principle of this method relies in sharp decrease of the power of the liquid solvent by addition of a supercritical fluid in which the solute is insoluble. Particle size distribution of the solid product can be controlled by adjusting the rate of mixing of fluids, as well as the rate of addition of the antisolvent. Depending on the process conditions, the resulting mixture forms homo- of heterogeneous systems. The general model of antisolvent precipitation in turbulent field for homogeneous systems is presented. The method combines the non-equilibrium model for scalar dissipation with the conditional moment closure based on probability density function Beta (the Beta PDF). The main idea of the model is based on expressing the local concentration of the precipitated substance as a function of dimensionless concentration of the solvent interpreted as a passive scalar and application of the single precipitation progress variable. The presented PDF method has been verified experimentally. The results of numerical simulations have been compared with experimental data for precipitation of paracetamol from the ethanol solution with the use of carbon dioxide as an antisolvent. The second method considered in this work is spray-freezing with compressed carbon dioxide. The process is suitable for processing proteins, antibodies, vaccines, dry powder aerosols and nanoparticles. During the process, liquid droplets of the solution are first dispersed within supercritical CO2 and then frozen in Joule-Thomson's expansion cooling. The most important stage of the process directly determining the final particle size and structure atomization of the aqueous solution of the precipitated substance. The work is particulary focused on modelling the influence of turbulence on the course of aqueous droplet dispersion and solidification process. Two mechanisms of droplet breakup are taken into account, namely Rayleigh-Taylor instablities and activity of turbulent stresses. The proposed procedure enables indentification of the flow field of the mixture, the distribution of temperature of the dispersed phase and the position in the system where the droplet starts to freeze. Finally, the method enables to predict the average size of frozen droplets, which is comparable with the size of produced solid particles. In modelling complex processes of particle formation using supercritical fluids, the different aspects, such as thermodynamics, fluid dynamics and precipitation kinetics, are complementary and provide a comprehensive process description only when cosidered together. The mathematical models presented in this work after implementation into the commercial CFD software constitute complete numerical procedures useful for prediction of the course of particle formation processes. In practical applications, these methods can be applied in optimization and scaling-up of industrial supercritical fluid technologies.
Rocznik
Strony
3--202
Opis fizyczny
Bibliogr. 333 poz., tab., rys., wykr.
Twórcy
autor
  • Zakład Mechaniki Technicznej i Dynamiki Procesowej
Bibliografia
  • Abdoul W., Rauzy E., Peneloux A., 1991: Group-contribution equation of state for correlating and predicting thermodynamic properties of weakly polar and non-associating mixtures. Binary and multicomponent systems, Fluid Phase Equilib., 68, 47-102.
  • Akyurt M., Zaki G., Habeebullah B., 2002: Freezing phenomena in ice-water systems, Energy Conv. Management, 43, 1773-1789.
  • Alvarez-Roman R., Naik A., Kalia Y.N., Guy R.H., Fessi H., 2004: Skin penetration and distribution of polymeric nanoparticles, J. Control. Release, 99, 53-62.
  • Anderko A.J., 1990: Equation of state methods for the calculation of fluid phase equilibria, Fluid Phase Equilib., 61, 145-158.
  • Artal M., Munoz E.J., Velasco I., Berro C., Rauzy E., 2001: Representation for binary mixtures of n-alcohols + sub and supercritical CO, by a group-contribution method, Fluid Phase Equilib., 178, 119-130.
  • Asghari-Khiavi M., Yamini Y., 2003: Solubility of the drugs bisacodyl, methimazole, methyl-paraben, and iodoquinol in supercritical carbon dioxide, J. Chem. Eng. Data, 48(1), 61-65.
  • Ashour I., Aly G., 1996: Effect of computation techniques for equation of state binury interaction parameters on the prediction of binary VLE data, Comp. Chem. Eng., 20, 79-91.
  • Aslund B.L., Rasmuson A.C., 1992: Semibatch reaction crystallization of benzole acid, AIChE J., 38, 328-342.
  • Astrakharchik-Farrimond E., Shekunov B.Y., York P., Sawyer N.B.E., Morgan S.P., Somekh M.G., See C.W., 2002: Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry, Exp. Fluids, 33, 307-314.
  • Badilla J.C., Peters C.J., Arons J.D.S., 2000: Volume expansion in relation to the gas antisolvent process, J. Supercrit. Fluids, 17(1), 13-23.
  • Badilla J.C., Shariati A., Peters C.J., 2004: On the selection of optimum thermodynamic conditions for the GAS process, J. Supercrit. Fluids, 32, 55-61.
  • Bahrami M., Ranjbarian S., 2007: Production of micro- and nanocomposite particles by supercritical carbon dioxide, J. Supercrit. Fluids, 40, 263-283.
  • Bałdyga J., 1988: O mechanizmie i modelach mikromieszania cieczy w układach z przepływem burzliwym. Prace Instytutu Inżynierii Chemicznej i Procesowej PW, Wydawnictwa Politechniki Warszawskiej, t. XVII, z. 1-2.
  • Bałdyga J., 1989: Turbulent mixer model with application to homogeneous instantaneous chemical reactions, Chem. Eng. Sci., 44, 1175-1182.
  • Bałdyga J., 1994: A closure model with application to homogeneous chemical reactions, Chem. Eng. Sci., 49, 1985-1992.
  • Bałdyga J., Bourne J.R., 1989: Simplification of micromixing calculations. I. Derivation and application of new model, Chem. Eng. Sci., 42, 83-92.
  • Bałdyga J., Bourne J.R., 1995: Interpretation of turbulent mixing using fractals and multifractals, Chem. Eng. Sci., 50, 381-400.
  • Bałdyga J., Bourne J.R., 1999: Turbulent mixing and chemical reactions, Wiley, Chichester.
  • Bałdyga J., Bourne J.R., Hearn S.J, 1997a: Interactions between chemical reactions and mixing on various scales, Chem. Eng. Sci., 52, 457-466.
  • Bałdyga J., Bourne J.R., Pacek A.W., Amanullah A, Nienow A.W., 2001a: Effect of agitation and scale-up on drop size in turbulent dispersions: allowance for intermittency, Chem. Eng. Sci., 56, 3377-3385.
  • Bałdyga J., Henczka M., 1997: Turbulent mixing and parallel chemical reactions in a pipe - application of a closure model, Recent Progress en Genie des Procedes, 11(51), 341-348.
  • Bałdyga J., Henczka M., 2003: Particle elaboration using supercritical media for drug delivery into the human lungs, (w:) Optimization of Aerosol Drug Delivery, Gradoń L., Marijnissen J. (editors), Kluwer Academic Publishers, Dordrecht, Boston, London.
  • Bałdyga J., Henczka M., Krasiński A., 2003a: Procesy redyspersji i mikromieszania oraz koalescencji i redyspersji w reaktorach wielofazowych, (w:) Reaktory wielofazowe i wielofunkcyjne dla podstawowych procesów chemicznych, biotechnologicznych i ochrony środowiska, Argi, Wrocław.
  • Bałdyga J., Henczka M., Orciuch W., 1997b: Closure problem for mixing and precipitation in inhomogeneous turbulent flow, Acta Polytechnica Scandinavica, Chem. Technology Series, 244, 41-43.
  • Bałdyga J., Henczka M., Shekunov B.Y., 2004: Particle formation in supercritical fluids, (w:) Supercritical Fluid Technology for drug development, York P., Kompella U.B., Shekunow B.Y. (Editors), Marcel Dckker, New York, Basel, 91-158.
  • Bałdyga J., Jasińska M., Krasiński A., Kubicki D., Franke D., Goesele W., Welker S., Zauner R., 2001 b: Mixing Effects in Precipitation-Aggregation Problem, Proceedings of 4th International Symposium on Mixing in Industrial Processes, Toulouse (France), paper 11, 75.
  • Bałdyga J., Krasiński A., Jasińska M., Rożen A., 2003b: Agitation and mixing effects in agglomerative precipitation, Proceeding of 11th European Conference on Mixing, Bamberg (Niemcy), 87-94.
  • Bałdyga J., Orciuch W., 1997: Closure problem for precipitation, Trans. Inst. Chem. Eng., 75A, 160-170.
  • Bałdyga J., Orciuch W., 2001a: Some hydrodynamics aspects of precipitation, Powder Technol., 121, 9-19.
  • Bałdyga J., Orciuch W., 2001b: Barium sulphate precipitation in a pipe - an experimental study and CFD modeling, Chem. Eng. Sci., 56, 2435-2444.
  • Bałdyga J., Podgórska W., 1998: Drop break-up in intermittent turbulence: Maximum stable and transient sizes of drops, Canad. J. Chem. Eng., 76, 456-470.
  • Bałdyga J., Podgórska W., Pohorecki R. 1995: Mixing-precipitation model with application to double feed semibatch precipitation, Chem. Eng. Sci., 50(8), 1281-1300.
  • Bardsley W.E., Khatep M.M., 1984: A general model for temperatures of heterogeneous nucleation of supercooled water droplets, J. Atm. Sci., 41(5), 856-862.
  • Bartle K.D., Clifford A.A., Jafar S.A., Shilstone G.F., 1991: Solubilities of solids and liquids of low volatility in supercritical carbon dioxide, J. Phys. Chem. Ref. Data, 20(4), 713-756.
  • Bechtold-Peters K., Luessen H., 2007: Pulmonary Drug Delivery, Editor Cantor Verlag, Aulendorf (Germany).
  • Becker G.W., Larson M.A., 1969: Mixing effects in continuous crystallization, Chem. Eng. Prog. Symp. Ser. 65, 14-23.
  • Berna A., Chafer A., Monton J.B., 2001: High-pressure solubility data of the system resvertrol(3)+ethanol (2)+CO2(1), J. Supercrit. Fluids, 19, 133-139.
  • Bertucco A., Lora M., Kikic I., 1998: Fraction Crystallization by Gas Antisolvent Technique: Theory and Experiments, AIChE J., 44(10), 2149-2158.
  • Bilger R., 1989: Turbulent diffusion flames, Ann. Rev. Fluid Mech., 21, 101-135.
  • Borg P., Jaubert J.-N., Denet F., 2001: Solubility of a-tetralol in pure carbon dioxide and in a mixed solvent formed by ethanol and carbon dioxide, Fluid Phase Equilib., 191, 59-69.
  • Bouchard A., Jovanovic N., Jiskoot W., Mendes E., Witkamp G.J., Crommelin D.J.A.. Hofland G.W., 2007: Lysosyme particle formation during supercritical fluid drying: Particle morphology and molecular integrity, J. Supercrit. Fluids, 40, 293-307.
  • Brennecke J.F., Eckert C.A., 1989: Phase equilibria for supercritical fluid process design, AIChE J., 35, 1409-1425.
  • Bretsznajder S., 1962: Właściwości gazów i cieczy, WNT, Warszawa.
  • Bristow S., Shekunov T., Shekunov B., York P., 2001a: Analysis of the supersaturation and precipitation process with CO2, J. Supercrit. Fluids, 21, 257-271.
  • Bristow S., Shekunov B., York P., 2001b: Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems, Ind. Eng. Chem. Res., 40, 1732-1739.
  • Burgos-Solorzano G.I., Brennecke J.F., Stadtherr M.A., 2004: Solubility measurements and modeling of molecules of biological and pharmaceutical interest with supercritical CO2, Fluid Phase Equilib., 220, 57-69.
  • Burton W.K., Cabrera N., Frank F.C., 1951: The growth of crystals and the equilibrium structure of their surfaces, Phil. Trans. Roy. Soc. London, Ser. A 243, 299-358.
  • Bustami R.T., Chan H.K., Dehghani F., Foster N.R., 2000: Generation of micro-particles of proteins for aerosol delivery using high pressure modified carbon dioxide, Pharm. Res., 17, 1360-1366.
  • Caballero A.C., Hernandez L.N., Estevez L.A., 1992, Calculation of interaction parameters for binary solid-scf equilibria using several EOS and mixing rules, J. Supercrit. Fluids, 5, 283-295.
  • Calabrese R.V., Chang R.V., Dang P.T., 1986: Drop breakup in turbulent stirred-tank contactors. Part I. Effect of dispersed phase velocity, AIChE J., 32, 657-666.
  • Catchpole O.J., Tallon S.J., Dyer P.J, Lan J.-S., Jensen B., Rasmussen O.K., Grey J.B., 2005: Measurements and modelling of urea solubility in supercritical CO2 and CO2+ethanol mixtures, Fluid Phase Equilib., 237, 212-218.
  • Chafer A., Fornari T., Berna A., Stateva R.P., 2004: Solubility of quercetin in supercritical CO2+ethanol as a modifier: measurements and thermodynamic modeling, J. Supercrit. Fluids, 32, 89-96.
  • Chan H.-K., 2003: Inhalation drug delivery devices and emerging technologies, Exp. Opin. Ther. Patents, 13, 1333-1343.
  • Chan H.-K., Chew N.Y.K., 2003: Novel alternative methods for the delivery of drugs for the treatment of asthma, Adv. Drug Deliv., Rev., 55, 793-805.
  • Chan H.-K., Clark A.R., Feeley J.C., Kuo M.C., Lehrman S.R., Cleland K.P., Miller D.P., Vehring R., Ballesteros D.L., 2004: Physical stability of salmon calcitonin spray-dried powders of inhalation, J. Pharm. Sci., 93, 792-804.
  • Chang C.J., Day C.-Y., Ko C.-M., Chiu K.-L., 1997: Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures, Fluid Phase Equilib., 131, 243-258.
  • Chang C.J., Kou-Lung C., Chang-Yih D., 1998: A new apparatus for the determination of P-x-y diagrams and Henry's constants in high pressure alcohols with critical carbon dioxide, J. Supercrit. Fluicls, 12, 223-237.
  • Chang C.J., Randolph A.D., 1990: Solvent expansion and solute solubility predictions in gas-expanded liquids, AIChE J, 36(6), 939-942.
  • Charbit G., Badens E., Boutin O., 2004: Methods of Particle Production, (w:) Supercritical Fluid Technology for drug development, York P., Kompella U.B., Shekunow B.Y. (Editors), Marcel Dekker, New York, Basel, 159-212.
  • Chattopadhyay P., Gupta R.B., 2001: Production of antibiotic nanoparticles using supercritical CO, as antisolvent with enhanced mass transfer, Ind. Eng. Chem. Res., 40, 3530-3539.
  • Chawla A., Taylor K.M.G., Newton J.M., Johnson M.C.R., 1994: Production of spray dried salbumatmol sulfate for use in dry powder aerosol formulation, Int. J. Pharm., 108, 233-240.
  • Chen C., Riley J.J., McMurthy P.A., 1991: A Study of Favre averaging in turbulent flows with chemical reaction, Comb. Flame, 87, 257-277.
  • Cheng Y., Lien F.S., Yee E., Sinclair R., 2003: A comparison of large eddy simulation with a standard k-e Reynolds-averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matric of cubes, J. Wind Eng. Ind. Aerodyn., 91, 1301-1328.
  • Chow A.H.L., Tong H.H.Y., Chattopadhyay P., Shekunov B.Y., 2007: Particle engineering for pulmonary drug delivery, Pharm. Res., 24, No. 3, 411-437.
  • Chrastil J., 1982: Solubility of solids and liquids in supercritical gases, J. Phys. Chem., 86, 3016-3021.
  • Christensen J.J., Izatt R.M., Zebolsky D.M., 1987: Heats of mixing in the critical region, Fluid Phase Equilib., 38, 163-193.
  • van Cleew J.L, 1991: Powder Technology, Am. Sci., 79, 304-315.
  • Constantinou L., Gani R., O'Connel J.P., 1995: Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method, Fluid Phase Equilib., 103, 11-22.
  • Cordray D.R., Izatt R.M., Christensen J.J., Oscarson J.L., 1988: The excess enthalpies of (carbon dioxide + ethanol) at 308.15, 325.15, 373.15, 413.15 and 473.15 K from 5.00 to 14.91 MPa, J. Chem. Thermodynamics, 20, 655-663.
  • Costantini H.R., Firouzabadian L., Hogeland K., Wu C., Beganski C., Carasquillo K.G., Cordova M., Griebienow K., Zale S.E., Tracy M.A., 2000: Protein spray-freeze drying. Effect of atomization conditions on particle size and stability, Pharm. Res., 17, 1374-1383.
  • Coulaloglou C.A., Tavlarides L.L., 1977: Description of interaction processes in agitated liquid-liquid dispersions, Chem. Eng. Sci., 32, 1289-1297.
  • Courrier H.M., Butz N., Vandamme T.F., 2002: Pulmonary drug delivery: recent developments and prospects, Crit. Rev. Ther. Drug, 19, 425-498.
  • Dai W., Kojima K., Ochi K.,1999: Measurement and correlation of excess molar enthalpies of CO2 + CH3OH system in the vicinity of critical point of carbon dioxide, J. Chem. Eng. Data, 44, 161-164.
  • Dai W., Kojima K., Ochi K., 2000: Measurement and correlation of excess molar enthalpies of carbon dioxide +2-butanol and 2-propanol systems at the temperatures 303.15 K and 308 K and at pressures from 7.0 to 8.5 MPa, J. Chem. Eng. Data, 45, 6-10.
  • Dai W., Ochi K., Kojima K., 1998: Excess enthalpy data in binary systems containing a supercritical fluid and their correlation, J. Chem. Eng. Data, 43, 687-694.
  • Danckwerts P.V., 1958: The effect of incomplete mixing on homogeneous reactions, Chem. Eng. Sci., 8, 93-101.
  • David R., Marchal P., Klein J.P., Villermaux J., 1991: Crystallization and precipitation engineering - iii. A discrete formulation of the agglomeration rate of crystals in a crystallization process, Chem. Eng. Sci., 46(1), 205-213.
  • Davis J.T., 1987: A physical interpretation of drop sizes in homogenizers and agitated tanks including the dispersion of viscous oils, Chem. Eng. Sci., 42, 1671-1676.
  • Debenedetti P., Tom J.W., Yeo S.D., Lim G.B., 1993: Application of supercritical fluids for the production of sustained delivery devices, J. Control. Release, 24, 27-44.
  • Diefenbacher A., Crone M., Turk M., 1998: Critical properties of CO2, CHF3, SF6, (CO2+CHF,), and (CHF3+SF6), J. Chem. Thermodynamics, 30, 481-496.
  • Dillow A.K., Dehghani F., Foster N., 1997: Production of polymeric support materials using a supercritical fluid gas antisolvent, Proceedings of the 4th International Symposium on Supercritical Fluids, Sendai (Japan), 247-250.
  • Dirksen J.A., Ring T.A., 1991: Fundamentals of Crystallization kinetic effects on particle size distributions and morphology, Chem. Eng. Sci., 46, 2389-2427.
  • Dixon D.J., Johnston K.P., 1991: Molecular thermodynamics of solubilities in gas antisolvent crystallization., AIChE J., 37(10), 1441-1449.
  • DoMain L., Coxam J.-Y., Quint J.R., Grolier J.-P.E., Lemmon E.W., Penoncello S.G., 1995: Isobaric heat capacities of carbon dioxide and argon between 323 and 423 K and at pressures up to 25 MPa, J. Supercrit. Fluids, 8, 228-235.
  • Domingo C., Berends E., van Rosmalen G.M., 1997: Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle, J. Supercrit. Fluids, 10, 39-55.
  • Duarte, A.R.C., Coimbra P., de Sousa H.C., Duarte C.M.M., 2004: Solubility of flurbiprofen in supercritical carbon dioxide, J. Chem. Eng. Data, 49(3), 449-452.
  • Dymond J.H., Smith E.B., 1980: The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation, Clarendon Press, Oxford.
  • Ekart M.P., Bennett K.L., Ekart S.M., Gurdial G.S., Liotta C.L., Eckert C.C., 1993: Cosolvent interactions in supercritical fluid solutions, AIChE J., 39 (2), 235-244.
  • Elversson J., Fureby A.M., 2005: Particle size and density in spray drying - effects of carbohydrate properties, J. Pharm. Sci., 94, 2049-2060.
  • Elversson J., Fureby A.M., Alderborn G., Elofsson U., 2003: Droplet and particle size relation-ship and shell thickness of inhalable lactose particles during spray drying, J. Pharm. Sci., 92, 900-910.
  • Engstrom J.D., Simpson D.T., Lai E.S., Wiliams III R.O., Johnston K.P., 2007: Morphology of protein particles produced by spray freezing of concentrated solutions, Eur. J. Pharm. Biopharm., 65, 149-162.
  • Escobedo F.A., Chen Z., 2001: Simulation of isoenthalps and Joule-Thomson inversion curves of pure fluids and mixtures, Mol. Simulat., 26, 395-416.
  • Escobedo-Alvarado G.N., Sandler S.I., Scurto A.M., 2001: Modeling of solid - supercritical fluid phase equilibria with a cubic equation of state - Gex model, J. Supercrit. Fluids, 21, 123-134.
  • Fages J., Lochard H., Letourneau J.-J., Sauceau M., Rodier E., 2004: Particle generation for pharmaceutical applications using supercritical fluid technology, Powder Technol., 141, 219-226.
  • Fenghour A., Wakehain W.A., Vesovic V., 1998: The Viscosity of Carbon Dioxide, J. Phys. Chem. Ref. Data, 27, 31-44.
  • Feuillebois F., Lasek A., Creismeas P., Pigeonneau F., Szaniawski A., 1995: Freezing of a sub-cooled liquid droplet, J. Coll. Interface Sci., 169, 90-102.
  • Fitchett D.E., Tarbell J.M., 1990: Effect of mixing on the precipitation of barium sulphate in an MSMPR reactor, AIChE J., 36, 511-522.
  • Fox R.O., 2003: Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge.
  • Gallagher P.M., Coffey M.P., Krukonis V.J., Klasutis N., 1989: Gas antisolvent recrystallization: new process to rccrystalize compounds insoluble in supercritical fluids, (w:) Supercritical Fluid Science and Technology, ACS Symp. Ser. 406, 334-354.
  • Garnier S., Neau E., Alessi P., Cortesi A., Kikic I., 1999: Modelling solubility of solids in supercritical fluids using fusion properties, Fluid Phase Equilib., 158, 491-500.
  • Garside J., 1985: Industrial crystallization from solution, Chem. Eng. Sci., 40, 3-26.
  • Garside J., Tavare N.S., 1985: Mixing, reaction and precipitation limits of micromixing in an MSMPR crystallizers, Chem. Eng. Sci., 40, 1485-1493.
  • Gavi E., Marchisio D.L., Baressi A.A., 2007: CFD modelling and scale-up of Confined Impinging Jet Reactors, Chem. Eng. Sci., 62, 2228-2241.
  • Godinas A., Henriksen I.B., Krukonis V.J., Mishra K.A., Pace G.W., Vachon G.M., 1998: Processes to generale submicron particles of water-insolube compounds. Patent US 0089852.
  • Gordillo M.D., Blanco M.A., Molero A„ de la Martinez O.E.J, 1999: Solubility of the antibiotic penicilin G in supercritical carbon dioxide, J. Supercrit. Fluids, 15, 183-190.
  • Gordillo M.D., Blanco M.A., Pereyra C., de la Martinez O.E.J, 2005: Thermodynamic modelling of supercritical fluid-solid phase equilibrium data, Comp. Chem. Eng., 29, 1885-1890.
  • Gradoń L., Marijnissen J., 2003: Optimization of Aerosol Drug Delivery, Kluwer Academic Publishers, Dordrecht, Boston, London.
  • Graser F., Wickenhauser G., 1982: Conditioning of finely divided crude organic pigments, Patent US 4451654.
  • Granberg, R.A., Rasmuson A.C., 1999: Solubility of paracetamol in pure solvents, J. Chem. Eng. Data, 44(6), 1391-1395.
  • Greenberg J.B., Ronney P.D., 1993: Analysis of Lewis number effccts in flame spread, Int. J. Heat Mass Transfer, 36(2), 315-323.
  • Gruszkiewicz M.S., Ott J.B., Sipowska J.T., 1993: Excess enthalpies for (ethane + chloromethane) at the temperatures (298.15, 323.15, 348.15, and 363.15 K) and pressures from 5 MPa to 16 MPa, J. Chem. Thermodynamics, 25, 1017-1029.
  • Hakuta Y., Hayashi H., Arai K., 2003: Fine particle formation using supercritical fluids, Curr. Opin. Solid-State Mater. Sci., 7, 341-351.
  • Han S.J., Lin H.M., Chao K.C., 1988: Vapor-liquid equilibrium of molecular fluid mixtures by equation of state, Chem. Eng. Sci., 43, 2327-2367.
  • Hanna M., York P., 1995: Method and apparatus for the formation of particles. Patent WO 95/01 221.
  • Harstad K., Bellan J., 1999: The Lewis number under supercrtitical conditions, Int. J. Heat Mass Transfer, 42, 961-970.
  • Hauser R.A., Zhao J.P., Tremaine P.R., Mather A.E., 1996: Excess molar enthalpies of six (carbon dioxide + a polar solvent) mixtures at the temperatures 298.15 K and 308.15 K and pressures from 7.5 MPa to 12.6 MPa, J. Chem. Thermodynamics, 28, 1303-1317.
  • Havelund S., 2001: Pulmonary insulin crystals, United States Patent 6310038.
  • Henczka M., 1997: Wpływ mieszania burzliwego na przebieg homogenicznych reakcji chemicznych - hipoteza zamykająca. Rozprawa doktorska, WIChiP PW.
  • Henczka M., 2004: Zastosowanie CFD do modelowania mieszania w procesie precypitacji z użyciem płynów w stanie nadkrytycznym, Inż. Chem. i Proc., 25, 1005-1010.
  • Henczka M., 2007: Modelling of particle formation processes using supercritical fluid technology, Inż. Chem. i Proc., 28, 1067-1078.
  • Henczka M., Bałdyga J., 2004: Wytrącanie cząstek stałych w przepływie burzliwym z użyciem płynów w stanie nadkrytycznym, Inż. Chem. i Proc., 25, 1011-1016.
  • Henczka M., Bałdyga J., 2006a: Modelling of influence of turbulent mixing on the course of spray-freeze drying process, Inż. Chem. i Proc., 27, 321-334.
  • Henczka M., Bałdyga J., 2006b: Modelowanie procesów zamrażania rozpyłowego za pomocą płynów w stanie nadkrytycznym, Inż. Chem. i Proc., 27, 59-73.
  • Henczka M., Bałdyga J., 2006c: Modelling of mixing effects on the course of spray-freezing process, Proceedings of 12th European Conference on Mixing, 27-30 June 2006: Bologna (Italy).
  • Henczka M., Bałdyga J., Shekunov B.Y., 2005: Particle formation by turbulent mixing with supercritical antisolvent, Chem. Eng. Sci., 60, 2193-2201.
  • Henczka M., Bałdyga J., Shekunov B.Y., 2006: Modelling of spray-freezing with compressed carbon dioxide, Chem. Eng. Sci., 61, 2880-2887.
  • Henry S., McAllister D.V., Allen M.G., Prausnitz M.R., 1998: Microfabricated microneedles: a novel approach to transdermal drug delivery, J. Pharm. Sci., 87, 922-925.
  • Hindmarsh J.P., Russell A.B., Chen X.D., 2003: Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet, Int. J. Heat Mass Trans., 46, 1199-1213.
  • Hindmarsh J.P., Russell A.B., Chen X.D., 2004: Experimental and numerical analysis of the temperature transition of a freezing food solution droplet, Chem. Eng. Sci., 59, 2503-2515.
  • Hindmarsh J.P., Russell A.B., Chen X.D., 2007: Fundamentals of the spray freezing of foods - microstructure of frozen droplets, J. Food. Eng., 78, 136-150.
  • Hinze J.O., 1955: Fundamentals of the hydrodynamic mechanism of splitting in dispersion process, AIChE J., 1, 289-295.
  • Hinze J.O., 1975: Turbulence, McGraw-Hill, New York.
  • Hounslow M.J., Mumtaz H.S., Collier A.P., Barrick J.P., Bramsley A.S., 2001: A micromechanical model for the rate of aggregation during precipitations from solutions, Chem. Eng. Sci., 56, 2543-2552.
  • Huang Z., Chiew Y.C., Lu W.-D., Kawi S., 2005: Solubility of aspirin in supercritical carbon dioxide/alcohol mixtures, Fluid Phase Equilib., 237, 9-15.
  • Hulburt H.M., Katz S., 1964: Some problems in particle technology - a statistical mechanical formulations, Chem. Eng. Sci., 19, 555-574.
  • Ikegami K., Kawashima Y., Takeuchi H., Yamamoto H., Isshiki N., Momose D.L, Ouchi K., 2002: Primary crystal growth during spherical agglomeration in liquid: designing an ideal dry powder inhalation system, Powder Technol., 126, 266-274.
  • Jang S.H., Wientjes M.G., Lu D., Au J.L.-S., 2003: Drug Delivery and Transport to Solid Tumors, Pharm. Res., 20, 1337-1348.
  • Jaubert J.-N., Mutelet F., 2004: VLE predictions with the Peng-Robinson equation of stale and temperature dependent kij calculated through a group contribution method, Fluid Phase Equilib., 224, 285-304.
  • Jaworski Z., 2005: Numeryczna mechanika płynów w inżynierii chemicznej i procesowej, Akademicka Oficyna Wydawnicza EXIT.
  • Jennings D.W., Lee R.J., Teja A.S., 1991: Vapor-liquid equilibria in the carbon+ethanol mixture at high pressure, J. Chem. Eng. Data, 36, 303-307.
  • Johnson K.A., 1997: Preparation of peptide and protein powders for inhalation, Adv. Drug Deliv. Rev., 26, 3-15.
  • Johnston K.P., Peck D.G., Kim S., 1989: Modelling supercritical mixtures: how predictive is it?, Ind. Eng. Chem. Res., 28, 1115-1125.
  • Joseph D.D., Belanger J., Beavers G.S., 1999: Breakup of a liquid drop suddenly exposed to a high-speed airstream, Int. J. Multiphase Flow, 25, 1263-1303.
  • Jouyban A., Chan H.-K., Foster N.R., 2002: Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expressions, J. Supercrit. Fluids, 24, 19-35.
  • Jovanovic N., Bouchard A., Hofland G.W., Witkamp G.J., Crommelin D.J.A., Jiskoot W., 2006: Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying, Eur. J. Pharm. Sci., 27, 336-345.
  • Jung J., Perrut M., 2001: Particle design using supercritical fluids: literature and patent survey, J. Supercrit. Fluids, 20, 179-219.
  • Kerč J., Srčič A., Knez Z., Senčar-Božić P., 1999: Micronization of drugs using supercritical carbon dioxide, Int. J. Pharm., 182, 33-39.
  • Kikic L, Lora M., Bartucco A., 1997: Thermodynamic analysis of three phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS) and supercritical antisolvent (SAS), Ind. Eng. Chem. Res., 36, 5507-5515.
  • Kiselev B., Ely J.F., 2004: Generalized crossover description of the thermodynamic and transport properties in pure fluids, Fluid Phase Equilib., 222-223, 149-159.
  • Knez Z., Weidner E., 2003: Particle formation and particle design using supercritical fluids, Curr. Opin. Solid-State Mater. Sci., 7, 353-361.
  • Knox D.E., 2005: Solubilities in supercritical fluids, Pure Appl. Chem., 77(3), 513-530.
  • Kolasinska G., 1986: Correlation and prediction of VLE and LLE by empirical EOS, Fluid Phase Equilib., 27, 289-308.
  • Kołmogorov A.N., 1941, Dissipation of energy in locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 32, 16-18 (przedruk: 1991, Proc. R. Soc. London, A 434, 15-17).
  • Kołmogorov A.N., 1949: Disintegration of droplets in turbulent flows, Dokl. Akad. Nauk SSSR, 66, 825-828.
  • Konno M., Aoki M., Saito S., 1983: Scale effect on breakup process in liquid-liquid agitated tanks, J. Chem. Eng, Japan, 16, 312-319.
  • Kordikowski A., Schenk A.P., van Nielen R.M., Peters C.J., 1995. Volume expansion and vapour-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents, J. Supercrit. Fluids, 8, 205-216.
  • Korlekaas W.G., Peters C.J., de Swaan Arons J., 1997: Joule-Thomson expansion of high-pressure-high temperature gas condensates, Fluid Phase Equilib., 139, 205-218.
  • Kozioł A., 2005: Zastosowanie różnych równań stanu do opisu płynów w obszarze nadkrytycznym, Inż. Chem. i Proc., 26, 727-734.
  • Kraska T., Quinones-Cisneros S.E., Deiters U.K., 2007: Correlation of binary diffusion coefficient of organic substances in supercritical carbon dioxide based on equations of state, J. Supercrit. Fluids, 42, 212-218.
  • Kreyling W.G., Semmler-Behnke M., Moller W., 2006: Health implications of nanoparticles, J. Nanoparticle Res., 8, 543-562.
  • Krukonis V., 1984: Supercritical fluid nucleation of difficult-to-comminute solids, Proceedings of the Annual Meeting AIChE, paper 140f, T-214.
  • Kubicki D., 2006: Mixing effects in precipitation induced by mixing with supercritical fluids, Rozprawa doktorska, WIChiP PW.
  • Kumar S., Kumar R., Gandhi K.S., 1992: A multi-stage model for drop breakup in stirred vessels, Chem. Eng. Sci., 47, 971-980.
  • Kumar S., Tamaru T., 1997: Computation of turbulent reacting flow in a jet assisted ram combustor, Comp. Fluids, 26, 117-133.
  • Lai C.-C., Tan C.-S., 1993: Measurements of effective diffusivities of toluene in activated carbon in the presence of supercritical carbon dioxide, Ind. Eng. Chem. Res., 32, 1717-1722.
  • Larhrib H., Zeng X.M, Martin G.P., Mariott C., Pritchard J., 1999: The use of different grades of lactose as a carrier for aerosolized salbutamol sulfate, J. Pharm. Sci., 191, 1-14.
  • Launder B.E., Spalding D.B., 1972: Lectures in Mathematical Models of Turbulence, Academic Press, London, New York.
  • Launder B.E., Sandham N.D., 2002: Closure Strategies for Turbulent and Transitional Flows, Cambridge University Press, Cambridge.
  • Leach W.T., Simpson D.T., Val T.N., Anuta A.C., Yu Z.S., William III O.B., Johnston K.P., 2005: Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release, J. Pharm. Sci., 94, 56-69.
  • Lesieur M., 1997: Turbulence in Fluids, Kluwer Academic Publishers, Dordrecht.
  • Leuenberger H., 2002: Spray freeze-drying - the process of choice for low water soluble drugs?, J. Nanoparticle Res., 4, 111-119.
  • Lin C.J., Lee K.J., Sather N.F., 1970: Slow motion of two spheres in a linear shear field, J. Fluid Mech., 43, 35-47.
  • Loth H., Heemgesberg E., 1986: Properties and dissolution of drugs micronized by crystallization from supercritical gases, Int. J. Pharm., 32, 265-267.
  • Lou H., Miller R.S., 2001: On the scalar probability density function transport equation for binary mixing in isotropic turbulence at supercritical pressure, Physics of Fluids, 13, 3386-3399.
  • Maa Y.-F., Nguyen P.-A., 2001: Method of spray freeze drying proteins for pharmaceutical administration, Patent US 6284282.
  • Maa Y.-F., Nguyen P.-A., Sweeney T., Shire S.J., Hsu C.C., 1999: Protein inhalation powders: spray drying vs. spray freeze drying, Pharm. Res., 16, 249-254.
  • McDiffett D., 2004: Thermodynamic Modeling of Binary and Ternary Systems of Interest to Gas Antisolvent Precipitation, M.Sc. Thesis, North Carolina State University, Raleigh, North Carolina (USA).
  • McHugh M., Paulaitis M.E., 1980: Solid solubilities of naphthalene and biphenyl in supercritical carbon-dioxide, J. Chem. Eng. Data, 25(4), 326-329.
  • Maghari A., Matin N.S., 1997: Prediction of Joule-Thomson inversion curves from van der Waals type equations of state, J. Chem. Eng. Jpn., 30, 520-525.
  • Maghari A., Hosseinzadeh-Shahri L., 2003: Evaluation of the performance of cubic equations of state in predicting the regularities in dense fluids, Fluid Phase Equilib., 206, 287-311.
  • Malanowski S., Anderko A., 1992: Modeling Phase Equilibria, Wiley, New York.
  • Mantell C., Rodriguez M., Martinez de la Ossa E., 2004: Estimation of the diffusion coefficient of a model food dye (malvidin 3,5-diglucoside) in a high pressure CO2-methanol system, J. Supercrit. Fluids, 29, 165-173.
  • Marcant B., David R., 1991: Experimental evidence for and prediction of micromixing effects in precipitation, AIChE J., 37, 1698-1710.
  • Marr R., Gamse T., 2000: Use of supercritical fluids for different processes including new developments - a review, Chem. Eng. Proc., 39, 19-28.
  • Marrazzo W., Merson R., McCoy B., 1975: Enzyme immobilized in a packed-bed reactor: Kinetic parameters and mass transfer effects, Biotechn. Bioeng. 17, 1515-1528.
  • Martin J.J., 1979: Cubic equations of State - Which?, Ind. Eng. Chem. Fundam., 18, 2, 81-97.
  • Mathiowitz E., 1999: Encyclopedia of Controlled Drug Delivery, Wiley, Chichester (England).
  • Matin N.S., Haghighi B., 2000: Calculation of Joule-Thomson inversion curves from cubic equations of state, Fluid Phase Equilib., 175, 273-284.
  • Matsuda K., Dai W., Kurihara K., Ochi K., Kojima K., 2004: The calculation of excess molar enthalpies of liquid mixtures at high pressures and temperatures from measurements at ambient conditions, Fluid Phase Equilib., 215, 45-53.
  • Melis S., Verduyn M., Bałdyga J., Storti G., Morbidelli M., 1999: Effect of fluid motion on the aggregation of small particles subjected to interaction forces, AIChE J., 45, 1383-1392.
  • Mendes R.L., Nobre B.P., Coelho J.P., Palavra A.F., 1999: Solubility of p-carotene in supercritical carbon dioxide and ethane, J. Supercrit. Fluids, 16, 99-106.
  • Mersmann A., 1995: Crystallization Technology Handbook, Marcel Dekker, New York.
  • Miller R.S., 2000: Long time mass fraction statistics in stationary compressible isotropic turbulence at supercritical pressure, Phys. Fluids, 12, 2020-2032.
  • Mishima K., Yamaguchi S., Umemoto H., 1996: Production of fine particles for coating. Patent J P 8104830.
  • Muhlbauer A.L., Raal J.D., 1995: Computation and thermodynamic interpretation of high-pressure vapour-liquid equilibrium - a review, Chem. Eng. J., 60, 1-29.
  • Mukhopadhyay M., 2003: Partial molar volume reduction of solvent for solute crystallization using carbon dioxidc as antisolvent, J. Supercrit. Fluids, 25, 213-223.
  • Mukhopadhyay M., 2004: Phase Equilibrium In Solid-Liquid-Supercritical Fluid Systems, (w:) Supercritical Fluid Technology for drug development, York P., Kompella U.B., Shekunow B.Y. (Editors), Marcel Dekker, New York, Basel.
  • Mullin J.W., 1993: Crystallization, Butterworth-Heinemann, Oxford.
  • Mumenthaler M., Leuenberger H., 1991: Atmospheric spray-freeze drying: a suitable alternative in freeze-drying technology, Int. J. Pharm., 72, 97-110.
  • Müller R.H., Jacobs C., Kayser O., 2001: Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future, Adv. Drug. Deliv. Rev., 47, 3-19.
  • Myerson A.S., 2002: Handbook of Industrial Crystallization, Butterworth-Heinemann, Oxford.
  • Nambiar D.K.R., Kumar R., Das T.R., Gandhi K.S., 1994: A two-zone model of breakage frequency of drops in stirred dispersions, Chem. Eng. Sci., 49, 2194-2198.
  • Nichita D.V., Leibovici C.F., 2006: Calculation of Joule-Thomson inversion curves for two-phase mixtures, Fluid Phase Equilib., 246, 167-176.
  • Nielsen A.E., 1964: Kinetics of Precipitation, Pergamon Press, Oxford.
  • Nyvlt J., Sohnel O., Matuchova M., Broul M., 1985: The Kinetics of Industrial Crystallization, Academia Prague, Prague.
  • Ochi K., Dai W., Wada Y., Hayashi H., Kurihara K., Kojima K., 2002: Measurements and correlation of excess molar enthalpies for the systems containing supercritical carbon dioxide and alcohols, Fluid Phase Equilib., 194-197, 919-928.
  • Okamoto H., Nishida S., Todo H., Sakakura Y., Iida K., Danjo K., 2003: Pulmonary gene delivery by chitosan-p DNA complex powder prepared by a supercritical carbon dioxide process, J. Pharm. Sci., 92, 371-382.
  • Palakodaty S., York P., 1999: Phase behavioral effects on particle formation processes using supercritical fluids, Pharm. Res., 16, 976-985.
  • Pasquali I., Bettini R., Giordano F., 2006: Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics, Eur. J. Pharm. Sci., 27, 299-310.
  • Peng D.-Y., Robinson D.B., 1976: A new two constants equation of state, Ind. Eng. Chem. Fundam., 15, 59-64.
  • Peng D.-Y., Robinson D.B., 1978: The characterization of the heptanes and heavier fractions for the CPA Peng-Robinson programs, Gas processors association, Research Report RR-28.
  • Perez E., Sanchez-Vicente Y., Cabanas A., Pando C., Renuncio J.A.R., 2005: Excess molar enthalpies for mixtures of supercritical carbon dioxide and water+ethanol solutions, J. Supercrit. Fluids, 36, 23-30.
  • Perrut M., Jung J., Lebouef F., 2005a: Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I. Micronization of neat particles, Int. J. Pharm., 288, 3-10.
  • Perrut M., Jung J., Lebouef F., 2005b: Enhancement of dissolution rate of poorly-soluble active ingredients by supereritical fluid processes. Part II. Preparation of composite particles, Int. J. Pharm., 288, 11-16.
  • Perry R.H., Green D.W., 1997: Perry's Chemical Engineers' Handbook, 7th ed., McGraw-Hill. New York, 2-134.
  • Pfohl O., Pagel A., Brunner G., 1999: Phase equilibria in systems containing o-cresol, p-cresol, carbon-dioxide, and ethanol at 323.15-473.15 K and 10-35 MPa, Fluid Phase Equilib., 157, 53-79.
  • Pilch M., Erdman C., 1987: Use of break-up time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced break-up of a liquid drop, Int. J. Multiphase Flow, 13, 741-757.
  • Pipino M., Baressi A.A., Fox R.O., 1994: A PDF approach to the description of homogeneous nucleation, Proceedings of Quatro Convegno Internazionale Fluidodinamica Multifase Nell'impianistica Industralles, Ancona (Italy).
  • Pitzer K.S., Lippman D.Z., Curl Jr R.F., Huggins C.M., Petersen D.E., 1955: The volumetric and thermodynamic properties of fluids, J. Am. Chem. Soc., 77, 3427-3432.
  • Podgórska W., 2006: Rozpad i koalescencja kropel w intermitentnym polu burzliwym, Prace WIChiP PW, Warszawa, T. XXX, z. 1.
  • Pohorecki R., Bałdyga J., 1979: The influence of intensity of mixing on the rate of precipitation, Proceedings of Industrial Crystallization '78, J. de Jong, S.J. Jancic (Editors), North Holland, Amsterdam, 249-258.
  • Pohorecki R., Bałdyga J., 1983: The use of a new model of micromixing for determination of crystal size in precipitation, Chem. Eng. Sci., 38, 79-83.
  • Pohorecki R., Bałdyga J., 1988: The effect of micromixing and the manner of reactor feeding on precipitation in stirred tank reactors, Chem. Eng. Sci., 43, 1949-1954.
  • Pohorecki R., Wroński S., 1977: Kinetyka i termodynamika procesów inżynierii chemicznej. WNT, Warszawa.
  • Polling B.E., Prausnitz J.M., O'Connel J.P., 2001: The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York.
  • Pope S.B., 1979: Probability distribution of scalars in turbulent shear flow, (w:) Turbulent shear flows 2, Springer, Berlin, 7-16.
  • Pope S.B., 1985: PDF methods for turbulent reacting flows, Prog. Energy Combust. Sci., 11. 119-192.
  • Pope S.B., 2000: Turbulent flows, Cambridge University Press, Cambridge.
  • Portela L.M., Oliemans R.V.A., 2006: Possibilities and limitations of computer simulations of industrial turbulent dispersed multiphase flows, Flow Turbulence Combust., 77, 381-403.
  • Prausnitz J.M., Lichtenthaler R.N., Gomes de Azevedo E., 1999: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice Hall, New Jersey.
  • Quirk A.S., France R.M., Shakesheff K.M., Howdle S.M., 2004: Supercritical fluid technology and tissue engineering scaffolds, Curr. Opin. Solid-State Mater. Sci., 8, 313-321.
  • Ramkrishna D., 2000: Population Balances: Theory and Applications to Particulate Systems in Engineering, Academic Press, San Diego.
  • Ramos M.C., Blas F.J., Galindo A., 2007: Modelling the phase equilibria and excess properties of the water+carbon dioxide binary mixture, Fluid Phase Equilib., 261, 359-365.
  • Ranade V.V., 2002: Computational Flow Modeling for Chemical Reactor Engineering, Academic Press, San Diego.
  • Randolph A.D., Larson M.A., 1964: A population balance for countable entities, Can. J. Chem. Eng., 42, 280-281.
  • Randolph A.D., Larson M.A., 1971: Theory of Particulate Processes, Academic Press, New York, London.
  • Randolph A.D., Larson M.A., 1988: Theory of particulate processes, Academic Press, New York, London.
  • Rasenack N., Steckel H., Muller B.W., 2003: Micronization of anti-inflammatory drugs for pulmonary delivery by a controlled crystallization process, J. Pharm. Sci., 92, 35-44.
  • Rasenack N., Steckel H., Muller B.W., 2004: Preparation of microcrystals by in situ micronization, Powder Technol., 143-144, 291-296.
  • Redlich O., Kister A.T., 1948: Algebraic representation of thermodynamic properties and classfication of solutions. Ind. Eng. Chem., 40, 345-348.
  • Redlich O., Kwong J.N.S., 1949: On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44, 233-244.
  • Rehman M., Kippax P., York P., 2003: Particle engineering for improve dispersion in dry powder inhalers, Pharm. Technol. Eur., 15, 34-39.
  • Rehman M., Shekunov B., York P., Colthorpe P., 2001: Solubility and precipitation of nicotinic acid in supercritical carbon dioxide, J. Pharm. Sci., 90, 1570-1582.
  • Reverchon E., 1999: Review: supcrcritical antisolvent precipitation of micro- and nanoparticles, J. Supercrit. Fluids, 15(1), 1-21.
  • Reverchon E., Porta G., Trolio A., Pace S., 1998: Supercrtical antisolvent precipitation of nanoparticles of superconductor precursors, Ind. Eng. Chem. Res., 37, 952-958.
  • Rhodes R.P., 1975: A probability distribution function for turbulent flows, (w:) Turbulent Mixing in Nonreactive and Reactive Flows, (Editor) Murthy S.N.B., Plenum Press, New York.
  • Riazi M., Whitson C., 1993: Estimating diffusion coefficients of dense fluids, Ind. Eng. Chem. Res., 32, 3081-3088.
  • Rippie E.G., 1985: Powders (w:) Remington's Pharmaceutical Sciences, E.W. Martin (Editor), 17th edition, 1585-1602.
  • Robinson D.B., Peng D.-Y., Ng H.-J., 1977: Applications of the Peng-Robinson equation of state, ACS Symp. Ser., 60, 200-220.
  • Rodi W., 2006: DNS and LES of some engineering flows, Fluid Dynamics Res., 38, 145-173.
  • Rojkowski Z., Synowiec J., 1991: Krystalizacja i krystalizatory, WNT, Warszawa.
  • Rowley R.L., Wilding W.V., Oscarson J.L., Zundel N.A., Marshall T.L., Daubertand T.E. Danner R.P., 2002: /DIPPR/ Data Compilation of Pure Component Properties, Design Institute for Physical Properties, AIChE, New York.
  • Roy B., Goto M., Hirose T., 1996: Extraction of ginger oil with supercritical carbon dioxide: Experiments and model, Ind. Eng. Chem. Res., 32, 607-612.
  • Sadus R.J., 1992: High-Pressure Phase Behaviour of Multicomponent Fluid Mixtures, Elsevier, Amsterdam.
  • Sagaut P., 2002: Large Eddy Simulation for Incompressible Flows: an Introduction, Springer Verlag, Berlin, Heidelberg.
  • Saffman P.G., Tumer J.S., 1956: On the collisions of drops in turbulent clouds, J. Fluid Mech., 1, 16-30.
  • Sassiat P., Mourier P., Caude M., Rosset R., 1987: Measurement of diffusion coefficients in supercritical carbon dioxide and correlation with the equation of Wilke and Chang, Anal. Chem., 59, 1164-1170.
  • Sauceau M., Letourneau J.-J., Richon D., Fages J., 2003: Enhanced density-based models for solid compound solubilities in supercritical carbon dioxide with cosolvents, Fluid Phase Equilib., 208, 99-113.
  • Schiller L., Naumann A., 1933: Uber die grundlegenden berchungen bei der Schwarkraftaube-reitungs, A. Ver. Deut. Ing., 77, 318-326.
  • Sencar-Bozic P., Srcic S., Knez Z., Kerc J., 1997: Improvement of nifedipine dissolution characteristics using supercritical CO2, Int. J. Pharm., 148, 123-130.
  • Sengers J.V., Kayser R.F., Peters C.J., White H.J., 2000: Equations of State for Fluids and Fluids Mixtures, IUPAC, Elsevier, Amsterdam.
  • Shariati A., Peters C.J., 2003: Recent developments in particle design using supercritical fluids, Curr. Opin. Solid-State Mater. Sci., 7, 371-383.
  • Shekunov B.Y., 2004: Production of Powders for Respiratory Drug Delivery, (w:) Supercritical Fluid Technology for drug development, York P., Kompella U.B., Shekunow B.Y. (Editors), Marcel Dekker, New York, Basel, 247-282.
  • Shekunov B.Y., Hanna M., York P., 1999: Crystallization process in turbulent supercritical flows, J. Crystal Growth, 198/199, 1345-1351.
  • Shekunov B.Y., Bałdyga J., York P., 2001: Particle formation by mixing with supercritical antisolvent at high Reynolds number, Chem. Eng. Sci., 56, 2421-2433.
  • Shenai V., Hamilton B., Matthews M., 1993: Diffusion in Liquid and Supercritical Fluid Mixtures, Supercritical Fluid Engineering Science: Fundamentals and Applications, Kiran, E., Brennedke, J. (Editors), ACS Symposium Series 514, American Chemical Society, Washington, DC, 92-103.
  • Shim J., Kang S.H., Park W.S., Han S.H., Kim J., Chang I.S., 2004: Transdermal delivery of minoxidil with block copolymer nanoparticles, J. Control. Release, 97, 477-484.
  • Shoyele S.A., Cawthorne S., 2006: Particle engineering techniques for inhaled biopharmaceuticals, Adv. Drug Deliv. Rev., 58, 1009-1029.
  • Silva C., Macedo E., 1998: Diffusion coefficients of ethers in supercritical carbon dioxide, Ind. Eng. Chem. Res., 37, 1490-1498.
  • Smoluchowski M., 1917: Versuch einer Matematischen Theorie der Koagulations-Kinetik Kolloider Losungen, Z. Phys. Chem., 92, 129-168.
  • Snow R.H, Kaye B.H., Capes C.E., Sresty G.C., 1998: Size reductions and size enlargement (w:) Perry's Chemical Engineers Handbook, R.H. Perry, D. Green (Editors), McGraw Hill, New York, Section 20.
  • Soave G., 1972: Equilibrium constants from a modified Redlich-Kwong equation of stale, Chem. Eng. Sci., 27, 1197-1203.
  • Söhnel O., Garside J., 1992: Precipitation, Butterworth-Heinemann, Oxford.
  • Solorzano M., Barragan F., Bazua E.R., 1996: Comparative study of mixing rules for cubic equations of state in the prediction of multicomponent vapor-liquid equilibria, Fluid Phase Equilib., 122, 99-116.
  • Sonner C., Maa Y.-F., Lee G., 2002: Spray-freeze-drying for protein powder preparation: Particle characterization and a case study with trypsinogen stability, J. Pharm. Sci., 91, 2122-2139.
  • Spielmann L.A., 1970: Viscous interactions in brownian coagulation, J. Coll. Int. Sci., 33, 562-571.
  • Steckel H., Rasenack N., Muller B.W., 2003: In-situ-micronization of disodium cromoglycate for pulmonary delivery, Eur. J. Pharm. Biopharm., 55, 173-180.
  • Steckel H., Pichert L., Muller B.W., 2004: Influence of process parameters in the ASES process on particle properties of budesonide for pulmonary delivery, Eur. J. Pharm. Biopharm., 57, 507-512.
  • Strub M., Jabbour O., Strub F., Bedecarrats J.P., 2003: Experimental study and modeling of the crystallization of a water droplet, Int. J. Refrig., 26, 59-68.
  • Subra P., Berroy P., Vega A., Domingo C., 2004: Process performance and characteristics of powders produced using supercritical CO2 as solvent and antisolvent, Powder Technol., 142, 13-22.
  • Subra P., Jestin P., 1999: Powders elaboration in supercritical media: comparison with conventional routes, Powder Technol., 103, 2-9.
  • Sun C., Grant D.J.W., 2001: Influence of crystal shape on the tableting performance of 1-lysine monohydrochloride dehydrate, J. Pharm. Sci., 90, 569-579.
  • Suzuki K., Sue H., Itou M., Smith R.L., Inomata H., Arai K., Saito S., 1990: Isothermal vapor-liquid equilibrium data for binary systems at high pressures: Carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide l propanol, methanol-ethanol, methane l propanol, ethane-ethanol, and ethane-1-propanol systems, J. Chem. Eng. Data, 35, 63-66.
  • Swaminathan V., Kildsig D.O., 2002: Polydisperse powder mixtures: effect of particle size and shape on mixture stability, Drug Dev. Ind. Pharm., 28, 41-48.
  • Szarawara J., 1997: Termodynamika chemiczna stosowana, WNT, Warszawa.
  • Takishima S., Saiki K., Arai K., Saito S., 1986: Phase equilibria for CO2-C2H,OH-H2O system, J. Chem. Eng. Japan, 19, 48-56.
  • Tanaka H., Kato M., 1995: Vapor-liquid equilibrium properties of carbon dioxide+ethanol mixture at high pressures, J. Chem. Eng. Japan, 28 (3), 263-266.
  • Tao S.L., Desai T.A., 2003: Microfabricated drug delivery systems: from particles to pores, Adv. Drug Deliv. Rev., 55, 315-328.
  • Tavare N.S., 1986: Mixing in continuous crystallizers, AIChE J., 32, 705-731.
  • Tavare N.S., 1994: Mixing, reaction and precipitation: an interplay in continuous crystallizer, Chem. Eng. Sci., 49, 5193-5201.
  • Tenorio A., Gordillo M.D., Pereyra C., Martinez de la Ossa E.J., 2007: Controlled submicro particle formation of ampicillin by supercritical antisolvent precipitation, J. Supercrit. Fluids, 40, 308-316.
  • Toor H.L., 1962: Mass transfer in dilute turbulent or nonturbulent systems with rapid irreversible reactions and equal diffusivities, AIChE J., 8, 70-82.
  • Tóth J., Kardos-Fodor A., Halasz-Peterfi S., 2005: The formation of fine particles by salting-out precipitation, Chem. Eng. Proc., 44, 193-200.
  • Tsouris C., Tavlarides L.L., 1994: Breakage and coalescence models for drops in turbulent dispersions, AIChE J., 40, 395-406.
  • Turnbull J., Thompson C.P., 2005: Transient averaging to combine large eddy simulation with Reynolds averaged Navier-Stokes simulations, Comp. Chem. Eng., 29, 379-392.
  • Tzannis S.T., Prestrelski S.J., 1999: Activity-stability considerations of trypsinogen during spray drying: Effects of sucrose, J. Pharm. Sci., 88(3), 351-359.
  • Valderrama J.O., 2003: The state of the cubic equations of state, Ind. Eng. Chem. Res., 42, 1603-1618.
  • Valderrama J.O., Lopez C., Arce P.F., 2000: Mixing rules in equations of state applied to mixtures that contain a supercritical fluid, Inf. Technol., 11, 101-119.
  • Valentas K.J., Amundson N.R., 1966: Breakage and coalescence in dispersed phase systems, I & EC Fundamentals, 5, 271-279.
  • Vasukumar K., Bansal K.A., 2003: Supercritical fluid technology in pharmaceutical research, Curr. Res. Inf. Pharm. Sci., 4, 8-12.
  • Velaga S.P., Ghaderi R., Carlfors J., 2002: Preparation and characterization of hydrocortisone particles using a supercritical fluids extraction process, Int. J. Pharm., 231, 155-169.
  • Verduyn, M., 1999: Aggregation of polymer particles in emulsion, PhD Thesis, ETH Zurich.
  • Vesovic V., Wakeham W.A., Olchowy G.A., Sengers J.V., Watson J.T.R., Millat J., 1990: The Transport Properties of Carbon Dioxide, J. Phys. Chem. Ref. Data, 19, 763-805.
  • Vignes A., 1966: Diffusion in binary solutions, variation of diffusion coefficient with composition, Ind. Eng. Chem. Fundam, 5, 189-199.
  • Walas S.M., 1985: Phase Equilibria in Chemical Engineering, Butterworth Publ., Boston.
  • Wang B., Siahaan T.J., Soltero R.A., 2005: Drug Delivery: Principles and Applications, Wiley, Chichester (England).
  • Weber A., Yelash L.V., Kraska T, 2005: Effect of the phase behaviour of the solvent-antisolvent systems on the gas-antisolvent-crystallization of paracetamol, J. Supercrit. Fluids, 33, 107-113.
  • Weber M., Russell L.M., Debenedetti P.G., 2002: Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions, J. Supercrit. Fluids, 23, 65-80.
  • Weber M., Thies M.C., 2002: Understanding the RESS process, (w:) Supercritical fluid technology in material science and engineering, Sun Y.P. (Editor), Marcel Dekker, New York, 387-437.
  • Weidner E., Knez Z., Novak Z., 1997: Process for production of particles of powders. Patent US 6056791.
  • Weinstein R.D., Muske K.R., Moriarty J., Schmidt E.K, 2004: The solubility of benzocaine, lidocaine, and procaine in liquid and supercritical carbon dioxide, J. Chem. Eng. Data, 49(3), 547-552.
  • Werling J.O., Debenedetti P.G., 1999: Numerical modeling of mass transfer in the supercritical antisolvent process, J. Supercrit. Fluids, 16, 167-181.
  • van de Weterbeemd H., Lennernäs H., Artursson P., 2003: Drug Bioavailability. Estimation of Solubility, Permeability, Absorption and Bioavailability, Wiley-VCH, Weinheim (Germany).
  • Wijmans J.G., 2004: The role of permeant molar volume in the solution-diffusion model transport equations, J. Memb. Sci., 237, 39-50.
  • Wilke C., Chang P., 1955: Correlation of liquid diffusion coefficient, AIChE J., 1, 264-270.
  • Williams A.C., 2003: Transdermal and topic drug delivery, Pharmaceutical Press, London.
  • Williams III R.O., Johnston K.P., Young T.J., Rogers T.L., Barron M.K., Yu Z., Hu J., 2005: Process for production of nanoparticles and microparticles by spray freezing into liquid. Patent US 6862890.
  • Wisniak J., Apelblat A., Segura H., 1998: Prediction of gas-solid equilibrium using equations of state, Fluid Phase Equilib., 147, 45-64.
  • Wisniak J., Avraham H., 1996: On the Joule-Thomson effect inversion curve, Thermochimica Acta, 286, 33-40.
  • Wong J.M., Johnston K.P., 1986: Solubilization of biomoleculcs in carbon dioxide based supercritical fluids, Biotechnol. Prog., 2, 29-39.
  • Wormald C.J., 1997: H/E/M and V/E/M thermodynamic surfaces for binary mixtures in the near critical region, Thermochimica Acta, 300, 169-181.
  • Wu T., Liaw H.-C, Chen Y.-Z., 2002: Thermal effect of surface tension on the inward solidification of spheres, Int. J. Heat Mass Transfer, 45, 2055-2065.
  • Wubbolts F.E., Bruinsma O.S.L., van Rosmalen G.M., 2004: Measurement and modelling of the solubility of solids in mixtures of common solvents and compressed gases, J. Supercrit. Fluids, 32, 79-87.
  • Yajima T., Itai S., Hayashi H., Takayama K., Nagai T., 1996: Optimization of size distribution of granules for tablet compression, Chem. Pharm. Bull., 44, 1056-1060.
  • Yamini, Y., Hassan J., Haghgo S., 2001: Solubilities of some nitrogen-containing drugs in supercritical carbon dioxide, J. Chem. Eng. Data, 46(2), 451-455.
  • Yener M.E., Kashulines P., Rizvi S.S.H., Hariott P., 1998: Viscosity measurement and modelling of lipid-supercritical carbon dioxide mixtures, J. Supercrit. Fluids, 11, 151-162.
  • Yeo S.-D., Lim G.-B., Debenedetti P., Bernstein H., 1993: Formation of microparticulate protein powders using a supercritical fluid antisolvent, Biotechn. Bioeng., 41, 341-346.
  • Yoon J.H., Lee H.S., Lee H., 1993: High pressure vapor-liquid equilibria for carbon dioxide+methanol, carbon dioxide+ethanol, and carbon-dioxide+methanol+ethanol, J. Chem. Eng. Data, 38, 53-55.
  • York P., 1999: Strategies for particle design using supercritical fluid technologies, Pharm. Sci. Tech. Today, 2, No. 11, 430-440.
  • York P., Kompella U.B., Shekunow B.Y., 2004: Supercritical Fluid Technology for drug development, Marcel Dekker, New York, Basel.
  • Yu Z., Rogers T.L., Hu J., Johnston K.P., Williams III R.O., 2002: Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid, Eur. J. Pharm. Biopharm., 54, 221-228.
  • Zabuloy M.S, Vasquez V.R., Macedo E.A., 2005: Viscosity of pure supercritical fluids, J. Supercrit. Fluids, 36, 106-117.
  • Zeng X.M, Marti G.P., Mariott C., Pritchard J., 2001: Lactose as a carrier in dry powder formulations: the influence of surface characteristics on drug delivery, J. Pharm. Sci., 90, 1424-1434.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0056-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.