PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Signal processing algorithms and target localisation methods for continuous-wave passive bistatic radar

Autorzy
Identyfikatory
Warianty tytułu
PL
Algorytmy przetwarzania sygnałów i metody lokalizacji obiektów w bistatycznych radarach pasywnych z falą ciągłą
Języki publikacji
EN
Abstrakty
EN
In this work, passive radar using existing commercial transmitters, such as radio, television, or cellular telephony base transceiver stations, as illuminators of opportunity is considered. The work encompasses all main processing steps in passive radar : digital beamforming, clutter filtering, correlation processing, bistatic target tracking, target localisation and Cartesian target tracking. A circular antenna array with digital beamforming is considered. An algorithm is proposed for optimisation of the beamforming coefficients to obtain a low sidelobe level and a narrow main beam. The problem of mutual coupling between array elements is also addressed, and a method for calibrating the array is proposed. The algorithms for coefficients optimisation and calibration are verified with real measurements. The classical procedure for target detection in passive radar based on correlation processing is derived. Extensions of processing are analysed, which allow the use of longer-than-typical integration times and detect highly manoeuvring targets without performance degradation. Two classes of clutter filtering algorithms are compared: iterative and block. In the case of the iterative methods, three classical filters, i.e. NLMS, RLS and LSL, are compared. In the case of the block methods, least squares matrix solution, block lattice filter and a modified block lattice filter, are compared. The analysis of different approaches involves an assessment of convergence rate, computational complexity and frequency selectivity. Target tracking in bistatic coordinates based on the linear Kalman filter is introduced.The influence of several parameters, such as integration time and/or probability of false alarm, on tracking performance in terms of accuracy of bistatic parameters estimation is analysed. A tracking example of a real target with accuracy analysis is presented. Two methods for target localisation in Cartesian coordinates from the bistatic measurements are proposed. The methods are derived on the basis of algorithms known for time-difference-of-arrival systems. The methods derived use closed-form equations. Equations for accuracy of the methods are derived and analysed. An example of target localisation based on real data is presented. The extended Kalman filter for tracking in Cartesian coordinates is introduced. Two updating schemes are considered: parallel and sequential. A two-stage tracking algorithm, which involves bistatic tracking and Cartesian tracking, is proposed. This approach allows the ghost-target phenomenon to be significantly reduced, and localisation accuracy to be increased. The experimental FM radio-based passive radar PaRaDe, developed at Warsaw University of Technology, is described. The hardware and software parts of the system are presented. Real examples of detection and tracking of targets are presented.
PL
W niniejszej pracy przedstawiono zagadnienia dotyczące radarów pasywnych, wykorzystujących sygnały niekooperujących nadajników, takich jak stacje radiowe i telewizyjne, czy stacje bazowe telefonii komórkowej. W pracy przedstawiono wszystkie główne etapy przetwarzania sygnałów w radarze pasywnym : cyfrowe formowanie wiązek, usuwanie clutteru, przetwarzanie korelacyjne, śledzenie bistatyczne, lokalizację obiektów i śledzenie kartezjańskie. W pracy rozważano kołowy szyk antenowy z cyfrowym formowaniem wiązek. Zaproponowano algorytm optymalizacji współczynników formowania wiązek, zapewniający niski poziom listków bocznych i wąską wiązkę główną charakterystyki. Przeanalizowano również problem sprzężeń między elementami szyku i zaproponowano metodę kalibracji szyku. Metody optymalizacji współczynników i kalibracji szyku zweryfikowano z wykorzystaniem pomiarów. Przedstawiono klasyczną procedurę detekcji stosowaną w radarach pasywnych opartą o korelację sygnałów. Przeanalizowano rozszerzenia klasycznego podejścia, które umożliwiły stosowanie dłuższych niż typowe czasów integracji oraz detekcję obiektów silnie manewrujących bez degradacji jakości przetwarzania. Porównano dwie klasy algorytmów służących do eleiminacji clutteru : iteracyjne i blokowe. W przypadku metod iteracyjnych porównano trzy klasyczne filtry : NLMS, RLS i LSL. W przypadku metod blokowych porównano macierzowe rozwiązanie zgodnie z kryterium najmniejszych kwadratów, blokowy filtr kratowy i zmodyfikowany blokowy filtr kratowy. Analiza była przeprowadzana pod kątem szybkości zbieżności, złożoności obliczeniowej i selektywności częstotliwościowej. Przedstawiono algorytm śledzenia obiektów we współrzędnych bistatycznych oparty na liniowym filtrze Kalmana. Przebadano wpływ różnych parametrów, takich jak czas integracji czy prawdopodobieństwo fałszywego alarmu na jakość śledzenia rozumianą jako dokładność estymacji bistatycznych parametrów obiektu. Przedstawiono przykład śledzenia obiektu rzeczywistego i przeprowadzono analizę dokładności śledzenia. Zaproponowano dwie metody lokalizacji obiektów we współczesnych kartezjańskich na podstawie pomiarów bistatycznych. Metody wyprowadzono na podstawie wyników znanych dla systemów wykorzystujących różnice czasów przyjścia (time difference of arrival). W otrzymanych metodach wykorzystywane są proste wzory o zamkniętej formie. Wyprowadzono i przeanalizowano wzory opisujące dokładność lokalizacji. Przedstawiono przykład lokalizacji obiektu na podstawie danych rzeczywistych. Do śledzenia obiektów we współrzędnych kartezjańskich zastosowano rozszerzony filtr Kalmana. Rozważono dwa rodzaje aktualizacji pomiarami odpowiadającymi różnym nadajnikom : równoległy i sekwencyjny. Zaproponowano dwu-etapowy algorytm śledzenia wykorzystujący śledzenie we współrzędnych bistatycznych i kartezjańskich. Takie rozwiązanie redukuje problem "obiektów-duchów" i zwiększa dokładność lokalizacji. Opisano eksperymentalny radar pasywny PaRaDe skonstruowany w Politechnice Warszawskiej wykorzystujący nadajniki radia FM. Przedstawiono część sprzętową i programową systemu. Zaprezentowano również wyniki pomiarów z wykorzystaniem systemu.
Rocznik
Tom
Strony
5--142
Opis fizyczny
Bibliogr. 151 poz., tab., rys., wykr.
Twórcy
  • Instytut Systemów Elektronicznych Politechnika Warszawska
Bibliografia
  • [1] M. Al-Husseini, E. Yaacoub, K. Y. Kabalan, and A. El-Hajj, „Pattern synthesis with uniform circular arrays for the reduction of WCDMA intercell interference”, Turkish Journal of Electrical Engineering and Computer Science, vol. 16, no. 3, pp. 207-215, November 2008.
  • [2] S. R. J. Axelsson, „Noise radar for range/Doppler processing and digital beamforming using low-bit ADC”, IEEE Trans. Geoscience and Remote Sensing, vol. 41, no. 12, pp. 2703-2720, December 2003.
  • [3] S. R. J. Axelsson, „Noise radar using random phase and frequency modulation”, IEEE Trans. Geoscience and Remote Sensing, vol. 42, no. 11, pp. 2370-2384, November 2004.
  • [4] C. J. Baker, H. D. Griffiths, and I. Papoutsis, „Passive Coherent Location radar systems. Part 2: Waveform properties”, IEE Proc. Radar. Sonar and Navigation, vol. 152, no. 3, pp. 160-168, June 2005.
  • [5] Y. Bar-Shalom, K. C. Chang, and H. M. Shertukde, „Performance evaluation of a cascaded logic for track formation in clutter”, IEEE Trans. Aerospace and Electronic Systems, vol. 25, no. 2, pp. 873-878, November 1989.
  • [6] Y. Bar-Shalom and X. R. Li, Estimation and Tracking: Principles, Techniques, and Software. Boston, USA: Artech House, 1993.
  • [7] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Principles and Techniques. Storrs, USA: Yaakov Bar-Shalom, 1995.
  • [8] B. Basu and G. K. Mahanti, „Evolutionary algorithms for synthesis of uniform circular array with minimum side lobe level and maximum directivity”, in Annual IEEE India Conference - INDICON, Kolkata, India, 17-19 December 2010, pp. 1-4.
  • [9] M. Bączyk and M. Malanowski, „Decoding and reconstruction of reference DVB-T signal in passive radar systems”, in Proc. International Radar Symposium 2010, Vilnius, Lithuania, 14-18 June 2010, pp. 56-58.
  • [10] M. Bączyk and M. Malanowski, „Reconstruction of the reference signal in DVB-T-based passive radar”, International Journal of Electronics and Telecommunications, PAN, Vol. 57, no. 1, pp. 43-48, 2011.
  • [11] F. Belfiori, S. Monni, W. V. Rossum, and P. Hoogeboom. „Mutual coupling compensation applied to a uniform circular array”, in Proc. International Radar Symposium 2010, Vilnius, Lithuania, 14-18 June 2010, pp. 100-103.
  • [12] F. Belfiori, S. Monni, W. V. Rossum, and P. Hoogeboom, „Side-lobe suppression techniques for a uniform circular array”, in Proc. European Radar Conference - EURAD, Paris, France, 20 September - l October 2010, pp. 113-116.
  • [13] A. Benavoli and A. D. Lallo, „Why should we use particle filtering in FM band passive radars?” in Proc. European Radar Conference - EURAD, Amsterdam, The Netherlands, 30-31 October 2008, pp. 344-347.
  • [14] J. Brown, K. Woodbridge, A. Stove, and S. Watts, „Air target detection using airborne passive bistatic radar”, Electronics Letters, vol. 46, no. 20, pp. 1396-1397, September 2010.
  • [15] C. G. Broyden, „The convergence of a class of double-rank minimization algorithms”, Journal Inst. Math. Applic., vol. 6, pp. 76-90, 1970.
  • [16] R. Buderi, The invention that changed the world: how a small group of radar pioneers won the Second World War and launched a technological revolution. New York, USA: Touchstone, 1997.
  • [17] R. Cardinali and E. Anniballi, „ARGUS 3D system: Operational requirements and architecture”, European Commission, Tech. Rep., 2012. [Online]. Available: http://www.argus3d.eu
  • [18] R. Cardinali, F. Colone, C. Ferretti, and P. Lombardo, „Comparison of clutter and multipath cancellation techniques for passive radar”, in Proc. IEEE Radar Conference, Boston, Massachusetts, USA, 17-20 April 2007, pp. 469-474.
  • [19] F. R. Castella, „Sliding window detection probabilities”, IEEE Trans. Aerospace and Electronic Systems, vol. 12, no. 6, pp. 815-819, November 1976.
  • [20] M. Cherniakov, D. Nezlin, and K. Kubik, „Air target detection via bistatic radar based on LEOs communication signals”, IEE Proc. Radar, Sonar and Navigation, vol. 149, no. 1, pp. 33-38, February 2002.
  • [21] J. M. Christiansen and K. E. Olsen, „Range and Doppler walk in DVB-T based Passive Bistatic Radar”, in Proc. IEEE Radar Conference, Arlington, Virginia, USA, 10-14 May 2010, pp. 620-626.
  • [22] C. Coleman and H. Yardley, „Passive bistatic radar based on target illuminations by Digital Audio Broadcasting”, IEE Proc. Radar, Sonar and Navigation, vol. 2, no. 5, pp. 366-375, October 2008.
  • [23] F. Colone, R. Cardinali, and P. Lombardo, „Cancellation of clutter and multipath in passive radar using a sequential approach”, in Proc. IEEE Radar Conference, Verona, New York, USA, 24-27 April 2006, pp. 393-399.
  • [24] F. Colone, P. Falcone, and P. Lombardo, „Passive Bistatic Radar based on mixed DSSS and OFDM WiFi transmissions”, in Proc. European Radar Conference - EURAD, Manchester, UK, 12-14 October 2011, pp. 154-157.
  • [25] F. Colone, P. Falcone, A. Macera, and P. Lombardo, „High resolution cross-range profiling with passive radar via ISAR processing”, in Proc. International Radar Symposium 2011, Leipzig, Germany, 7-9 September 2011, pp. 301-306.
  • [26] F. Colone, D. O'Hagan, P. Lombardo, and C. Baker, „A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar”IEEE Trans. Aerospace and Electronic Systems, vol. 45, no. 2, pp. 698-722, April 2009.
  • [27] M. Daun and W. Koch, „Multistatic target tracking for non-cooperative illumination by DAB/DVB-T”, in Proc. IEEE Radar Conference, Rome, Italy, 26-30 May 2008, pp. 1-6.
  • [28] D. E. N. Davies, „A transformation between the phasing techniques required for linear and circular aerial arrays”, Proc. IEE. vol. 112, no. 11, pp. 2041-2045, November 1965.
  • [29] B. Dawidowicz and K. Kulpa, „Experimental results from PCL radar on moving platform”, in Proc: International Radar Symposium 2008, Wrocław, Poland, 21-23 May 2008, pp. 305-308.
  • [30] B. Dawidowicz, K. Kulpa, and M. Malanowski, „Suppression of the ground clutter in airborne PCL radar using DPCA technique”, in Proc. European Radar Conference - EURAD, Rome, Italy, 30 September - 2 October 2009, pp. 306-309.
  • [31] B. Dawidowicz, K. Kulpa, M. Malanowski, J. Misiurewicz, P. Samczyński, and M. Smolarczyk, „PCL systems on moving platforms - challenges and first results”, in Proc. 3rd FHR focus days on PCL, Wachtberg, Germany, 3-4 May 2011, pp. 1-41.
  • [32] B. Dawidowicz, K. Kulpa, M. Malanowski, J. Misiurewicz, F. Samczyński, and M. Smolarczyk, „DPCA detection of moving targets in airborne passive radar”, IEEE Trans. Aerospace and Electronic Systems, vol. 48, no. 4, pp. 1347-1357, April 2012.
  • [33] J. Dezert and T. Kirubarajan, „Track formation in clutter using a bi-band imaging sensor”, in Proc. 3rd International Conference on Information Fusion - FUSION, Paris, France, 10-13 July 2000, pp. TUD2/24-TUD2/32, vol. 1.
  • [34] S. Durrami and M. E. Bialkowski, „Effect of mutual coupling on the interference rejection capabilities of linear and circular arrays in CDMA systems”, IEEE Trans. Antennas and Propagation, vol. 52, no. 4, pp. 1130-1134, April 2004.
  • [35] G. Fabrizio, F. Colone, P. Lombardo, and A. Farina, „Passive radar in the High Frequency band”, in Proc. RadarCon 2008, Rome, Italy, 26-30 May 2008, p. CD.
  • [36] A. Farina, „Selex Sistemi Integrati Passive Covert Location Radar: AULOS”, in Proc. Joint military meeting of SET-152/RTG, Rome, Italy, 8 February 2012, p. CD.
  • [37] R. Fletcher, „A new approach to variable metric algorithms”, Computer Journal, Vol. 13, pp. 317-322, 1970.
  • [38] B. Friedlander, „A passive localization algorithm and its accuracy analysis”, IEEE Journal Oceanic Eng., vol. OE-12, no. 1, pp. 234-245, January 1987.
  • [39] Z. Gajo and M. Malanowski, „Noise radar target detection in the presence of alpha-stable noise”, in Proc. SPIE - Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV, Wilga, Poland, 21-27 May 2007, pp. 693 734-1-693 734-8, vol. 6937.
  • [40] M. Glende, „PCL-signal-processing for sidelobe reduction in case of periodical illuminator signals”, in Proc. International Radar Symposium 2006, Cracow, Poland, 24-26 May 2006, pp. 229-232.
  • [41] D. Goldfarb, „A family of variable metric updates derived by variational means”, Mathematics of Computing, vol. 24, pp. 23-26, 1970.
  • [42] D. Gould, R. Pollard, C. Sarno, and P. Tittenso, „A multiband passive radar demonstrator”in Proc. International Radar Symposium 2006, Cracow, Poland, 24-26 May 2006, pp. 657-660.
  • [43] R. Gray and L. Davisson, An Introduction to Statistical Signal Processing. Cambridge. UK: Cambridge University Press, 2004.
  • [44] H. Griffiths and N. Willis, „Klein Heidelberg - first modern bistatic radar system”, IEEE Trans. Aerospace and Electronic Systems, vol. 46, no. 4, pp. 1571-1588, October 2010.
  • [45] H. D. Griffiths and C. J. Baker, „Passive Coherent Location radar systems. Part 1: Performance prediction”, IEE Proc. Radar, Sonar and Navigation, vol. 152, no. 3, pp. 153-159, June 2005.
  • [46] H. D. Griffiths, C. J. Baker, H. Ghaleb, R. Ramakrishnan, and E. Willman, „Measurement and analysis of ambiguity functions of off-air signals for Passive Coherent Location”, Electronics Letters, vol. 39, no. 13, pp. 1005-1007, June 2003.
  • [47] H. D. Griffiths and N. R. W. Long, „Television-based bistatic radar”, IEE Proc. Communications, Radar and Signal Processing, vol. 133, no. 7, pp. 649-657, December 1986.
  • [48] S. Han, „A globally convergent method for nonlinear programming”, Journal of Optimization Theory and Applications, vol. 22, p. 297, 1977.
  • [49] M. H. Hayes, Statistical Digital Signal Processing and Modeling. Canada: John Wiley and Sons, Inc., 1996.
  • [50] S. Haykin, Adaptive Filter Theory. 3rd ed. Upper Saddle River, USA: Prentice Hall 1996.
  • [51] X. He, M. Cherniakov, and T. Zeng, „Signal detectability in SS-BSAR with GNSS non-cooperative transmitter,'' IEE Proc. Radar, Sonar and Navigation, vol. 152, no. 3, pp. 124-132, June 2005.
  • [52] S. Herman and P. Moulin, „A particle filtering approach to FM-band passive radar tracking and automatic target recognition”, in Proc. IEEE Aerospace Conference 2002, Big Sky, Montana, USA, 9-16 March 2002, pp. 4-1789-4-1808, vol. 4.
  • [53] R. D. Hippenstiel, Detection Theory. Boca Raton, USA: CRC Press, 2002.
  • [54] P. E. Howland. „Target tracking using television-based bistatic radar”, IEE Proc. Radar, Sonar and Navigation, vol. 146, no. 3, pp. 166-174, June 1999.
  • [55] P. E. Howland, D. Maksimiuk, and G. Reitsma, „FM radio based bistatic radar”, IEE Proc. Radar, Sonar and Navigation, vol. 152, no. 3, pp. 107-115, June 2005.
  • [56] R. J. James, „A history of radar”, IEE Review, vol. 35, no. 9, pp. 343-349, October 1989.
  • [57] R. E. Kalman, „A new approach to linear filtering and prediction problems”, Trans. the ASME - Journal of Basic Engineering, vol. 82, pp. 35-45, March 1960.
  • [58] P. B. Kenington, RF and Baseband Techniques for Software Defined Radio. Boston, USA: Artech House, 2005.
  • [59] P. Krysik, K. Kulpa, M. Malanowski, and P. Samczyński, „Reconstruction of GSM reference signals for PCL processing”, in Proc. 3rd FHR focus days on PCL, Wachtberg, Germany, 3-4 May 2011, pp. 1-19.
  • [60] J. Kulpa, W. Porczyk, and M. Malanowski, „The graphic processor as the computing platform for radar signal processing”, in Proc. International Radar Symposium 2009, Hamburg, Germany, 9-11 September 2009, pp. 473-477.
  • [61] K. Kulpa, „Adaptive clutter rejection in bi-static CW radar”, in Proc. International Radar Symposium 2004, Warsaw, Poland, 19-21 May 2004, pp. 61-66.
  • [62] K. Kulpa, „Ground clutter suppression in noise radar”, in Proc. International Conference on Radar, Toulouse, France, 18-22 October 2004, p. CD.
  • [63] K. Kulpa, „Target acceleration estimation for continuous wave noise radar”, in Proc. International Radar Symposium 2005, Berlin, Germany, 6-8 September 2005, pp. 177-183.
  • [64] K. Kulpa, „Simple sea clutter canceller for noise radar”, in Proc. International Radar Symposium 2006, Cracow, Poland, 24-26 May 2006, pp. 299-302.
  • [65] K. Kulpa, Zastosowanie metod CLEAN do detekcji słabych ech radiolokacyjnych na tle silnych zakłóceń biernych. Warszawa, Polska: Oficyna Wydawnicza Politechniki Warszawskiej, 2008, vol. 164.
  • [66] K. Kulpa. Z. Gajo, and M. Malanowski. „Robustification of noise radar detection”, IET Proc. Radar, Sonar and Navigation, vol. 2, no. 4, pp. 284-293, August 2008.
  • [67] K. Kulpa and M. Malanowski, „Simple COTS PCL demonstrator”, in Proc. 5th Multi-National Passive Covert Radar Conference, Shrivenham, UK, 13-15 November 2006, p. CD.
  • [68] K. Kulpa and M. Malanowski, „The concept of simple MIMO PCL radar”, in Proc. European Radar Conference - EURAD, Amsterdam, The Netherlands, 30-31 October 2008, pp. 240-243.
  • [69] K. Kulpa, M. Malanowski, J. Misiurewicz, M. Mordzonek, P. Samczyński, and M. Smolarczyk, „Airborne PCL radar: the concept and primary results”, in Proc. Military Radar 2008, Amsterdam, The Netherlands, 27-29 October 2008, p. CD.
  • [70] K. Kulpa, M. Malanowski, J. Misiurewicz, and P. Samczyński. „Passive radar for strategic object protection”, in Proc. IEEE Conference on Microwaves, Communications, Antennas and Electronic Systems - COMCAS 2011, Tel Aviv, Israel, 7-9 November 2011, pp. 1-4.
  • [71] K. Kulpa, M. Malanowski, and P. Samczyński, „Multipath illumination effects in passive radars”, in Proc. International Radar Symposium 2011, Leipzig, Germany, 7-9 September 2011, pp. 321-326.
  • [72] K. Kulpa, M. Malanowski, P. Samczyński, and B. Dawidowicz, „The concept of airborne passive radar”, in Proc. Microwaves, Radar and Ramote Sensing Symposium - MRRS, Kiev, Ukraine, 25-27 August 2011, pp. 267-270.
  • [73] K. Kulpa, M. Malanowski, P. Samczyński, and J. Misiurewicz, „On-board PCL systems for airborne platform protection”, in Proc. the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, Italy, 12-14 September 2011, pp. 119-122.
  • [74] K. Kulpa and J. Misiurewicz, „Stretch processing for long integration time Passive Covert Radar”, in Proc. IEEE CIE International Conference on Radar, Shanghai, China, 16-19 October 2006, pp. 1-4.
  • [75] K. Kulpa, J. Misiurewicz, Z. Gajo, and M. Malanowski, „A simple robust detection of weak target in noise radars”, in Proc. European Radar Conference - EURAD, Munich, Germany, 8-12 October 2007, pp. 1554-1557.
  • [76] K. Kulpa, J. Misiurewicz, M. Malanowski, P. Samczyński, and M. Smolarczyk, „Recent developments in passive radars”, in Proc. IQPC Military Sensors 2009 Conference, London, UK, 18-20 November 2009, p. CD.
  • [77] K. Kulpa, S. Rzewuski, Z. Gajo, and M. Malanowski, „Concept of multistatic passive radar based on wireless packet communication systems”, in Proc. IEEE CIE International Conference on Radar, Chengdu, China, 24-27 October 2011, pp. 149-152.
  • [78] H. Kuschel, M. Glende, J. Heckenbach, S. Müller, J. Schell, and C. Schumacher. „Experimental passive radar systems using digital illuminators (DAB/DVB)” in Proc. International Radar Symposium 2007, Cologne, Germany, 5-7 September 2007, pp. 411-417.
  • [79] A. D. Lallo, A. Farina, R. Fulcoli, P. Genovesi, R. Lalli, and R. Mancinelli, „Design, development and test on real data of an FM based prototypical passive radar”, in Proc. RadarCon 2008, Rome, Italy, 26-30 May 2008, p. CD.
  • [80] S. Li, H. Wan, H. Yin, and Y. Huang, „Detection of moving target in FM broadcast-based passive radar”, in Proc. Int. Conf. on Wireless Communications, Networking and Mobile Computing - WiCom 2007, Shanghai, China, 21-25 September 2007, pp. 649-652.
  • [81] X. R. Li and Y. Bar-Shalom, „Tracking in clutter with Nearest Neighbor Filters: analysis and performance”, IEEE Trans. Aerospace and Electronic Systems, vol. 32, no. 3, pp. 995-1010, July 1996.
  • [82] F. D. Lind, J. D. Sahr, and D. M. Gidner, „First passive radar observations of auroral E-region irregularities”, Geophysical Research Letters, vol. 26 (14), pp. 2155-2158, 15 July 1999.
  • [83] P. Liu and J. Liu, „Analysis of passive targets detection using CDMA signal”, in Proc. 2005 IEEE International Workshop on VLSI Design and Video Technology, Suzhou, China, 28-30 May 2005, pp. 408-410.
  • [84] M. Malanowski, „Comparison of adaptive rnethods for clutter removal in PCL radar”, in Proc. International Radar Symposium 2006, Cracow, Poland, 24-26 May 2006, pp. 237-240.
  • [85] M. Malanowski, „Influence of integration time on tracking performance in PCL radar”, in Proc. SPIE - Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV, Wilga, Poland, 21-27 May 2007, pp. 69 372Z-1-69 372Z-8, vol. 6937.
  • [86] M. Malanowski, „An algorithm for 3D target localization from passive radar measurements”, in Proc. SPIE - Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, Wilga, Poland, 25-30 May 2009, pp. 75 022O-1-75 022O-6.
  • [87] M. Malanowski, „Optymalizacja przetwarzania sygnałów w radarach z pasywną koherentną lokalizacją obiektów”, Ph.D. dissertation, Politechnika Warszawska, 2009.
  • [88] M. Malanowski, „Target tracking using FM-based passive radar” in Proc. Signal Processing Symposium, Jachranka, Poland, 8-10 June 2011, p. CD,
  • [89] M. Malanowski and K. Kulpa, „Acceleration estimation for Passive Coherent Location radar”, in Proc. RadarCon 2008, Rome, Italy, 26-30 May 2008, p. CD.
  • [90] M. Malanowski and K. Kulpa, „Analysis of integration gain in passive radar”, in Proc. International Conference on Radar, Adelaide, Australia, 2-5 September 2008, p. CD.
  • [91] M. Malanowski and K. Kulpa, „Digital beamforming for Passive Coherent Location radar”, in Proc. RadarCon 2008, Rome, Italy, 26-30 May 2008. p. CD.
  • [92] M. Malanowski and K. Kulpa, „Analysis of bistatic tracking accuracy in passive radar”, in Proc. RadarCon 2009, Pasadena, California, USA, 4-8 May 2009, p. CD.
  • [93] M. Malanowski and K. Kulpa, „Experimental analysis of passive radar accuracy”, in Proc. International Radar Symposium 2009, Hamburg, Germany, 9-11 September 2009, pp. 331-335.
  • [94] M. Malanowski and K. Kulpa, „Robust detection in continuous-wave noise radar - experimental results”, in Proc. International Radar Symposium 2010, Vilnius, Lithuania, 14-18 June 2010, pp. 347-350.
  • [95] M. Malanowski and K. Kulpa, „Optimization of confirmation time of bistatic tracks in passive radar”, IEEE Trans. Aerospace and Electronic Systems, vol. 47, no. 2, pp. 1060-1072, April 2011.
  • [96] M. Malanowski and K. Kulpa, „Target detection in continuous-wave noise radar in the presence of impulsive noise”, Acta Physica Polonica A, vol. 119, no. 4, pp. 333-338, April 2011.
  • [97] M. Malanowski and K. Kulpa, „Two methods for target localization in multistatic passive radar”, IEEE Trans. Aerospace and Electronic Systems, vol. 48, no. 1, pp. 572-580, January 2012.
  • [98] M. Malanowski, K. Kulpa, M. Bączyk, L. Maślikowski, and E. Janas, „DVB-T demonstrator at Warsaw University of Technology”, in Proc. 3rd FHR focus days on PCL, Wachtberg, Germany, 3-4 May 2011, pp. 1-21.
  • [99] M. Malanowski, K. Kulpa, M. Dryjański, and S. Pietrzyk, „Fixed WiMAX (IEEE 802.16d) base station signal analysis for passive radar applications”, in Proc. SPIE - Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, Wilga, Poland, 25-30 May 2009, pp. 15 020V-1-75 020V-6, vol. 7502.
  • [100] M. Malanowski, K. Kulpa, and J. Misiurewicz, „PaRaDe - Passive Radar Demonstrator family development at Warsaw University of Technology”, in Proc. Microwaves, Radar and Remote Sensing Symposium - MRRS, Kiev, Ukraine, 22-24 September 2008, pp. 75-78.
  • [101] M. Malanowski, K. Kulpa, J. Misiurewicz, and M. Purchla, „Silent police radar”, in Proc. International Workshop on Intelligent Transportation, Hamburg, Germany, 14-15 March 2006, pp. 117-122.
  • [102] M. Malanowski, K. Kulpa, M. Mordzonek, and P. Samczyński, „PaRaDe - reconfigurable software defined passive radar”, in Proc. NATO Specialist Meeting SET-136, Lisbon, Portugal, 23-25 June 2009, p. CD.
  • [103] M. Malanowski, K. Kulpa, and K. E. Olsen, „Extending the integration time in DVB-T-based passive radar”, in Proc. European Radar Conference - EURAD, Manchester, UK, 12-14 October 2011, pp. 190-193.
  • [104] M. Malanowski, K. Kulpa, P. Samczyński, J. Misiurewicz, J. Kulpa, P. Roszkowski, and L. Podkalicki, „Experimental results of the PaRaDe passive radar field trials”, in Proc. International Radar Symposium 2012, Warsaw, Poland, 23-25 May 2012, (to be published).
  • [105] M. Malanowski, K. Kulpa, and R. Suchożebrski, „Two-stage tracking algorithm for passive radar”, in Proc. 12th International Conference on Information Fusion - FUSION, Seattle, Washington, USA, 6-9 July 2009, pp. 1800-1806.
  • [106] M. Malanowski, G. Mazurek, K. Kulpa, and J. Misiurewicz, „FM based PCL radar demonstrator”, in Proc. International Radar Symposium 2007, Cologne, Germany, 5-7 September 2007, pp. 431-435.
  • [107] G. Mazurek, M. Malanowski, and K. Kulpa, „Flexible hardware platform for software radio experiments”, in Proc. SPIE - Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments IV, Wilga, Poland, 21-27 May 2007, pp. 69 373X-1-693 73X-8, vol. 6937.
  • [108] G. Mellen II, M. Pachter, and J. Raquet, „Closed-form solution for determining emitter location using time difference of arrival measurements”, IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 3, pp. 1056-1058, July 2003.
  • [109] M. Meyer and J. D. Sahr, „Passive coherent scatter radar interferometer: Implementation, observations, and analysis”, Radio Science, vol. 39, pp. 1-10, May 2004.
  • [110] N. Millet and M. Klein, „Passive radar air surveillance: Last results with multi-receiver systems”, in Proc. International Radar Symposium 2011, Leipzig, Germany, 7-9 September 2011, pp. 281-285.
  • [111] J. Misiurewicz and K. Kulpa, „Stretch processing for masking effect removal in noise radar”, IET Proc. Radar, Sonar and Navigation, vol. 2, no. 4, pp. 274-283, August 2008.
  • [112] M. Nałęcz and K. Kulpa, „Range and azimuth estimation using raw data in DSP-based radar system”, in Proc. International Conference on Microwaves and Radar - MIKON, Cracow, Poland, 24-26 May 1998, pp. 871-875.
  • [113] U. Nickel, „System considerations for passive radar with GSM illuminators”, in IEEE International Symposium on Phased Array Systems and Technology - ARRAY, Waltham, Massachusetts, USA, 12-15 October 2010, pp. 189-195.
  • [114] N. H. Noordin, V. Zuniga, A. O. El-Rayisa, N. Haridas, A. T. Erdogan, and T. Arslan, „Uniform circular arrays for phased array antenna”in Loughborough Antennas and Propagation Conference, Loughborough, UK, 14-15 November 2011, pp. 1-4.
  • [115] B. D. Nordwall, „'Silent Sentry' a new type of radar”, Aviation Week and Space Technology, vol. 149, no. 22, pp. 70-71, 30 November 1998.
  • [116] D. O'Hagan, F. Colone, C. Baker, and H. Griffiths, „Passive bistatic radar (PBR) demonstrator”, in IET International Conference on Radar Systems 2007, Edinburgh, UK, 15-18 October 2007, pp. 1-5.
  • [117] D. W. O'Hagan, C. J. Baker, and H. D. Griffiths, „Signal and interference analysis: Proposed analogue signal suppression techniques for PCL radar”, in Proc. European Radar Conference - EURAD, Manchester, UK, 13-15 September 2006, pp. 296-298.
  • [118] D. W. O'Hagan, H. Kuschel, J. Heckenbach, M. Ummenhofer, and J. Schell. „Characteristics and properties of DAB based passive radar”, in Proc. 2nd FHR focus days on PCL, Wachtberg, Germany, 17-18 November 2009, p. CD.
  • [119] K. Olsen, „Investigation of bandwidth utilisation methods to optimise performance in passive bistatic radar”, Ph.D. dissertation, University College London, 2011.
  • [120] S. J. Orfanidis, Electromagnetic Waves and Antennas. Sophocles J. Orfanidis, 2008.
  • [121] D. Pastina, M. Sedehi, and D. Cristallini, „Passive bistatic ISAR based on geostationary satellites for coastal surveillance”, in Proc. IEEE Radar Conference, Arlington, Virginia, USA, 10-14 May 2010, pp. 865-870.
  • [122] P. Z. Peebles, Radar Principles. Canada: John Wiley and Sons. Inc., 1998.
  • [123] D. Petri, A. Capria, M. Conti, F. Berizzi, M. Martorella, and E. Mese, „High range resolution multichannel DVB-T passive radar: Aerial targel detection”, in Proc. the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, Italy, 12-14 September 2011, pp. 129-132.
  • [124] D. Poullin and M. Flecheux, „Recent progress in Passive Coherent Location (PCL) concepts and techniques in France”, in Proc. RadarCon 2008, Rome, Italy, 26-30 May 2008, p. CD.
  • [125] D. Poullin, M. Flecheux, and M. Klein, „New challenges for PCL system: 3D requirements and „optimal” resources management for PCL air traffic survey”, in Proc. International Radar Symposium 2010, Vilnius, Lithuania, 14-18 June 2010, pp. 8-11.
  • [126] D. Poullin, M. Flecheux, and M. Klein, „3D location of opportunistic targets using DVB-SFN network: experimental results”, in 3rd FHR focus days on PCL, Wachtberg, Germany, 3-4 May 2011, p. CD.
  • [127] M. J. D. Powell, „A fast algorithm for nonlinearly constrained optimization calculations”, Numerical Analysis, Lecture Notes in Mathematics, vol. 630, pp. 144-175, 1978.
  • [128] M. A. Richards, Fundamentals of Radar Signal Processing. New York, USA: McGraw-Hill, 2005.
  • [129] T. J. Rouphael, RF and Digital Signal Processing for Software-Defined Radio: A Multi-Standard Multi-Mode Approach. Amsterdam, The Netherlands: Elsevier, 2009.
  • [130] R. Saini and M. Cherniakov, „DTV signal ambiguity function analysis for radar application”, IEE Proc. Radar. Sonar and Navigation, vol. 152, no. 3, pp. 133-142, June 2005.
  • [131] R. Saini, M. Cherniakov, and V. Lenive, „Direct path interference suppression in bistatic system: DTV based radar”, in Proc. International Conference on Radar, Adelaide, Australia, 3-5 September 2003, pp. 309-314.
  • [132] P. Samczyński, K. Kulpa, M. Malanowski, P. Krysik, and L. Maślikowski. „A concept of GSM-based passive radar for vehicle traffic monitoring”, in Proc. Microwaves, Radar and Remote Sensing Symposium - MRRS, Kiev, Ukraine, 25-27 August 2011, pp. 271-274.
  • [133] H. Schau and A. Robinson, „Passive source localization employing intersecting spherical surfaces from time-of-arrival differences”, IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-35, no, 8, pp. 1223-1225, August 1987.
  • [134] A. Schroeder and M. Edrich, „CASSIDIAN multiband mobile passive radar system, in Proc. International Radar Symposium 2010, Vilnius, Lithuania, 14-18 June 2010, pp. 286-291.
  • [135] A. Schroeder, M. Edrich, and F. Wolschendorf, „Second-generation mobile multiband passive radar demonstrator”, in Proc. 3rd FHR focus days on PCL, Wachtberg, Germany, 3-4 May 2011, p. CD.
  • [136] D. F. Shanno, „Conditioning of quasi-Newton methods for function minimization,'' Mathematics of Computing, vol. 24, pp. 647-656, 1970.
  • [137] L. Shentang, W. Zhigang, and W. Hong, „The analysis and design of direct path interference cancellation in FM radio-based passive radar”, in Proc. IEEE CIE International Conference on Radar, Shanghai, China, 16-19 October 2006, pp. 1-4.
  • [138] M. I. Skolnik, Radar Handbook. 2nd ed. Boston, USA: McGraw-Hill, 1990.
  • [139] M. I. Skolnik, Introduction to Radar Systems. 3rd ed. Boston, USA: McGraw-Hill, 2003.
  • [140] J. Smith and J. Abel, „Closed-form least-squares source location estimation from range-difference measurements”, IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 12, pp. 1661-1669, December 1987.
  • [141] J. Smith and J. Abel, „The spherical interpolation method of source localization”, IEEE Journal Oceanic Eng., vol. OE-12, no. 1, pp. 246-252, January 1987.
  • [142] S. Stein, „Algorithms for ambiguity function processing”, IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-29, no. 3, pp. 588-599, June 1981.
  • [143] H. Steyskal and J. Herd, „Mutual coupling compensation in small array antennas”, IEEE Trans. Antennas and Propagation, vol. 38, no. 12, pp. 1971-1975, December 1990.
  • [144] K. Suwa, S. Nakamura, S. Morita, T. Wakayama, H. Maniwa, T. Oshima, R. Maekawa, S. Matsuda, and T. Tachihara, „ISAR imaging of an aircraft target using ISDB-T digital TV based passive bistatic radar”, in Proc. Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 2010, pp. 4103-4105.
  • [145] K. Szumski and M. Malanowski, „Cell broadband engine architecture as a DSP platform,'' in Proc. SPIE - Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, Wilga, Poland, 25-30 May 2009, pp. 75 022O-1-75 0220-6, vol. 7502.
  • [146] K. Szumski, M. Malanowski, J. Kulpa, W. Porczyk, and K. Kulpa, „Real-time software implementation of passive radar”, in Proc. European Radar Conference - EURAD, Rome, Italy, 30 September - 2 October 2009, pp. 33-36.
  • [147] D. K. P. Tan, H. Sun, Y. Lu, M. Lesturgie, and H. L. Chan. „Passive radar using Global System for Mobile communication signal: theory, implementation and measurements”, IEE Proc. Radar, Sonar and Navigation, vol. 152, no. 3, pp. 116-123, June 2005.
  • [148] D. Tan, S. Hongbo, and L. Yilong, „Sea and air moving target measurements using a GSM based passive radar”, in Proc. IEEE Radar Conference, Arlington, Virginia, USA, 9-12 May 2005, pp. 783-786.
  • [149] M. Tobias and A. D. Lanterman, „Probability hypothesis density-based multitarget tracking with bistatic range and Doppler observations”, IEE Proc. Radar, Sonar and Navigation, vol. 152, no. 3, pp. 195-205, June 2005.
  • [150] K. Wang, R. Tao, Y. Ma, and T. Shan, „Adaptive multipath cancellation algorithm in passive radar”, in Proc. IEEE CIE International Conference on Radar, Shanghai, China, 16-19 October 2006, p. CD.
  • [151] G. Zhiwen, T. Ran, M. Yongfeng, and S. Tao, „DVB-T signal cross-ambiguity functions improvement for passive radar”, in Proc. IEEE CIE International Conference on Radar, Shanghai, China, 16-19 October 2006, pp. 1-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0056-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.