PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sieci neuronowe w efektywnych obliczeniowo algorytmach regulacji predykcyjnej

Autorzy
Identyfikatory
Warianty tytułu
EN
Neural networks in computationally efficient model predictive control algorithms
Języki publikacji
PL
Abstrakty
PL
Celem monografii jest szerokie ukazanie możliwości zastosowania sieci neuronowych w nieliniowych algorytmach regulacji predykcyjnej. Bezpośrednie użycie do predykcji modelu neuronowego prowadzi do nieliniowego zadania optymalizacji, które musi być rozwiązywane w każdej iteracji algorytmu. Obszarem zainteresowania pracy są algorytmy suboptymalne, w których do predykcji stosuje się cyklicznie obliczane przybliżenie liniowe modelu neuronowego. Wspólna cecha omawianych algorytmów jest efektywność obliczeniowa, gdyż zamiast złożonej obliczeniowo i zawodnej nieliniowej optymalizacji stosuje się optymalizację kwadratową. Omówiono dokładnie kilka, różniących się sposobem linearyzacji, suboptymalnych algorytmów regulacji predykcyjnej. Przedstawiono również wersje analityczne tych algorytmów, w których zamiast optymalizacji kwadratowej stosuje się mniej złożony obliczeniowo rozkład macierzy. Podano szczegóły implementacji omówionych algorytmów dla kilku klas modeli neuronowych: rozważa się klasyczne modele neuronowe (sieci perceptronowych z jedną warstwą ukrytą), neuronowe modele szeregowe (kaskadowe) o strukturze Hammersteina i Wienera, modele neuronowe w przestrzeni stanu oraz zespoły modeli neuronowych. Omówiono również algorytmy regulacji predykcyjnej z aproksymacją neuronową, których cechą jest brak cyklicznej linearyzacji modelu. Szczególnie efektywne obliczeniowo są wersje analityczne tych algorytmów, gdyż aproksymator neuronowy wyznacza współczynniki prawa regulacji, nie ma potrzeby wykonywania obliczeń typowych dla klasycznych algorytmów analitycznych. Omówiono także modyfikacje przedstawionych algorytmów suboptymalnych, mające na celu zagwarantowanie stabilności i odporności. Końcowa część monografii poświęcona jest współpracy algorytmów regulacji predykcyjnej oraz algorytmów optymalizacji punktu pracy. Zaprezentowano trzy struktury sterowania z cykliczną linearyzacją oraz szczegóły implementacji dla trzech klas modeli neuronowych. Przedstawione wyniki symulacji świadczą o dużej skuteczności omawianych algorytmów suboptymalnych. Dla kilku reprezentatywnych silnie nieliniowych procesów technologicznych, takich jak reaktory chemiczne i kolumna destylacyjna (dla których klasyczne liniowe algorytmy regulacji predykcyjnej działają nieprawidłowo), trajektorie algorytmów suboptymalnych są bardzo podobne do trajektorii otrzymanych w "idealnym" algorytmie z nieliniową optymalizacją. Skuteczność jednego z algorytmów suboptymalnych została również potwierdzona przez działający prototyp systemu wentylacji przeciwpożarowej, dla którego podano wyniki rzeczywistych eksperymentów.
EN
The objective of this monograph is to thoroughly discuss possibilities of using neural networks in nonlinear Model Predictive Control (MPC) algorithms. When a neural model is directly used for prediction in MPC, a nonlinear optimisation problem must be solved on-line at each sampling instant. This book is concerned with suboptimal MPC algorithms, in which a linear approximation of the neural model is successively calculated on-line and used for prediction. Thanks to linearisation, the discussed algorithms are computationally efficient, since quadratic optimisation is used instead of computationally demanding and unreliable nonlinear optimisation. A few suboptimal MPC algorithms are discussed, with different linearisation methods. Explicit (analytical) algorithms are also presented, in which quadratic optimisation is not used but the solution is found from a matrix decomposition task, which is less computationally demanding. Implementation details of the discussed algorithms are given for a few classes of neural models : (perceptron networks with one hidden layer), neural Hammerstein and Wiener models, state-space neural models as well as neural multi-models are considered. MPC algorithms with neural approximation are next discussed, in which on-line model linearisation is not used. Explicit versions of such algorithms are particulary very computationally efficient since the neural approximator directly determines on-line coefficients of the control law, it is not necessary to carry out calculations typical of the classical explicit MPC algorithms. Modifications of the suboptimal MPC algorithms are also discussed which guarantee stability and robustness. Finally, the problem of cooperation between the discussed MPC algorithms and set-point optimisation is discussed. Three different system structures are presented with on-line linearisation, implementation details for three classes of neural models are given. Presented simulation results indicate that the discussed suboptimal MPC algorithms are very efficient. For a few representative highly nonlinear technological processes, such as chemical reactors and a distillation column (for which the classical linear MPC algorithms do not work properly), trajectories of the suboptimal algorithms are very silmilar to trajectories obtained in the "ideal" MPC scheme with on-line nonlinear optimisation. Efficiency of a chosen suboptimal MPC algorithm has been confirmed by a successfully working prototype of a fire protection ventilation system, for which results of real experiments are given.
Rocznik
Tom
Strony
5--317
Opis fizyczny
Bibliogr. 359 poz., tab., rys., wykr.
Twórcy
  • Instytut Automatyki i Informatyki Stosowanej
Bibliografia
  • Abonyi J., Babuška R., Ayala Botto M., Szeifert F. i Nagy L. (2000): Identification and control of nonlinear systems using fuzzy Hammerstein models. Industrial and Engineering Chemistry Research, t. 39, nr 11, s. 4302-4314.
  • Aggelogiannaki E. i Sarimveis H. (2007): A simulated annealing algorithm for prioritized multiobjective optimization-implementation in an adaptive model predictive control configuration. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, t. 37, nr 4, s. 902-915.
  • Åkesson B.M. i Toivonen H.T. (2006): A neural network model predictive controller. Journal of Process Control, t. 16, nr 3, s. 937-946.
  • Akpan V.A. i Hassapis G.D. (2011): Nonlinear model identification and adaptive model predictive control using neural networks. ISA Transactions, t. 50, nr 2, s. 177-194.
  • Alvarez L.A. i Odloak D. (2010): Robust integration of real time optimization with linear model predictive control. Computers and Chemical Engineering, t. 34, nr 12, s. 1937-1944.
  • Al-Duwaish H., Karim M.N. i Chandrasekar V. (1996): Use of multilayer feedforward neural networks in identification and control of Wiener model. Proceedings IEE, Part D, Control Theory and Applications, t. 143, nr 3, s. 225-258.
  • Alexandridis A. i Sarimveis H. (2005): Nonlinear adaptive model predictive control based on self-correcting neural network models. AIChE Journal, t. 51, nr 9, s. 2495-2506.
  • Allgöwer F., Badgwell T.A., Qin J.S., Rawlings J.B. i Wright S.J. (1999): Nonlinear predictive control and moving horizon estimation - an introductory overview. Advances in control-highlights of European Control Conference 1999, red. Frank P.M., s. 391-449, Springer, Londyn.
  • Al Seyab R.K. i Cao Y. (2006): Nonlinear model predictive control for the ALSTOM gasifier. Journal of Process Control, t. 16, nr 8, s. 795-808.
  • Anderson B.D.O. i Moore J.B. (1984): Filtracja optymalna, Wydawnictwa Naukowo-Techniczne, Warszawa.
  • Ayoubi M. (1998): Comparison between the dynamic multi-layered perceptron and generalised Hammerstein model for experimental identification of the loading process in diesel engines. Control Engineering Practice, t. 6, nr 2, s. 271-279.
  • Arahal M.R., Berenguel M. i Camacho E.F. (1998): Neural identification applied to predictive control of a solar plant. Control Engineering Practice, t. 6, nr 3, s. 333-344.
  • Arto V., Hannu P. i Halme A. (2001): Modeling of chromatographic separation process with Wiener-MLP representation. Journal of Process Control, t. 11, nr 5, s. 443-458.
  • Ayala Botto M., van den Boom T.J.J., Krijgsman A. i da Costa J.S. (1999): Predictive control based on neural network models with I/O feedback linearization, International Journal of Control, t. 72, nr 17, s. 1538-1554.
  • Åström K.J. i Wittenmark B. (1997); Computer-controled systems: theory and design. Prentice Hall, Upper Saddle River.
  • Álamo T., Ramírez D.R., Muñoz de la Peña D. i Camacho E.F. (2007): Min-max MPC using a tractable QP problem. Automatica, t. 43, nr 4, s. 693-700.
  • Bartlett R.A., Biegler L.T., Backstrom J. i Gopal V. (2002): Quadratic programming algorithms for large-scale model predictive control. Journal of Process Control, t. 12, nr 7, s. 775-795.
  • Bazaraa M.S., Sherali J. i Shetty K. (1993): Nonlinear programming: theory and algorithms. John Wiley & Sons, Nowy Jork.
  • Becerra V.M., Roberts P.D. i Griffiths G.W. (1998): Novel developments in process optimisation using predictive control. Journal of Process Control, t. 8, nr 2, s. 117-138.
  • Bellemans T., De Schutter B. i De Moor B. (2006): Model predictive control for ramp metering of motorway traffic: a case study. Control Engineering Practice, t. 14, nr 7, s. 757-767.
  • Bemporad A., Morari M., Dua V. i Pistikopoulos E.N. (2002): The explicit linear quadratic regulator for constrained systems. Automatica, t. 38, nr 1, s. 3-20.
  • Bemporad A. i Morari M. (1999): Robust model predictive control: a survey. Robustness in identification and control, Lecture Notes in Control and Information Sciences, red. Garulli A., Tesi A., t. 245, s. 207-226, Springer, Berlin.
  • Bemporad A. (1998): A predictive controller with artificial Lyapunov function for linear systems with input/state constraints. Automatica, t. 34, nr 10, s. 1255-1260.
  • Bemporad A., Chisci L. i Mosca E. (1994): On the stabilizing property of SIORHC. Automatica, t. 30, nr 12, s. 2013-2015.
  • Bequette B.W. (1991): Nonlinear control of chemical processes: a review. Industrial and Engineering Chemical Research, t. 30, nr 7, s. 1391-1413.
  • Berenguel M., Arahal M.R. i Camacho E.F. (1998): Modelling the free response of asolar plant for predictive control. Control Engineering Practice, t. 6, nr 10, s. 1257-1266.
  • Betts J.T. i Frank P.D. (1994): A sparse nonlinear optimization algorithm. Journal of Optimization Theory and Applications, t. 82, nr 3, s. 519-541.
  • Bhartiya S. i Whiteley J.R. (2002): Benefits of factorized RBF-based NMPC. Computers and Chemical Engineering, t. 26, nr 9, s. 1185-1199.
  • Bhartiya S. i Whiteley J.R. (2001): Factorized approach to nonlinear MPC using a radial basis function model. AIChE Journal, t. 47, nr 2, s. 358-368.
  • Biegler L.T. i Grossmann I.E. (2004): Retrospective on optimization. Computers and Chemical Engineering, t. 28, nr 8, s. 1169-1192.
  • Blanchini F. (1999): Set invariance in control. Automatica, t. 35, nr 11, s. 1747-1767.
  • Blanco E., de Prada C., Cristea S. i Casas J. (2009): Nonlinear predictive control in the LHC accelerator. Control Engineering Practice, t. 17, nr 10, s. 1136-1147.
  • Bloemen H.H.J., Chou C.T., van den Boom T.J.J., Verdult V., Verhaegen M. i Backx T.C. (2001): Wiener model identification and predictive control for dual composition control of a distillation column. Journal of Process Control, t. 11, nr 6, s. 601-820.
  • Bock H.G., Diehl M., Kühl P., Kostina E., Schlöder J.P. i Wirsching L. (2007): Numerical methods for efficient and fast nonlinear model predictive control. Assessment and future directions of nonhnear model predictive control, Lecture Notes in Control and Information Sciences, red. Findeisen R., Allgöwer F., Biegler L.T., t. 358, s. 163-179, Springer, Berlin.
  • Bomberger J.D. i Seborg D.E. (1998): Determination of model order for NARX models directly from input-output data. Journal of Process Control, t. 8, nr 5-6, s. 459-468.
  • Bravo J.M., Álamo T. i Camacho E.F. (2006): Robust MPC of constrained discrete-time nonlinear systems based on approximated reachable sets. Automatica, t. 42, nr 10, s. 1745-1751.
  • Bravo J.M., Limón D., Álamo T. i Camacho E.F. (2005): On the computation of invariant sets for constrained nonlinear systems: An interval arithmetic approach. Automatica, t. 41, nr 9, s. 1583-1589.
  • Brdys M.A., Grochowski M., Gminski T., Konarczak K. i Drewa M. (2008): Hierarchical predictive control of integrated wastewater treatment systems. Control Engineering Practice, t. 16, nr 6, s. 751-767.
  • Brdys M.A. i Tatjewski P. (2005): Iterative algorithms for multilayer optimizing control, Imperial College Press/World Scientific, Londyn.
  • Byrd R.H., Lu P., Nocedal J. i Zhu C. (1995): A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, t. 16, nr 5, s. 1190-1208.
  • Camacho E.F. i Bordons C. (2007): Robustness and robust design of MPC for nonlinear discrete-time systems. Assessment and future directions of nonlinear model predictive control, Lecture Notes in Control and Information Sciences, red. Findeisen R., Allgöwer F., Biegler L.T., t. 358, s. 1-16, Springer, Berlin.
  • Camacho E.F. i Bordons C. (1999): Model Predictive. Control. Springer. Londyn.
  • Camacho E.F. i Berenguel M. (1997): Robust adaptive model predictive control of a solar plant with bounded uncertainties. International Journal of Adaptive Control and Signal Processing, t. 11, nr 4, s. 311-325.
  • Campo P.J. i Morari M. (1987): Robust model predictive control problem. Proceedings of the American Control Conference, ACC 1987, Minneapolis, s. 1021-1026.
  • Cervantes A.L., Agamennoni O.E. i Figueroa J.L. (2003): A nonlinear model predictive control based on Wiener piecewise linear models. Journal of Process Control, t. 13, nr 7, s. 655-666.
  • Chen C.C. i Shaw L. (1982): On receding horizon feedback control. Automatica, t. 18, nr 3, s. 349-352.
  • Chen H. i Allgöwer F. (1998): A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, t. 34, nr 10, s. 1205-1217.
  • Chen J. i Huang T.C. (2004): Applying neural networks to on-line updated PID controllers for nonlinear process control. Journal of Process Control, t. 14, nr 2, s. 211-230.
  • Chisci L., Rossiter J.A. i Zappa G. (2001): Systems with persistent disturbances: predictive control with restriceted constraints. Automatica, t. 37, nr 7, s. 1019-1028.
  • Chisci L., Lombardi A. i Mosca E. (1996): Dual-receding horizon control of constrained discrete time systems. European Journal of Control, t. 2, nr 4, s. 278-285.
  • Chisci L. i Mosca E. (1994): Stabilizing I-O receding horizon control of CARMA plants. IEEE Transactions on Automatic Control, t. 39, nr 3, s. 614-618.
  • Chu J.Z., Tsai P.F., Tsai W.Y., Jang S.S., Wong D.S.H., Shieh S.S., Lin P.H. i Jiang S.J. (2003): An experimental study of model predictive control based on artificial neural networks. Lecture Notes in Artificial Intelligence, t. 2773: Proceedings of the 7th International Conference Knowledge-Based Intelligent Information and Engineering Systems, KES 2003, Oxford, red. Palade V., Elowlett R.J., Jam L.C., s. 1296-1302, Springer, Berlin.
  • Clarke D.W. i Scattolini R. (1991): Constrained receding-horizon predictive control. Proceedings IEE, Part D, t. 138, nr 4, s. 347-354.
  • Clarke D.W. i Mohtadi C. (1989): Properties of generalized predictive control. Automatica, t. 25, nr 6, s. 859-875.
  • Clarke D.W., Mohtadi C. i Tuffs P.S. (1987): Generalized predictive control. Automatica, t. 23, nr 2, s. 137-160.
  • Coleman T.F. i Li Y. (1996): A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization, t. 6, nr 4, s. 1040-1058.
  • Colin G., Chamaillard Y., Bloch G. i Corde G. (2007): Neural control of fast nonlinear systems-application to a turbocharged SI engine with VCT. IEEE Transactions on Neural Networks, t. 18, nr 4, s. 1101-1114.
  • da Cruz Meleiro L.A., José F., Zuben V. i Filho R..M. (2009): Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process. Engineering Applications of Artificial Intelligence, t. 22, nr 2, s. 201-215.
  • Cutler C.R. i Ramaker B.L. (1979): Dynamic matrix control-a computer control algorithm. Proceedings of the AIChE National Meeting, Houston.
  • Declercq F. i de Keyser R. (1999): Suboptimal nonlinear predictive controllers. International Journal of Applied Mathematics and Computer Science, t. 9, nr 1, s. 129-148.
  • Dempsey E.J. i Westwick D.T. (2004): Identification of Hammerstein models with cu-bić apline nonlinearities. IEEE Transactions on Biomedical Engineering, t. 51, nr 2, s. 237-245.
  • Díaz-Mendoza R. i Budman H. (2010): Structured singular valued based robust nonlinear model predictive controller using Volterra series models. Journal of Process Control, t. 20, nr 5, s. 653-663.
  • Doering A., Galicki M. i White H. (1997): Structure optimisation of neural networks with the A* algorithm. IEEE Transactions on Neural Networks, t. 8, nr 6, s. 1434-1445.
  • Domek S. (2006): Odporna regulacja predykcyjna obiektów nieliniowych. Prace Naukowe Politechniki Szczecińskiej, nr 593, Szczecin.
  • Dougherty D. i Cooper D. (2003): A practical multiple model adaptive strategy for single-loop MPC. Control Engineering Practice, t. 11, nr 2, s. 141-159.
  • Doyle F.J., Pearson R.K. i Ogunnaike B.A. (2002): Identification and control ustng Volterra models. Springer, Londyn.
  • Doyle F.J., Ogunnaike B.A. i Pearson R.K. (1995): Nonlinear model-based control using second-order Volterra models. Automatica, t. 31, nr 5, s. 697-714.
  • Duch W., Korbicz J., Rutkowski L. i Tadeusiewicz R., (red.) (2000): Biocybernetyka i inżynieria biomedyczna 2000, t. 6: Sieci neuronowe. Akademicka Oficyna Wydawnicza EXIT, Warszawa.
  • Economou C.G., Morari M. (1986): Internal model control-5. Extension to nonlinear systems. Industrial Engineering Chemical Process Design and Development, t. 25, nr 2, s. 403-411.
  • Engell S. (2007): Feedback control for optimal process operation. Journal of Process Control, t. 17, nr 3, s. 203-219.
  • Eskinat E., Johnson S. i Luyben W.L. (1991): Use of Hammerstein models in identification of nonlinear systems. AIChE Journal, t. 37, nr 2, s. 255-268.
  • Findeisen R.H. i Rawlings J.B. (1997): Suboptimal infinite horizon nonlinear model predictive control for discrete time. Automatic Control Laboratory, Swiss Federal Institute of Thechnology (ETH), Raport nr 97-13, Zurich.
  • Findeisen W. (1997): Struktury sterowania dla złożonych systemów. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • Findeisen W.M., Bailey F.N., Brdyś M., Malinowski K., Tatjewski P. i Woźniak A. (1980): Control and coordination m hierarchical systems. John Wiley & Sons, Chichester.
  • Findeisen W., Szymanowski J. i Wierzbicki A. (1980): Teoria i metody obliczeniowe optymalizacji. Wydawnictwo Naukowe PWN, Warszawa.
  • Findeisen W. (1974): Wielopoziomowe układy sterowania. Wydawnictwo Naukowe PWN, Warszawa.
  • Fleming P.J. i Purshouse R.C. (2002): Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, T. 10, nr 11, s. 1223-1241.
  • Fruzzetti K.P., Palazoğlu A. i McDonald K.A. (1997): Nonlinear model predictive control using Hammerstein models. Journal of Process Control, t. 7, nr 1, s. 31-41.
  • Garcia C.E., Prett D.M. i Morari M. (1989): Model predictive control: theory and practice - a survey. Automatica, t. 25, nr 3, s. 335-348.
  • Garcia C.E. i Morshedi A.M. (1986): Quadratic programming solution of dynamic matrix control (QDMC). Chemical Engineering Communications, t. 46, nr 1, s. 73-87.
  • Garcia C.E. (1984): Quadratic dynamic matrix control of nonlinear processes: an application to a batch reactor process. Proceedings of the AIChE National Meeting, San Francisco.
  • Garcia C.E. i Morari M. (1982): Internal model control-1. A unifying review and some new results. Industrial Engineering Chemical Process Design and Development, t. 21, nr 2, s. 308-323.
  • Gattu G. i Zafiriou E. (1992): Nonlinear Quadratic Dynamic Matrix Control with state estimation. Industrial and Engineering Chemistry Research, t. 31, nr 4, s. 1096-1104.
  • Gawkowski P., Ławryńczuk M., Marusak P., Sosnowski J. i Tatjewski P. (2010): Fail-bounded implementations of the numerical model predictive control algorithms. Control and Cybemetics, t. 39, nr 4, s. 1117-1134.
  • Goethals I., Pelckmans K., Suykens J.A.K. i De Moor B. (2005): Identification of MIMO Hammerstein models using least squares support vector machines. Automatica, t. 41, nr 7, s. 1263-1272.
  • Gómez J.C., Jutan A. i Baeyens E. (2004): Wiener model identification and predictive control of a pH neutralisation process, Proceedings IEE, Part D, Control Theory and Applications, t. 151, nr 3, s. 329-338.
  • Greco C., Menga G., Mosca E. i Zappa G. (1984): Performance improvement of self tuning controllers by multistep horizons: the MUSMAR approach. Automatica, t. 20, nr 5, s. 681-700.
  • Grimm G., Messina M.J., Tuna S.E. i Teel A.R. (2007): Nominally robust model predictive control with state constraints. IEEE Transactions on Automatic Control, t. 52, nr 10, s. 1856-1870.
  • Grimm G., Messina M.J., Tuna S.E. i Teel A.R. (2004): Examples when nonlinear model predictive control is nonrobust. Automatica, t. 40, nr 10, s. 1729-1738.
  • Grossmann I.E. i Biegler L.T. (2004): Part II. Future perspective on optimization. Computers and Chemical Engineering, t. 28, nr 8, s. 1193-1218.
  • Gruber J.K., Ramírez D.R., Álamo T. i Camacho E.F. (2011a): Min-max MPC based on an upper bound of the worst case cost with guaranteed stability. Application to a pilot plant. Journal of Process Control, t. 21, nr 1, s. 194-204.
  • Gruber J.K., Guzmán J.L., Rodríguez F., Bordons C., Berenguel M. i Sánchez J.A. (2011b): Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation. Control Engineering Practice, t. 19, nr 4, s. 354-366.
  • Gruber J.K., Doll M. i Bordons C. (2009a): Design and experimental validation of a constrained MPC for the air feed of a fuel cell. Control Engineering Practice, t. 17, nr 8, s. 874-885.
  • Gruber J.K., Doll M. i Bordons C. (2009b): Control of a pilot plant using QP based min-max predictive control. Control Engineering Practice, t. 17, nr 11, s. 1358-1366.
  • Gruber J.K., Ramírez D.R., Álamo T. i Bordons C. (2009c): Nonlinear min-max model predictive control based on Volterra models. Application to a pilot plant. Proceedings of the European Control Conference, ECC 2009, Budapeszt, s. 1112-1117.
  • Haseltine E.L. i Rawlings J.B. (2005): Critical evaluation of extended Kalman filtering and moving-horizon estimation. Industrial and Engineering Chemical Research, t. 44, nr 8, s. 2451-2460.
  • Hassibi B. i Stork B. (1993): Second order derivatives for network prunning: Optimal brain surgeon. Advances of Neural Information Processing Systems 5, red. Touretzky D.S., s. 164-171, Morgan Kaufmann, San Mateo.
  • Haykin S. (1999): Neural networks - a comprehensive foundation, Prentice Hall, Upper Saddle River.
  • Henson M.A. (1998): Nonlinear model predictive control: current status and future directions. Computers and Chemical Engineering, t. 23, nr 2, s. 187-202.
  • Henson M.A. i Seborg D.E. (1994): Adaptive nonlinear control of a pH neutralization process. IEEE Transactions on Control System Technology, t. 2, nr 3, s. 169-182.
  • Henson M.A. i Seborg D.E. (1993): Theoretical analysis of unconstrained nonlinear model predictive control. International Journal of Control, t. 58, nr 5, s. 1053-1080.
  • Hornik K., Stinchcombe M. i White H. (1989): Multilayer feedforward networks are universal approximators. Neural Networks, t. 2, nr 5, s. 359-366.
  • Hosen M.A., Hussain M.A. i Mjalli F.S. (2011): Control of polystyrene batch reactors using neural network based model predictive control (NNMPC): an experimental investigation. Control Engineering Practice, t. 19, nr 5, s. 454-467.
  • Hu Q., Saha P. i Rangaiah G.P. (2000): Experimental evaluation of an augmented IMG for nonlinear systems. Control Engineering Practice, t. 8, nr 10, s. 1167-1176.
  • Hussain M.A. (1999): Review of the applications of neural networks in chemical process control-simulation and online implementation. Artificial Intelligence in Engineering, t. 13, nr 1, s. 55-68.
  • Iplikci S. (2006): Support vector machines-based generalized predictive control. International Journal of Robust and Nonlinear Control, t. 16, nr 17, s. 843-862.
  • Janczak A. (2004): Identification of nonlinear systems using neurai networks and polynomial podels: block oriented approach. Lecture Notes in Control and Information Sciences, t. 310, Springer, Berlin.
  • Jankowscy J.M. (1988): Przegląd metod i algorytmów numerycznych, cz. I. Wydawnictwo Naukowe PWN, Warszawa.
  • Jiang Z.P. i Wang Y. (2001): Input-to-state stability for discrete-time nonlinear systems. Automatica, t. 37, nr 9, s. 857-869.
  • Johansen T.A. (2004): Approximate explicit receding horizon control of constrained nonlinear systems. Automatica, t. 40, nr 2, s. 293-300.
  • Juditsky A., Hjalmarsson H., Benveniste A., Delyon B., Ljung L., Sjöoberg J. i Zhang O. (1995): Nonlinear black-box models in system identification: mathematical foundations. Automatica, t. 31, nr 12, s. 1725-1750.
  • Kalman R.E. i Bertram J.E. (1960): Control system analysis and design via the "second method" of Lyapunov. Transactions of ASME, Journal of Basic Engineering, t. 82, nr 2, s. 371-400.
  • Kassmann D.E., Badgwell T.A. i Hawkins R.B. (2000): Robust steady-state target calculation for model predictive control. AIChE Journal, t. 46, nr 5, s. 1007-1024.
  • Keerthi S.S. i Gilbert E.G. (1988): Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. Journal of Optimization Theory and Applications, t. 57, nr 2, s. 265-293.
  • Keviczky T. i Balas G.J. (2006): Receding horizon control of an F-16 aircraft: a comparative study. Control Bngineering Practice, t. 14, nr 9, s. 1023-1033.
  • de Keyser R.M.C. i van Cauvenberghe A.R. (1985): Extended predictive self adaptive control. Proceedings of the 7th IFAC Symposium on Identification and System Parameter Identification, York, s. 1255-1260.
  • Khalil H.K. (1996): Nonlinear systems. Prentice Hall, Upper Saddle River.
  • Khodadadi H. i Jazayeri-Rad H. (2011): Design of a computationally efficient observer-based nonlinear model predictive control for a continuous stirred tank reactor. Proceedings of the IEEE Conference on Intelligent Computing and Intelligent Systems. Xianmen, praca nr T27-001.
  • Kim Y.H. i Kwon W.H. (1998): An application of min-max generalized predictive control to sintering process. Control Engineering Practice, t. 6, nr 8, s. 999-1007.
  • Kiran A.U.M. i Jana A.K. (2009): Control of continuous fed-batch fermentation process using neural network based model predictive controller. Bioprocess and Biosystems Engineering, t. 32, nr 6, s. 801-808.
  • Kittisupakorn P., Thitiyasook P., Hussain M.A. i Daosud W. (2009): Neural network based model predictive control for a steel pickling process. Journal of Process Control, t. 19, nr 4, s. 579-590.
  • Kleinman D. (1970): An easy way to stabilize a linear constant system. IEEE Transactions on Automatic Control, t. 15, nr 6, s. 692.
  • Korbicz J. i Kościelny J.M. (red.) (2010): Modeling, diagnostics and process control: implementation in the DiaSter System. Springer, Berlin.
  • Korbicz J. i Kościelny J.M. (red.) (2009): Modelowanie, diagnostyka i sterowanie nadrzędne procesami: implementacja w systemie DiaSter. Wydawnictwa Naukowo-Techniczne, Warszawa.
  • Korbicz J., Obuchowicz A. i Uciński D. (1994): Sztuczne sieci neuronowe: podstawy i zastosowania. Akademicka Oficyna Wydawnicza PLJ, Warszawa.
  • Kothare V.M., Balakrishnan V. i Morari M. (1996): Robust constrained model predictive control using linear matrix inequalities. Automatica, t. 32, nr 10, s. 1361-1379.
  • Kouvaritakis B., Rossiter J.A. i Schuurmans J. (2000): Efficient robust predictive control. IEEE Transactions on Automatic Control, t. 45, nr 8, s. 1545-1549.
  • Kuure-Kinsey M., Cutright R. i Bequette B.W. (2006): Computationally efficient neural predictive control based on a feedforward architecture. Industrial and Engineering Chemistry Research, t. 45, nr 25, s. 8575-8582.
  • Kwon W.H. i Pearson A.E. (1977): A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Transactions on Automatic Control, t. 22, nr 5, s. 838-842.
  • Lautenschlager Moro L.F. i Odloak D. (1995): Constrained multivariable control of fluid catalytic cracking converters. Journal of Process Control, t. 5, nr 1, s. 29-39.
  • Lazar M., Muñoz de la Peña D., Heemels W.P.M.H. i Álamo T. (2008): On input-to-state stability of min-max nonlinear model predictive control. Systems & Control Letters, t. 57, nr 1, s. 39-48.
  • Le Cun Y., Denker J. i Solla S. (1990): Optimal brain damage. Advances in Neural Information Processing Systems 2, red. Touretzky D.S., s. 598-605, Morgan Kaufmann, San Mateo.
  • Lee E.B. i Markus L. (1967): Foundations of optimal control theory. John Wiley & Sons, Nowy Jork.
  • Lee J.H. i Yu Z. (1997): Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, t. 33, nr 5, s. 763-781.
  • Lee J.H. i Ricker N.L. (1994): Extended Kalman filter based nonlinear model predictive control. Industrial and Engineering Chemistry Research, t. 33, nr 6, s. 1530-1541.
  • Lefkowitz I. (1966): Multilevel approach applied to control system design. Transactions of ASME, Journal of Basic Engineering, t. 88, nr 2, s. 392-398.
  • Leontaritis I.J. i Billings S.A. (1985): Input-output parametric models for nonlinear systems - Part 1: deterministic nonlinear systems, International Journal of Control, t. 41, nr 2, s. 303-328.
  • Li W.C. i Biegler L.T. (1989): Multistep, Newton-type control strategies for constrained, nonlinear systems. Chemical Engineering Research and Design, t. 67, nr 6, s. 562-577.
  • Li W.C. i Biegler L.T. (1988): Process control strategies for constrained nonlinear systems. Industrial and Bngineering Chemistry Research, t. 27, nr 8, 1421-1433.
  • Limón D., Bravo J.M., Álamo T. i Camacho E.F. (2005): Robust MPC of constrained nonlinear systems based on interval arithmetic. IEE Proceedings, Part D: Control Theory and Applications, t. 152, nr 3, s. 325-332.
  • Limón Marruedo D., Álamo T. i Camacho E.F. (2002): Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties. Proceedings of the 41th IEEE Conference on Decision and Control, CDC 2002, Las Vegas, s. 4619-4624.
  • Ling W.M. i Rivera D. (1998): Nonlinear black-box identification of distillation column models - design variable selection for model performance enhancement. International Jurnal of Applied Mathematics and Computer Science, t. 8, nr 4, s. 793-813.
  • Liu D., Shah S.L. i Fisher D.G. (1999): Multiple prediction models for long range predictive control. Proceedings of the 14th IFAC World Congress, Pekin, s. 175-180.
  • Liu G.P., Kadirkamanathan V. i Billings S.A. (1998): Predictive control for nonlinear systems using neural networks. International Journal of Control, t. 71, nr 6, s. 1119-1132.
  • Liu S. i Wang J. (2006): A simplified dual neural network for quadratic programming with its KWTA application. IEEE Transactions on Neural Networks, t. 17, nr 6, s. 1500-1510.
  • Lu C.H. i Tsai C.C. (2008): Adaptive predictive control with recurrent neural network for industrial processes: an application to temperature control of a variable-frequency oil-cooling machine. IEEE Transactions on Industrial Electronics, t. 55, nr 3, s. 1366-1375.
  • Luyben W.L. (1990): Process modelling, simulation and control for chemical engineers. McGraw Hill, Nowy Jork.
  • Ławryńczuk M. (2012): On-line trajectory-based linearisation of neural models for a computationally efficient predictive control algorithm. Lecture Notes in Artificial Intelligence, t 7267: Proceedings of the 11th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2012, Zakopane, red. Rutkowski L., Korytkowski M., Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J., Springer, Heidelberg, s. 126-134.
  • Ławryńczuk M. (2011a): On improving accuracy of computationally efficient nonlinear predictive control based on neural models. Chemical Engineering Science, t. 66, nr 21, s. 5253-5267.
  • Ławryńczuk M. (2011b): Online set-point optimisation cooperating with predictive control of a yeast fermentation process: A neural network approach. Engineering Applications of Artificial Intelligence, t. 24, nr 6, s. 968-982.
  • Ławryńczuk M. (2011c): On-line set-point optimisation and predictive control using neural Hammerstein models. Chemical Engineering Journal, t. 166, nr 1, s. 269-287.
  • Ławryńczuk M. (2011d): Accuracy and computational efficiency of suboptimal nonlinear predictive control based on neural models. Applied Soft Computing, t. 11, nr 2, s. 2202-2215.
  • Ławryńczuk M. (2011e): Precise and computationally efficient nonlinear predictive control based on neural Wiener models. Lecture Notes in Artificial Intelligence, t. 6804: Proceedings of the 19th International Symposium on Methodologies for Intelligent Systems, ISMIS 2011, Warszawa, red. Kryszkiewicz M., Rybiński H., Skowron A., Raś Z.W., Springer, Berlin, s. 663-672.
  • Ławryńczuk M. (2011f): Nonlinear predictive control based on multivariable neural Wiener models. Lecture Notes in Computer Science, t. 6593: Proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2011, Lublana, red. Dobnikar A., Lotrič U., Šter B., Springer, Berlin, s. 31-40.
  • Ławryńczuk M. (2011g): Predictive control of a distillation column using a control-oriented neural model. Lecture Notes in Computer Science, t. 6593: Proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2011, Lublana, red. Dobnikar A., Lotrič U., Šter B., Springer, Berlin, s. 230-239.
  • Ławryńczuk M. (2011h): Odporny nieliniowy algorytm regulacji predykcyjnej z optymalizacją kwadratową. Materiały XVII Krajowej Konferencji Automatyki, KKA 2011, s. 685-696, Kielce-Cedzyna.
  • Ławryńczuk M. (2010a): Computationally efficient nonlinear predictive control based on neural Wiener models. Neurocomputing, t. 74, nr 1-3, s. 401-417.
  • Ławryńczuk M. (2010b): Training of neural models for predictive control. Neurocomputing, t. 73, nr 7-9, s. 1332-1343.
  • Ławryńczuk M. (2010c): Suboptimal nonlinear predictive control based on multivariable neural Hammerstein models. Applied Intelligence, t. 32, nr 2, s. 173-192.
  • Ławryńczuk M. (2010d): Dynamic Matrix Control algorithm based on interpolated step response neural models. Lecture Notes in Artificial Intelligence, t. 6114: Proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2010, Zakopane, red. Rutkowski L., Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J., Springer, Berlin, s. 297-304.
  • Ławryńczuk M. (2010e): Neural Dynamic Matrix Control algorithm with disturbance compensation. Lecture Notes in Artificial Intelligence, t. 6098, Proceedings of the 23th International Conference on Industrial, Engineering & Other Applications of Applied Intdligent Systems, IEA-AIE 2010, Kordowa, red. García Pedrajas N., Herrera F., Fyfe C., Benítez J.M., Ali M., Springer, Berlin, s. 52-61.
  • Ławryńczuk M. (2010f): Explicit neural network-based nonlinear predictive control with low computational complexity. Lecture Notes in Artificial Intelligence, t. 6086: Proceedings of the 7th International Conference Rough Sets and Current Trends in Computing, RSCTC 2010, Warszawa, red. Szczuka M., Kryszkiewicz M., Ramanna S., Jensen R., Hu Q., Springer, Berlin, s. 649-658.
  • Ławryńczuk M. (2010g): Computationally efficient nonlinear predictive control based on state-space neural models. Lecture Notes in Computer Science, t. 6067: Proceedings of the 8th International Conference Parallel Processing and Applied Mathematics, PPAM 2009, Wrocław, red. Wyrzykowski R., Dongarra J., Karczewski K., Wasniewski J., Springer, Berlin, s. 350-359.
  • Ławryńczuk M. i Tatjewski P. (2010a): Nonlinear predictive control based on neural multi-models. International Journal of Applied Mathematics and Computer Science, t. 20, nr 1, s. 7-21.
  • Ławryńczuk M. i Tatjewski P. (2010b): Approximate neural economic set-point optimisation for control systems. Lecture Notes in Artificial Intelligence, t. 6114: Proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2010, Zakopane, red. Rutkowski L., Scherer R., Tadeusiewicz R., Zadeh L. A., Zurada J., Springer, Berlin, s. 305-312.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2010): Efficient predictive control algorithms based on soft computing approaches: application to glucose concentration stabilization. Novel Algorithms and Techniques in Telecommunications, Automation and Industrial Electronics, red. Iskander M.. Kapila V., Karim M.A., Springer, Berlin, s. 425-430.
  • Ławryńczuk M. (2009a): Explicit nonlinear predictive control of a distillation column based on neural models. Chemical Engineering and Technology, t. 32, nr 10, s. 1578-1587.
  • Ławryńczuk M. (2009b): Efficient nonlinear predictive control of a biochemical reactor using neural models. Bioprocess and Biosystems Engineering, t. 32, nr 3, s. 301-312.
  • Ławryńczuk M. (2009c): Efficient nonlinear predictive control based on structured neural models. International Journal of Applied Mathematics and Computer Science, t. 19, nr 2, s. 233-246.
  • Ławryńczuk M. (2009d): Neural networks in model predictive control. Studies in Computational Intelligence, t. 252: Intelligent Systems for Knowledge Management, red. Nguyen N.T., Szczerbicki E., Springer, Berlin, s. 31-63.
  • Ławryńczuk M. (2009e): A predictive control economic optimiser and constraint governor based on neural models. Lecture Notes in Computer Science, t. 5495: Proceedings of the, 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, Kuopio, red. Kolehmainen M., Toivanen P., Beliczynski B., Springer, Berlin, s. 79-88.
  • Ławryńczuk M. (2009f): Computationally efficient nonlinear predictive control based on RBF neural multi-models. Lecture Notes in Computer Science, t. 5495: Proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2009, Kuopio, red. red. Kolehmainen M., Toivanen P., Beliczynski B.. Springer, Berlin, s. 89-98.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2009): On cooperation of set-point optimisation and predictive control based on Hammerstein models. Proceedings of the 7th Workshop on Advanced Control and Diagnosis, ACD 2009, praca nr 88, Zielona Góra.
  • Ławryńczuk M. (2008a): Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks. Chemical Engineering Journal, t. 145, nr 2, s. 290-307.
  • Ławryńczuk M. (2008b): Suboptimal nonlinear predictive control with MIMO neural Hammerstein models. Lecture Notes in Artificial Intelligence, t. 5027: Proceedings of the 21th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems, IEA-AIE 2008, Wrocław, red. Nguyen N.T., Borzemski L., Grzech A., Ali M., Springer, Berlin, s. 225-234.
  • Ławryńczuk M. (2008c): RBF neural models in steady-state target optimisation and predictive control. Recent advances in control and automation. Proceedings of the 16th National Control Conference, KKA 2008, Szczyrk, red. Malinowski K., Rutkowski L., Academic Publishing House EXIT, Warszawa, s. 353-362.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2008a): Cooperation of model predictive control with steady-state economic optimisation. Control and Cybernetics, t. 37, nr 1, s. 133-158.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2008b): Piecewise linear steady-state target optimization for control systems with MPC: a case study. Proceedings of the 17th IFAC World Congress, Soeul, s. 13169-13174.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2008c): Optymalizujące sterowniki predykcyjne w układach sterowania z ograniczeniami. Sterowanie i automatyzacja: aktualne problemy i ich rozwiązania, Materiały XVI Krajowej Konferencji Automatyki, KKA 2008, Szczyrk, red. Malinowski K., Rutkowski L., Akademicka Oficyna Wydawnicza EXIT, Warszawa, s. 437-446.
  • Ławryńczuk M. i Tadej W. (2008): A computationally efficient stable dual-mode type nonlinear predictive control algorithm. Control and Cybernetics, t. 37, nr 1, s. 99-132.
  • Ławryńczuk M. i Tatjewski P. (2008): Efficient predictive control integrated with economic optimisation based on neural models. Lecture Notes in Artificial Intelligence, t. 5097: Proceedings of the 9th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2008, Zakopane, red. Rutkowski L., Tadeusiewicz R., Zadeh L.A., Zurada J.M., Springer, Berlin, s. 111-122.
  • Ławryńczuk M. (2007a): A family of model predictive control algorithms with artificial neural networks. International Journal of Applied Mathematics and Computer Science, t. 17, nr 2, s. 217-232.
  • Ławryńczuk M. (2007b): Advanced predictive control of a distillation column with neural models. Archives of Control Sciences, t. 17, nr 2, s. 121-148.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2007a): Struktury i algorytmy współdziałania regulacji predykcyjnej i bieżącej optymalizacji ekonomicznej, Pomiary, Automatyka, Kontrola, t. 53, nr 10, s. 55-61.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2007b): Multilayer and integrated structures for predictive control and economic optimisation. Proceedings of the 11th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory and Applications, LSS 2007, Gdańsk, praca nr 60.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2007c): Economic efficacy of multilayer constrained predictive control structures: an application to a MIMO neutralisation reactor. Proceedings of the 11th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory and Applications, LSS 2007, Gdańsk, praca nr 93.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2007d): Efficient model predictive control integrated with economic optimisation. Proceedings of the 15th Mediterranean Conference on Control and Automation, MED 2007, Ateny, praca nr T27-001.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2007e): An efficient MPC algorithm integrated with economic optimisation for MIMO systems. Proceedings of the 13th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR 2007, Szczecin, s. 295-302.
  • Ławryńczuk M., Marusak P. i Tatjewski P. (2007f): Set-point optimisation and predictive constrained control for fast feedback controlled processes. Proceedings of the 13th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR 2007, Szczecin, s. 357-362.
  • Ławryńczuk M. i Tatjewski P. (2007): A computationally efficient nonlinear predictive control algorithm with RBF neural models and its application. Lecture Notes in Artificial Intelligence, t. 4585: The International Conference Rough Sets and Emerging Intelligent Systems Paradigms, RSEISP 2007, Warszawa, red. Kryszkiewicz M., Peters J.F., Rybiński H., Skowron A., Springer, Berlin, s. 603-612.
  • Ławryńczuk M. i Tatjewski P. (2006): An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process. Lecture Notes in Artificial Intelligence, t. 4029: Proceedings of the 8th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2006, Zakopane, red. Rutkowski L., Tadeusiewicz R., Zadeh L.A., Zurada J.M., Springer, Berlin, s. 76-85.
  • Ławryńczuk M. (2003): Nieliniowe algorytmy regulacji predykcyjnej z neuronowymi modelami procesów. Rozprawa doktorska, Politechnika Warszawska, Warszawa.
  • Maciejowski J.M. (2002): Predictive control with constraints. Prentice Hall, Harlow.
  • Magni L. i Scattolini R. (2007): Robustness and robust design of MPC for nonlinear discrete-time systems. Assessment and future directions of nonlinear model predictive control, Lecture Notes in Control and Information Sciences, red. Findeisen R., Allgöwer F., Biegler L.T., t. 358, s. 239-254, Springer, Berlin.
  • Magni L., de Nicolao G., Scattolini R. i Allgöwer F. (2003): Robust model predictive control for nonlinear discrete-time systems. International Journal of Robust and Nonlinear Control, t. 13, nr 3-4, s. 229-246.
  • Magni L., de Nicolao G., Magnani L. i Scattolini R. (2001): A stabilizing model-based predictive control algorithm for nonlinear systems. Automatica, t. 37, nr 9, s. 1351-1362.
  • Mahfouf M. i Linkens D.A. (1998): Nonlinear generalized predictive control (NLGPC) applied to muscle relaxant anaesthesia. International Journal of Control, t. 71, nr 2, s. 239-257.
  • Maner B.R., Doyle F.J., Ogunnaike B.A. i Pearson R.K. (1996): Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica, t. 32, nr 9, s. 1285-1301.
  • Marami B. i Haeri M. (2010): Implementation of MPC as an AQM controller. Computer Communications, t. 33, nr 2, s. 227-239.
  • Marlin T.E. (1995): Process control. McGraw-Hill, Nowy Jork.
  • Marquis P. i Broustail J.P. (1988): SMOC, a bridge between state space and model predictive controllers: application to the automation of hydrotreating unit. Proceedings of the 1988 IFAC Workshop on Model Based Process Control, Oxford, s. 37-43.
  • Martinsen F., Biegler L.T. i Foss B.A. (2004): A new optimization algorithm with application to nonlinear MPC. Journal of Process Control, t. 14, nr 8, s. 853-865.
  • Marusak P. (2011): Efficient predictive control and set-point optimization based on a single fuzzy model. Lecture Notes in Computer Science, t. 6593: Proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2011, Lublana, red. Dobnikar A., Lotrič U., Šter B., Springer, Berlin, s. 215-224.
  • Marusak P. (2010a): On prediction generation in efficient MPC algorithms based on fuzzy Hammerstein models. Lecture Notes in Artificial Intelligence, t. 6113: Proceedings of the 10th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2010, Zakopane, red. Rutkowski L., Scherer R., Tadeusiewicz R., Zadeh L.A., Zurada J., Springer, Berlin, s. 136-143.
  • Marusak P. (2010b): Application of fuzzy Wiener models in efficient MPC algorithms. Lecture Notes in Artificial Intelligence, t. 6086: Proceedings of the 7th International Conference Rough Sets and Current Trends in Computing, RSCTC 2010, Warszawa, red. Szczuka M., Kryszkiewicz M.. Ramanna S., Jensen R., Hu Q., Springer, Berlin, s. 669-677.
  • Marusak P. (2009a): Advantages of an easy to design fuzzy predictive algorithm in control systems of nonlinear chemical reactors. Applied Soft Computing, t. 9, nr 3, s. 1111-1125.
  • Marusak P. (2009b): Efficient model predictive control algorithm with fuzzy approximations of nonlinear models. Lecture Notes in Computer Science, t. 5495: Proceedings of the 9th International Conference on Adaptive and Natural Computing Algorithms. ICANNGA 2009, Kuopio, red. Kolehmainen M., Toivanen P., Beliczynski B., Springer, Berlin, s. 448-457.
  • Marusak P. (2008a): Efficient fuzzy predictive economic set-point optimizer. Lecture Notes in Artificial Intelligence, t. 5097: Proceedings of the 9th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2008, Zakopane, red. Rutkowski L., Tadeusiewicz R., Zadeh L.A., Zurada J.M., Springer, Berlin, s. 273-284.
  • Marusak P. (2008b): Analytical predictive controllers with efficient handling of output constraints. Recent advances in control and automation. Proceedings of the 16th National Control Conference, KKA 2008, Szczyrk, red. Malinowski K., Rutkowski L., Academic Publishing House EXIT, Warszawa, s. 130-140.
  • Mayne D.Q., Rawlings J.B., Rao C.V. i Scokaert P.O.M. (2000): Constrained model predictive control: stability and optimality. Automatica, t. 36, nr 6, s. 789-814.
  • Mayne D.Q. i Michalska H. (1990): Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control, t. 35, nr 7, s. 814-824.
  • McCulloch W.S. i Pitts W.H. (1943): A logical calculus of ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, t. 5, nr 4, s. 115-133.
  • Meadows E.S. i Rawlings J.B. (1993): Receding horizon control with an infinite horizon. Proceedings of the American Control Conference. ACC 1993, San Francisco, s. 2926-2930.
  • Megías D., Serrano J. i El Ghoumari M.Y. (1999): Extended linearised predictive control: practical control algorithms for nonlinear systems. Proceedings of the European Control Conference, ECC 1999, Karlsruhe, praca nr F0883.
  • Michalska H. i Mayne D.Q. (1995): Moving horizon observers and observer-based control. IEEE Transactions on Automatic Control, t. 40, nr 6, s. 995-1006.
  • Michalska H. i Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic Control, t. 38, nr 11, s. 1623-1633.
  • Milanese M. i Novara C. (2004): Set membership identification of nonlinear systems. Automatica, t. 40, nr 6, s. 957-975.
  • Milman R. i Davison E.J. (2008): A fast MPC algorithm using nonfeasible active set methods. Journal of Optimization Theory and Applications, t. 139, nr 3, s. 591-616.
  • Minsky M. i Papert S. (1969): Perceptrons. MIT Press, Cambridge.
  • Mjalli F.S. (2006): Adaptive and predictive control of liquid-liquid extractors using neural-based instantaneous linearization technique. Chemical Engineering and Technology, t. 29, nr 5, s. 539-549.
  • Mohanty S. (2009): Artificial neural network based system identification and model predictive control of a flotation column. Journal of Process Control, t. 19, nr 6, s. 991-999.
  • Moore E. (1996): Introduction to interval analysis. Prentice Hall, Upper Saddle River.
  • Morari M. i Lee J.H. (1999): Model predictive control: past, present and future. Computers and Chemical Engineering, t. 23, nr 4/5, s. 667-682.
  • Mosca E. i Zhang J. (1992): Stable redesign of predictive control. Automatica, t. 28, nr 6, s. 1229-1233.
  • Mu J., Rees D. i Liu G.P. (2005); Advanced controller design for aircraft gas turbine engines. Control Engineering Practice, t. 13, nr 8, s. 1001-1015.
  • Muske K.R. i Rawlings J.B. (1993): Model predictive control with linear models. AIChE Journal, t. 39, nr 2, s. 262-287.
  • Muske K.R., i Rawlings J.B. (1992): Implementation of a stabilizing constrained receding horizon regulator. Proceedings of the American Control Conference, ACC 1992, Chicago, s. 1594-1595.
  • Nagy Z.K. (2007): Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chemical Engineering Journal, t. 127, nr 1-3, s. 95-109.
  • Narendra K.S. i Parthasarathy K. (1990): Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, t. 1, nr 1, s. 4-27.
  • Nelles O. (2001): Nonlinear system identification. From classical approaches to neural networks and fuzzy models. Springer, Berlin.
  • de Nicolao G., Magni L. i Scattolini R. (1998): Stabilizing receding-horizon control of nonlinear time-varying systems. IEEE Transactions on Automatic Control, t. 43, nr 7, s. 1030-1036.
  • Niederliński A., Mościński J. i Ogonowski Z. (1995): Regulacja adaptacyjna. Wydawnictwo Naukowe PWN, Warszawa.
  • Nørgaard M., Ravn O., Poulsen N.K. i Hansen L.K. (2000): Neural networks for modelling and control of dynamic systems. Springer, Londyn.
  • Nørgaard M., Poulsen N.K. i Ravn O. (2000): New developments in state estimation for nonlinear systems. Automatica, t. 36, nr 11, s. 1627-1638.
  • Norquay S.J., Palazoğlu A. i Romagnoli J.A. (1999): Application of Wiener model predictive control (WMPC) to an industrial C2 splitter. Journal of Process Control, t. 9, nr 6, s. 461-473.
  • Norquay S.J., Palazoğlu A. i Romagnoli J.A. (1998): Model predictive control based on Wiener models. Chemical Engineering Science, t. 53, nr 1, s. 75-84.
  • de Oliveira N.M.C. i Biegler L.T. (1995): An extension of Newton-type algorithms for nonlinear process control. Automatica, t. 31, nr 2, s. 281-286.
  • de Oliveira Kothare S.L. i Morari M. (2000): Contractive model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control, t. 45, nr 6, s. 1053-1071.
  • Onnen C., Babuška R., Kaymak U., Sousa J.M., Verbruggen H.B. i Iserman R. (1997): Genetic algorithms for optimisation in predictive control. Control Engineering Practice, t. 5, nr 10, s. 1363-1372.
  • Ortega J.G. i Camacho E.F. (1996): Mobile robot navigation in a partially structured static environment, using neural predictive control. Control Engineering Practice, t. 4, nr 12, s. 1669-1679.
  • Osowski S. (2006): Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • On J. i Rhinehart R.R. (2003): Grouped-neural network modeling for model-predictive control. Control Engineering Practice, t. 11, nr 7, s. 723-732.
  • On J. i Rhinehart R.R. (2002): Grouped-neural network modeling for model predictive control. ISA Transactions, t. 41, nr 2, s. 195-202.
  • Pan Y. i Wang J. (2008a): Two neural network approaches to model predictive control. Proceedings of the American Control Conference, ACC 2008, Waszyngton, s. 1685-1690.
  • Pan Y. i Wang J. (2008b): Nonlinear model predictive control using a recurrent neural network. Proceedings of the International Joint Conference on Neural Networks, IJCNN 2008, Hongkong, s. 2296-2301.
  • Pan Y. i Wang J. (2008c): Robust model predictive control using a discrete-time recurrent neural network. Lecture Notes in Computer Science, t. 5263: Proceedings of the 17th International Conference on Artificial Neural Networks, ISNN 2008, Pekin, red. Sun F., Zhang J., Tan Y., Cao J., Yu W., Springer, Berlin, s. 883-892.
  • Pan Y., Sung S.W. i Lee J.H. (2001): Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks. Control Engineering Practice, t. 9, nr 8, s. 859-864.
  • Parisini T., Sanguineti M. i Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. International Journal of Control, t. 70, nr 3, s. 341-362.
  • Park J. i Sandberg I.W. (1991): Universal approximation using radial-basis-function networks. Neural Computation, t. 3, nr 2, s. 246-257.
  • Patan K. (2008): Artificial neural networks for the modelling and fault diagnosis of technical processes. Lecture Notes in Controt and Information Sciences, t. 377, Springer, Berlin.
  • Patan K., Witczak M. i Korbicz J. (2008): Towards robustness in neural network based fault diagnosis. International Journal of Applied Mathematics and Computer Science, t. 18, nr 4, s. 443-454.
  • Patrinos P., Sopasakis P. i Sarimveis H. (2011): A global piecewise smooth Newton method for fast large-scale model predictive control. Automatica, t. 47, nr 9, s. 2016-2022.
  • Patwardhan R.S., Lakshminarayanan S. i Shah S.L. (1998): Constrained nonlinear MPC using Hammerstein and Wiener models: PSL framework. AIChE Journal, t. 44, nr 7, s. 1611-1622.
  • Pearson R.K. (2003): Selecting nonlinear model structures for computer control. Journal of Process Control, t. 13, nr 1, s. 1-26.
  • Pearson R.K. i Pottmann M. (2000): Gray-box identification of block-oriented nonlinear models. Journal of Process Control, t. 10, nr 5, s. 301-315.
  • Peterka V. (1984): Predictor-based self-tuning control. Automatica, t. 20, nr 1, s. 39-50.
  • Piche S., Sayyar-Rodsari B., Johnson D. i Gerules M. (2000): Nonlinear model predictive control using neural networks. IEEE Control Systems Magazine, t. 20, nr 3, s. 56-62.
  • Pin G., Raimondo D.M., Magni L. i Parisini T. (2009): Robust model predictive control of nonlinear systems with bounded and state-dependent uncertainties. IEEE Transactions on Automatic Control, t. 54, nr 7, s. 1681-1687.
  • Polak E. i Yang T.H. (1993): Moving horizon control of linear systems with input saturation and plant uncertainty. International Journal of Control, t. 58, nr 3, s. 613-663.
  • Potočnik P. i Grabec I. (2002): Nonlinear model predictive control of a cutting process. Neurocomputing, t. 43, nr 1-4, s. 107-126.
  • Pottmann M. i Seborg D.E. (1997): A nonlinear predictive control strategy based on radial basis function models. Computers and Chemical Engineering, t. 21, nr 9, s. 965-980.
  • Powell M.J.D. (1983): Variable metric methods for constrained optimization. Mathematical programming: the state of the art, red. Bachem A., Grötschel M., Korte B., Springer, Nowy Jork, s. 288-311.
  • Powell M.J.D. (1978): A fast algorithm for nonlinearly constrained optimization calculations. Lecture Notes in Mathematics t. 630: Numerical Analysis, red. Watson G.A., Springer, Dundee, s. 144-157.
  • Prasad V. i Bequette B.W. (2003): Nonlinear system identification and model reduction using artificial neural networks. Computers and Chemical Engineering, t. 27, nr 12, s. 1741-1754.
  • Press W.H., Teukolsky S.A., Vettering W.T. i Flannery B.P. (1992): Numerical recipes in C: the art of scientiftc computing. Cambridge University Press, Cambridge.
  • Propoi A.I. (1963): Use of linear programming methods for synthesizing sampled-data automatic systems. Automation and Remote Control, t. 24, nr 7, s. 837-844.
  • Psichogios D.C. i Ungar L.H. (1992): A hybrid neural network-first principles approach to process modelling. AIChE Journal, t. 38, nr 10, s. 1499-1511.
  • Qin S.J. i Badgwell T.A. (2003): A survey of industrial model predictive control technology. Control Engineering Practice, t. 11, nr 7, s. 733-764.
  • Rafal M.D. i Stevens W.F. (1968): Discrete dynamic optimization applied to on-line optimal control. AIChE Journal, t. 14, nr 1, s. 85-91.
  • Raimondo D.M., Limón D., Álamo T. i Magni L. (2010): Robust model predictive control algorithms for nonlinear systems: an input-to-state stability approach. Model predictive control, red. Zheng T., s. 87-108, Sciyo, Rijeka.
  • R. Ramírez D., Álamo T., Camacho E.F. i Muñoz de la Peña D. (2006): Min-max MPC based on a computationally efficient upper bound of the worst case cost. Journal of Process Control, t. 16, nr 5, s. 511-519.
  • Ramírez D.R., Arahal M.R. i Camacho E.F. (2004): Min-max predictive control of a heat exchanger using a neural network solver. IEEE Transactions on Control Systems Technology, t. 12, nr 5, s. 776-786.
  • Rao C.V., Rawlings J.B. i Mayne D.Q. (2003): Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Transactions on Automatic Control, t. 48, nr 2, s. 246-258.
  • Rawlings J.B. i Mayne D.Q. (2009): Model predictive control: theory and design. Nob Hill Publishing, Madison.
  • Rawlings J.B. (2000): Tutorial overview of model predictive control. IEEE Control Systems Magazine, t. 20, nr 3, s. 38-52.
  • Rawlings J.B. i Muske K.R. (1993): The stability of constrained receding horizon control. IEEE Transactions on Automatic Control, t. 38, nr 10, s. 1512-1516.
  • Reinelt W., Garulli A. i Ljung L. (2002): Set membership identification of nonlinear systems. Automatica, t. 38, nr 5, s. 787-803.
  • Richalet J.A., Rault A., Testud J.L. i Papon J. (1978): Model predictive heuristic control: application to an industrial processes. Automatica, t. 14, nr 2, s. 413-428.
  • Richalet J.A., Rault A., Testud J.L. i Papon J. (1976): Algorithmic control of industrial processes. Proceedings of the, 4th IFAC Sympnsium on Identification and System Parameter Estimation, Tbilisi, s. 1119-1167.
  • Ripley B.D. (1996): Pattern recognition and neural networks. Cambridge University Press, Cambridge.
  • Roberts P.D. (1979): An algorithm for steady-state system optimization and parameter estimation. International Journal of Systems Science, t. 10, nr 7, s. 719-734.
  • Rocha T., Paredes S., de Carvalho P. i Henriques J. (2011): Prediction of acute hypotensive episodes by means of neural network multi-models. Computers in Biology and Medicine, t. 41, nr 10, s. 881-890.
  • Rosenblatt F. (1962): Principle of neurodynamics. Spartan, Nowy Jork.
  • Rossiter J.A. (2003): Model-based predictive control. CRC Press, Boca Raton.
  • Rossiter J.A. i Kouvaritakis B. (2001): Modelling and implicit modelling for predictive control. International Journal of Control, t. 74, nr 11, s. 1085-1095.
  • Rotava O. i Zanin A.C. (2005): Multivariable control and real-time optimization - an industrial practical view. Hydrocarbon Processing, t. 84, nr 6, s. 61-71.
  • Rohani S., Haeri M. i Wood H.C. (1999): Modeling and control of a continuous crystallization process, Part 2. Model predictive control. Computers and Chemical Engineering, t. 23, nr 3, s. 279-286.
  • Ronhani R. i Mehra R.K. (1982): Model algorithmic control (MAC); basic theoretical properties. Automatica, t. 18, nr 4, s. 401-441.
  • Rutkowski L. (2005): Metody i techniki sztucznej inteligencji. Wydawnictwo Naukowe PWN, Warszawa.
  • Saez D., Cipriano A. i Ordys A.W. (2002): Optimisation of industrial processes at supervisory level: application to control of thermal power plants. Springer, Londyn.
  • Sarabia D., Capraro F., Larsen L.F.S. i de Prada C. (2009): Hybrid NMPC of supermarket display cases. Journal of Process Control, t. 17, nr 4, s. 428-441.
  • Saraswati S. i Chand S. (2010): Online linearization-based neural predictive control of air-fuel ratio in SI engines with PID feedback correctiom scheme. Neural Computing and Applications, t. 19, nr 6, s. 919-933.
  • Scattolini R. (2009): Architectures for distributed and hierarchical Model Predictive Control - A review. Journal of Process Control, t. 19, nr 5, s. 723-731.
  • Scattolini R. i Bittanti S. (1990): On the choice of the horizon in long-range predictive control - some simple criteria. Automatica, t. 26, nr 5, s. 915-917.
  • Schölkopf B. i Smola A. (2001): Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT, Cambridge.
  • Scokaert P.O.M. i Rawlings J.B. (1999): Feasibility issues in linear model predictive control. AIChE Journal, t. 45, nr 85, s. 1649-1659.
  • Scokaert P.O.M., Mayne D.Q. i Rawlings J.B. (1999): Suboptimal model predictive control (feasibility implies stability). IEEE Transactions on Automatic Control, t. 44, nr 3, s. 648-654.
  • Scokaert P.O.M. i Mayne D.Q. (1998): Min-max feedback model predictive control for constrained linear systems. IEEE Transactions on Automatic Control, t. 43, nr 8, s. 1136-1142.
  • Scokaert P.O.M. (1997): Infinite horizon generalized predictive control. International Journal of Control, t. 66, nr 1, s. 161-175.
  • Scokaert P.O.M. i Clarke D.W. (1994): Stabilising properties of constrained predictive control. Proceedings IEE, Part D, t. 141, nr 5, s. 295-304.
  • Seidler J., Badach A. i Molisz W. (1980): Metody rozwiązywania zadań optymalizacji. Wydawnictwo Naukowe PWN, Warszawa.
  • Schittkowski K. (1982): The nonlinear programming method of Wilson. Han, and Powell with an augmented Lagrangian type line search function, Part 1: convergence analysis. Numerische Mathematik, t. 38, nr 1, s. 83-114.
  • Shafiee G., Arefi M.M., Jahed-Motlagh M.R. i Jalali A.A. (2008): Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model. Chemical Engineering Journal, t. 143, nr 1-3, s. 282-292.
  • Shampine L.F. i Reichelt M.W. (1997): The MATLAB ODE suite. SIAM Journal on Scientific Computing, t. 18, nr 1, s. 1-22.
  • Shook D.S., Mohtahdi C. i Shah S.L. (1991): Identification for long range predictive control. IEE Proceedings, Part D: Control Theory and Applications, t. 138, nr 1, s. 75-84.
  • Simon D. (2006): Optimal state estimation: Kalman, H∞, and nonlinear approaches. John Wiley & Sons, New Jersey.
  • Sjöberg J., Zhang O., Ljung L., Benveniste A., Delyon B., Glorennec P., Hjalmarsson H. i Juditsky A. (1995): Nonlinear black-box modeling in system identification: a unified overview. Automatica, t. 31, nr 12, s. 1691-1724.
  • Skogestad S. (2000): Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, t. 10, nr 5, s. 487-507.
  • Smith J.G., Kamat S. i Madhavan K.P. (2007): Modeling of pH process using wavenet based Hammerstein model. Journal of Process Control, t. 17, nr 6, s. 551-561.
  • Sontag E.D. i Wang Y. (1996): New characterizations of the input to state stability property. IEEE Transactions on Automatic Control, t. 41, nr 9, s. 1283-1294.
  • De Souza G., Odloak D. i Zanin A.C. (2010): Real time optimization (RTO) with model predictive control (MPC). Computers and Chemical Engineering, t. 34, nr 12, s. 1999-2006.
  • Sriniwas G.R., i Arkun Y. (1997): A global solution to the nonlinear model predictive control algorithms using polynomial ARX models. Computers and Chemical Engineering, t. 21, nr 4, s. 431-439.
  • Stachurski A. (2009): Wprowadzenie do optymalizacji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • Stadler K.S., Poland J. i Gallestey E. (2011): Model predictive control of a rotary cement kiln. Control Engineuring Practice, t. 19, nr 1, s. 1-9.
  • Suárez L.A.P., Georgieva P. i de Azevedo S.F. (2010): Nonlinear MPC for fed-batch multiple stages sugar crystallization. Chemical Engineering Research and Design, t. 89, nr 6, s. 753-767.
  • Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B. i Vandewalle J. (2002): Least squares support vector machines. World Scientific, Singapur.
  • Szumski M. (2012): Adaptacyjne algorytmy regulacji predykcyjnej w zastosowaniu do układów ogrzewania, wentylacji i klimatyzacji. Rozprawa doktorska, Politechnika Warszawska, Warszawa.
  • Tadeusiewicz R. (1993): Sieci neuronowe. Akademicka Oficyna Wydawnicza, Warszawa.
  • Takagi T. i Sugeno M. (1985): Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, t. 15, nr 1, s. 116-132.
  • Tan Y. i van Cauvenberghe A.R. (1996): Nonlinear one-step-ahead control using neural networks: control strategy and stability design. Automatica, t. 32, nr 12, s. 1701-1706.
  • Tatjewski P. (2011): Disturbance modeling and state estimation for predictive control with different state-space process models. Proceedings of the 18th IFAC World Congress Mediolan, s. 5326-5331.
  • Tatjewski P., Kościelny J.M., Nagórko W., Trybus L. (2011): Wybrane układy i systemy automatyki przemysłowej: systemy sterowania, sterowanie zaawansowane, diagnostyka, zarządzanie alarmami. Materiały XVII Krajowej Konferencji Automatyki, KKA 2011, s. 92-117, Kielce-Cedzyna.
  • Tatjewski P. (2010): Supervisory predictive control and on-line set-point optimization. International Journal of Applied Mathematics and Computer Science, t. 20, nr 3, s. 483-495.
  • Tatjewski P., Ławryńczuk M. i Marusak P. (2009): Integrated predictive optimiser and constraint supervisor for processes with basic feedback control algorithm. Proceedings of the European Control Conference, ECC 2009, Budapeszt, s. 3359-3364.
  • Tatjewski P. (2008): Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control, t. 32, nr 1, s. 71-85.
  • Tatjewski P. (2007): Advanced control of industrial processes, structures and algorithms. Springer, Londyn.
  • Tatjewski P. i Ławryńczuk M. (2006): Soft computing in model-based predictive control. International Journal of Applied Mathematics and Computer Science, t. 16, nr 1, s. 101-120.
  • Tatjewski P., Ławryńczuk M i Marusak P. (2006): Linking nonlinear steady-state and target set-point optimisation for model predictive control. Proceedings of the International Control Conference Control, ICC 2006, Glasgow, praca nr 172.
  • Tatjewski P. (2002): Sterowanie zaawansowane obiektów przemysłowych. Akademicka Oficyna Wydawnicza EXIT, Warszawa.
  • Tatjewski P., Brdyś M.A. i Duda J. (2001): Optimising control of uncertain plants with constrained, feedback controlled outputs. International Journal of Control, t. 74, nr 15, s. 1510-1526.
  • Tatjewski P. i Roberts P.D. (1987): Newton-like algorithm for integrated system optimization and parameter estimation technique. International Journal of Control, t. 46, nr 4, s. 1155-1170.
  • Temeng K.O., Schnelle P.D. i McAvoy T.J. (1995): Model predictive control of an industrial packed bed reactor using neural networks. Journal of Process Control, t. 5, nr 1, s. 19-27.
  • Tompson M.L. i Kramer M-A. (1994): Modelling chemical processes using prior knowledge and neural networks. AIChE Journal, t. 40, nr 8, s. 1328-1340.
  • Tøndel P., Johansen T.A. i Bemporad A. (2003): An algorithm for multi-parametric quadratic programming and explicit MFC solutions. Automatica, t. 39, nr 3, s. 489-497.
  • Trajanoski Z. i Wach P. (1998): Neural predictive control for insulin delivery using the subcutaneous route. IEEE Transactions on Biomedical Engineering, t. 45, nr 9, s. 1122-1134.
  • Tvrzská de Gouvêa M. i Odloak D. (1998): One-layer real fcime optimization of LPG production in the FCC unit: procedure, advantages and disadvantages. Computers and Chemical Engineering, t. 22, suplement, s. S191-S198.
  • Vidysagar M. (1993): Nonlinear systems analysis. Prentice Hall, Englewood Cliffs.
  • Vieira W.G., Santos V.M.L., Carvalho F.R., Pereira J.A.F.R. i Fileti A.M.F. (2005): Identification and predictive control of a FCC unit using a MIMO neural model. Chemical Engineering and Processing, t. 44, nr 8, s. 855-868.
  • Wang L.X. i Wan F. (2001): Structured neural networks for constrained model predictive control. Automatica, t. 37, nr 8, s. 1235-1243.
  • Wang S.W., Yu D.L., Gomm J.B., Page G.F. i Douglas S.S. (2006): Adaptive neural network model based predictive control for air-fuel ratio of SI engines. Engineering Applications of Artificial Intelligence, t. 19, nr 2, s. 189-200.
  • Wang Y. i Boyd S. (2010): Fast model predictive control using online optimization. IEEE Transactions on Control System Technology, t. 18, nr 2, s. 267-278.
  • Wächter A. i Biegler L.T. (2006): On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming, t. 106, nr 1, s. 25-57.
  • Weigl Z., Oracz P., Dunalewicz A., Ławryńczuk M., Poświata A., Ilmurzyńska J. i Plesnar M. (1998): Opracowanie systemu inżynieryjnej symulacji dynamiki układów chemicznych. Raport Instytutu Chemii Przemysłowej i Instytutu Automatyki i Informatyki Stosowanej Politechniki Warszawskiej nr 106/98, Warszawa.
  • Witczak M. (2007): Modelling and estimation strategies for fault diagnosis of nonlinear systems: from analytical to soft computing approaches. Lecture Notes in Control and Information Sciences, t. 354, Springer, Berlin.
  • Xiong Q. i Jutan A. (2002): Grey-box modelling and control of chemical processes. Chemical Engineering Science, t. 57, nr 6, s. 1027-1039.
  • Yang T.H. i Polak E. (1993): Moving horizon control of nonlinear systems with input saturation and plant uncertainty. International Journal of Control, t. 58, nr 4, s. 875-903.
  • Ydsite B.E. (1984): Extended horizon adaptive control. Proceedings of the 9th IFAC World Congress, Budapeszt, s. 133-138.
  • Yu D.L. i Gomm J.B. (2003): Implementation of neural network predictive control to a multivariable chemical reactor. Control Engineering Practice, t. 11, nr 11, s. 1315-1323.
  • Yu D.W. i Yu D.L. (2007): Multi-rate model predictive control of a chemical reactor based on three neural models. Biochemical Engineering Journal, t. 37, nr 1, s. 86-97.
  • Zamarreño J.M., Vega P., Garcia L.D. i Francisco M. (2000): State-space neural network for modelling prediction and control. Control Engineering Practice, t. 8, nr 9, s. 1063-1075.
  • Zamarreño J.M. i Vega P. (1999): Neural predictive control. Application to a highly nonlinear system. Engineering Applications of Artificial Intelligence, t. 12, nr 2, s. 149-158.
  • Zamarreño J.M. i Vega P. (1998): State-space neural network. Properties and application. Neural Networks, t. 11, nr 6, s. 1099-1112.
  • Zamarreño J.M. (1997): Identification and predictive control of a melter unit used in the sugar industry, Artificial Intelligence in Engineering, t. 11, nr 4, s. 365-373.
  • Zanin A.C., Tvrzská de Gouvêa M. i Odloak D. (2002): Integrating real-time optimization into model predictive controller of the FCC system. Control Engineering Practice, t. 10, nr 8, s. 819-831.
  • Zanin A.C., Tvrzská de Gouvêa M. i Odloak D. (2000): Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit. Computers in Chemical Engineering, t. 24, nr 2-7, s. 525-531.
  • Zheng A. (1997): A computationally efficient nonlinear MPC algorithm. Proceedings of the American Control Conference, ACC 1997, Albuquerque, s. 1623-1627.
  • Zheng A. i Morari M. (1995): Stability of model predictive control with mixed constraints. IEEE Transactions on Automatic Control, t. 40, nr 10, s. 1818-1823.
  • Zhu G.Y., Henson M.A. i Megan L. (2001): Dynamic modeling and linear model predictive control of gaś pipeline networks. Journal of Process Control, t. 11, nr 2, s. 129-148.
  • Żurada J., Barski M. i Jędruch W. (1996): Sztuczne sieci neuronowe: podstawy teorii i zastosowania. Wydawnictwo Naukowe PWN, Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0056-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.