PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rola budowy chemicznej i warunków procesu wytwarzania w kształtowaniu morfologii oraz właściwości materiałów poliuretanowych

Autorzy
Identyfikatory
Warianty tytułu
EN
The role of chemical structure and production process in morphology formation and polyurethanes materials properties
Języki publikacji
PL
Abstrakty
PL
Przedmiotem badań był wpływ budowy chemicznej i struktury nadcząsteczkowej materiałów poliuretanowych na ich właściwości fizyczne. Analizowano materiały poliuretanowe wytworzone z różnych substratów : polioli (poli(adypinianu etylenu), polikaprolaktonu, polibutadienu), izocyjanianów (aromatycznych i cykloalifatycznych) oraz środków przedłużających (o funkcyjności dwa i trzy). Strukturę nadcząsteczkową poliuretanów modyfikowano przez wprowadzenie nanonapełniaczy, stosując w tym celu : wielościenne nanorurki węglowe i tlenek cyrkonu domieszkowany europem. Materiały poliuretanowe wytworzono z zastosowaniem różnych metod syntezy (jedno- i dwuetapowej), przy wykorzystaniu zmiennych parametrów procesu przygotowania surowców i prepolimerów. Stosowano różne parametry procesu przedłużania makrocząsteczek oraz sezonowania uzyskanych materiałów. W procesie syntezy wykorzystywano konwencjonalny system ogrzewania i wygrzewanie w polu mikrofal. Większość opisanych w rozprawie grup materiałów poliuretanowych wytworzono po raz pierwszy z użyciem zastosowanych substratów i/lub metody ich wytwarzania. W pracy podano wyniki analizy wpływu zmian średnicy i udziału objętościowego aglomeratów domen twardych na właściwości materiałów poliuretanowych. Morfologię materiałów przeznaczonych do różnych zastosowań kształtowano, zmieniając budowę chemiczną, wprowadzając nanonapełniacze i zmieniając parametry procesu wytwarzania. Przeprowadzono analizę ilościową obrazów przekrojów poliuretanów oraz analizę ilościową oddziaływań wodorowych pomiędzy segmentami ich makrocząsteczek. Zweryfikowano, zaproponowane w ramach pracy, procedury analizy morfologii materiałów poliuretanowych oraz potwierdzono ich przydatność do opisu cech aglomeratów domen twardych. Uzyskane wyniki eksperymentalne, omówione na podstawie danych literaturowych, posłużyły do zweryfikowania tezy, że na właściwości materiałów poliuretanowych - poza podstawowymi elementami mikrostruktury - w znaczący sposób wpływa średnica i udział objętościowy aglomeratów domen twardych powstających w tych materiałach w trakcie procesu separacji fazowej. Z przeprowadzonej analizy struktury nadcząsteczkowej materiałów poliuretanowych wynika, że aglomeraty domen wpływają na właściwości mechaniczne tych materiałów podobnie jak napełniacze słabo związane z osnową na właściwości kompozytów polimerowych. Na podstawie przeprowadzonej analizy ilości i wymiarów aglomeratów domen twardych oraz właściwości zbadanych materiałów poliuretanowych stwierdzono, że ich duża biozgodność oraz przeświecalność związane były z procesem inwersji faz. Stwierdzono też, że wpływ nanonapełniacza na właściwości materiałów poliuretanowych jest wynikiem zmian poziomu oddziaływań wodorowych pomiędzy segmentami makrocząsteczek poliuretanów, spowodowany wprowadzeniem nanonapełniaczy.
EN
The subject of the research work was the influence of the chemical constitution and supermolecular structure of polyurethane materials on their physical properties. Polyurethanes fabricated from various substrates were analyzed - polyols (ethylene polyadipate, polycaprolactam, polybutadiene), isocyanates (aromatic and cycloaliphatic), as well as elongating agents (with functionality of 2 and 3). The supermolecular structure of polyurethanes was modified through the introduction of nanofillers with the use of multiwall carbon nanotubes and zirconium oxide including europium. The polyurethanes were producing using various synthesis methods (1- and 2-stage) with different parameters applied to the preparation process of raw materials and prepolymers. Different parameters were used for elongation process of macromolecules and seasoning of the obtained materials. In the synthesis process, a conventional system was used for heating and warming up in microvawe field. Most of the polyurethane groups described in the work were fabrictaed for the first time with the use of applied substrates and/or their manufacturing method. The monograph included analysis results of the influence of change in the diametere and volume share of hard domain agglomerates on the properties of polyurethanes. The morphology of materials intended for various applications was formed through the change in chemical constitution, introduction of nanofillers and change in parameters of the production process. The quantitative analysis was carried out of the cross-section images of polyurethanes along with qualitative analysis of hydrogen interactions between the segments of their chains. The procedures proposed in the study concerning morphology analysis of polyurethanes were verified and their usability in the description of features of hard domain agglomerates was determined. The obtained experimental results, described on the basis of literature data, helped to verify a thesis that the properties of polyurethanes are, beside fundamental elements of microstructure, considerably affected by the diameter and volume share of agglomerates of hard domains formed in these materials in the process of phase separation. As results from the performed analysis of supermolecular structure of polyurethane materials, agglomerates of hard domains affect mechanical properties of materials in a similar way as fillers, poorly connected with matrix, influence the properties of polymer composites. The conducted analyses of the number and size of hard domain agglomerates and the properties of analyzed polyurethane materials permitted to state that their high biocompatibility and transparency were connected with the process of phase inversion. It was also stated that the influence of nanofiller on the properties of polyurethane materials is the result of changes in the level of hydrogen interactions between polyurethane chain segments caused by the introduction of fillers.
Rocznik
Tom
Strony
3--189
Opis fizyczny
Bibliogr. 593 poz., tab., rys., wykr.
Twórcy
  • Wydział Inżynierii Materiałowej
Bibliografia
  • 1. Bayer O., The diisocyanate polyaddition process (polyurethanes). Description of a new principle for building up high-molecular compounds, Angew. Chem., A59(1947), 257
  • 2. Galbraith C., PU chemicals and Products in Europe, Middle East & Africa (EMEA) 2007, IAL Consultants, Londyn 2008, pobrano z http://www.ialconsultants.com/website/pdf/8302P.pdf
  • 3. Randall D., Lee S., The polyurethanes book, Wiley, 2003
  • 4. Lambda N.M.K., Woodhouse K.A., Cooper S.L., Polyurethanes in Biomedical Applications. CRC Press, 1998
  • 5. Culin J., Andreis M., Smit I., Veksli Z., Anzlovar A., Zigon M., Motional heterogeneity and phase separation of functionalized polyester polyurethanes, Eur. Polym. J., 40, 8(2004), 1857-1866
  • 6. Tsai Y.-M., Yu T.-L., Tseng Y.-H., Physical properties of crosslinked polyurethane, Polym. Int., 47., 4(1998), 445-450
  • 7. Hamley I.W., The physics of block copolymers, Oxford: Oxford Science Publications, 1998
  • 8. Matsen M.W., Bates F.S., Origins of Complex Self-Assembly in Block Copolymers, Macromolecules, 29(1996), 7641-7644
  • 9. Li C., Goodman C.L., Albrecht R.M., Cooper C.L., Morphology of segmented polybutadiene-polyurethane elastomers, Macromolecules, 21(1988), 2367-2375
  • 10. Li C., Ph.D. Thesis, University of Wisconsin, Madison, 1988
  • 11. Noshay J., McGrath E., Block Copolymers: Overview and Critical Survey, Academic Press, New York 1977
  • 12. Petrovic Z., Ferguson J., Polyurethane elastomers, Prog. Polym. Sci., 16(1991), 695-836
  • 13. Koberstein J.T., Stein R.S., Small-angle X-ray scattering studies of microdomain structure in segmented polyurethane elastomers, J. Polym. Sci: Polymer Physics Edition, 21(1983), 1439-1472
  • 14. Szycher M., Handbook of polyurethanes, CRC Press, Boca Raton
  • 15. Blackswell J., Lee C.D., Hard-segment polymorfhism in MDl/diol-based polyurethane elastomers, J. Polym. Sci.: Polymer Physics Edition, 22(1984), 759-772
  • 16. Blackswell J., Nagarajan M.R., Hoitink T.B., Structure of polyurethane elastomers. X-ray diffraction and conformational analysis of MDI-propandiol and MDI-ethylene glycol hard segments, Polymer, 22(1981), 1534-1539
  • 17. Oertel G. (ed.), Polyurethane Handbook, Hanser, New York 1993
  • 18. Rueda-Larraz L., Fernandez d'Arlas B., Tercjak A., Ribes A., Mondragon I., Eceiza A., Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment, European Polymer Journal, 45(2009), 2096-2109
  • 19. Li C., Goodman S.L., Albrecht R.M., Cooper. S.L., Morphology of Segmented Polybutadiene-Polyurethane Elastomers, Macromolecules, 21(1988), 2367-2375
  • 20. Bonart R., X-Ray Investigations Concerning the Physical Structure of Cross-Linking in Segmented Urethane Elastomers, J. Macromol. Sci.-Phys., B21(1968), 115-138
  • 21. Bonart R., Morbitzer L., Hentze G., X-Ray Investigations Concerning the Physical Structure of Cross-Linking in Urethane Elastomers. II Butanediol as Chain Extender, J. Macromol. Sci.-Phys., B3(2)1969, 337-356
  • 22. Bonart R., Thermoplastic Elastomers, Polymer, 20(1979), 1389-1403
  • 23. Leung L.M., Koberstein J.T., Small-Angle Scattering Analysis of Hard-Microdomain Structure and Microphase Mixing in Polyurethane Elastomers, J. Polym. Sci.: Polym. Phys. (ed.), 23(1985), 1883-1913
  • 24. Chu B., Gao T., Li Y.-J., Wang J., Desper C.R., Byrne C.A., Microphase Separation Kinetics in Segmented Polyurethanes-Effects of Soft Segment Length and Structure, Macromolecules, 25, 21(1992), 5724-5729
  • 25. Koberstein J.T., Stein R.S., Small-Angle X-Ray Scattering Studies of Microdomain Structure in Segmented Polyurethane Elastomers, J. Polym. Sci.: Polym. Phys. (ed.), 21(1983), 1439-1472
  • 26. Turner R.B., Christenson C.P., Harthcock M.A., Howard W.L., Creswick M.W., Polymeric materials science and engineering. Proceedings of the ACS Division of Polymeric Materials Science and Engineering, vol. 58, Washington DC: ACS, Books and Journals Division, 1988, 947
  • 27. Koberstein J.T., Leung L.M., Compression-Molded Polyurethane Block Copolymers. I. Microdomain Morphology and Thermomechanical Properties, Macromolecules, 25(1992), 6195-6204
  • 28. Chu B., Gao T., Li Y., Wang J., Desper C.R., Byrne C.A., Microphase Separation Kinetics in Segmented Polyurethanes: Effects of Soft Segment Length and Structure, Macromolecules, 25(1992)5724-5729
  • 29. Li Y, Gao T., Chu B., Synchrotron SAXS studies of the phase separation kinetics in a segmented polyurethane, Macromolecules, 25(1992), 1737-1742
  • 30. Soo B., In C., Structure - property relations of hydroxy-terminated polyether based polyurethane network, Polymer Bulletin, 61(2008), 225-233
  • 31. Okrasa L., Czech P., Boiteux G., Méchin F., Ułański J., Molecular dynamics in polyester - or polyether - urethane networks based on different diisocyanates, Polymer, 49(2008), 2662-2668
  • 32. Zhang H., Chen Y., Zhang Y., Sun X., Ye H., Li W., Synthesis and Characterization of Polyurethane Elastomers, J. Elastomers & Plastics, 40(2008), 161-177
  • 33. Vlad S., Hydrolytic Stability of Some Thermoplastic Poly(Ether-Urethane-Urea)s, High Performance Polymers, 16(2004), 81-88
  • 34. Koevoets R.A., Karthikeyan S„ Magusin P.C.M.M., Meijer E.W., Sijbesma R.P., Cross-Polymerization of Hard Blocks in Segmented Copoly(ether-urea)s, Macromolecules, 42(2009), 2609-2617
  • 35. Grimsdale A.C., Chan K.L., Martin R.E, Jokisz P.G., Holmes A.B., Synthesis of light - emitting conjugated polymers for applications in electroluminescent devices, Chem. Rev., 109, 3(2009), 897-1091
  • 36. van Bogart J.W.C., Gibson P.E., Cooper S.L., Structure-Property Relationships in Polycaprolactone-Polyurethanes, Journal of Polymer Sci.-Phys., 1, 21(1983), 65-95
  • 37. Xiao F., Shen D., Zhang X., Hu S., Xu M., Studies on the morphology of blends of poly(vinyl chloride) and segmented polyurethanes, Polymer, 28(1987), 2335-2345
  • 38. Gibson P.E., van Bogart J.W.C., Cooper S.L., Small-angle X-ray scattering studies of thermally-induced morphological changes in segmented polyurethane elastomers, Journal of Polymer Sci.-Phys., 24(1986), 885-907
  • 39. Kontou E., Kefalas V., Apekis L., Christodoulides C., Pissis P., Ollivon M., Quinquenet S., Relaxation phenomena and morphology of polyurethane block copolymers, J. Macromol. Sci. -Phys., vol. B., 29(1990), 31-48
  • 40. Spathis G., Kontou E., Kefalas V., Apekis L., Christodoulides C., Pissis P., Ollivon M., Quinquenet S., J. Macromol. Sci.-Phys., B29, 1(1990), 31
  • 41. Bogdanow B., Toncheva V., Schacht E., Finelli L., Sarti B., Scandola M., Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols, Polymer, 40(1999), 3171-3182
  • 42. Somani K., Kansara S., Parmar R., Patel N., High solids polyurethane coatings from castrol - oil-based polyester-polyols, International Journal of Polymeric Materials, 53(2004), 283-293
  • 43. Narayan R., Raju K.V.S.N., Properties of hydroxylated polyester-based polyurethanes coatings, Progress in Organic Coatings, 45(2002), 59-67
  • 44. Zhang J., Pu H.-C., Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segment, European Polymer Journal, 44(2008), 3708-3714
  • 45. Kuran W., Sobczak M., Listos T., Debek C., Florjańczyk Z., New route to oligocarbonate diols suitable for the synthesis of polyurethane elastomers, Polymer, 41(2000), 8531-8541
  • 46. Murayama S., Relationships between the Phase Structures and the Properties of Polycarbonatediol-based Polyurethanes, Technical Conference, Polyurethane 2006, 25-27.09.2006, USA
  • 47. Rabani G., Heinrich Luftmann H., Kraft A., Synthesis and properties of segmented copolymers containing short aramid hard segments and aliphatic polyester or polycarbonate soft segments, Polymer, 46(2005), 27-35
  • 48. Eceiza A., de la Caba K., Kortaberria G., Gabilondo N., Marieta C., Corcuera M.A., Mondragon I., Influence of molecular weight and chemical structure of soft segment in reaction kinetics of polycarbonate diols with 4,4'-diphenylmethane diisocyanates, European Polymer Journal, 41(2005), 3051-3059
  • 49. Tang Y.-W., Labow R.S., Santerre J.P., Enzyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase, Biomaterials, 24(2003), 2003-2011
  • 50. Khan I., Smith N., Jones E., Finch D., Cameron R., Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation, Biomaterials, 26(2005), 633-643
  • 51. Christenson E.M., Patel S., Anderson J.M., Hiltner A., Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase, Biomaterials, 27(2006), 3920-3926
  • 52. Eceiza A., Martin M.D., de la Caba K., Kortaberia G., Gabilondo D., Corcuera M.A., Mordragon I., Thermoplastic polyurethane elastomers besed on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties, Polym. Eng. Sci., 48(2008), 297-306
  • 53. Wingborg N., Increasing the tensile strength of HTPB with different isocyanates and chain extenders, Polymer Testing, 21(2002), 283-287, Material Properties
  • 54. Yang J.-M., Lin H.-T., Wettability and protein adsorption on HTPB-based polyurethane films, Journal of Membrane Science, 187(2001), 159-169
  • 55. Yang J.-M., Lin H.-T., Yang S.-J., Evaluation of poly(N-isopropylacryl-amide) modified hydroxyl-terminated polybutadiene based polyurethane membrane, Journal of Membrane Science, 258(2005), 97-105
  • 56. Alibeik S., Rizkalla A.S., Mequanin K., The effect of thiolation on the mechanical and protein adsorption properties of polyurethanes, European Polymer Journal, 43(2007), 1415-1427
  • 57. Schapman F., Couvercelle J.-P., Bunel C., Low molar mass polybutadiene made crosslinkable by the introduction of styrenic moieties via urethane linkage: synthesis, kinetic and crosslinking studies, European Polymer Journal, 38(2002), 1979-1986
  • 58. Špírková M., Polyurethane elastomers made from linear polybutadiene diols, J. Appl. Polym. Sci., 85(2002), 84-91
  • 59. Wang L., Wei Y., Effect of soft segment length on properties of fluorinated polyurethanes, Colloids Surf. B: Biointerf., 41(2005), 249-255
  • 60. Burel F., Feldman A., Bunel C., Hydrogenated hydroxyterminated polyisoprene (HHTPI) based urethane network: network properties, Polymer 46(2005), 483-489
  • 61. Majumdar P., Webster D.C., Preparation of Siloxane - Urethane Coatings Having Sontaneously Formed Stable Biphasic Microtopograpical Surfaces, Macromolecules, 38(2005), 5857-5859
  • 62. Sheth J.P., Yilgor E., Erenturk B., Ozhalici H., Yilgor I., Wilkes G.L., Structure-Property Behavior Of Poly(dimethylsiloxane) Based Segmented Polyurea Copolymers Modified With Poly-(propylene Oxide), Polymer, 46(2005), 8185-8193
  • 63. Tyagi D., Yilgor I., McGrath J.E., Wilkes G.L., Segmented Organo Siloxane Copolymers. II. Thermal and Mechanical Properties of Siloxane-Urea Copolymers, Polymer, 25(1984), 1807-1816
  • 64. Timmins M.R., Gilmore D.F., Lotti N., Scandola M., Fuller R.C., Lenz R.W., Spectrophotometric method for detection of enzymatic degradation of thin polymer films, J. Environ. Polym. Degrad., 5(1997), 1-15
  • 65. Hojabri L., Kong X., Narine S.S., Fatty Acid-Derived Diisocyanate and Biobased Polyurethane Produced from Vegetable Oil: Synthesis, Polymerization, and Characterization, Biomacromolecules, 10(2009), 884-891
  • 66. Macocinschi D., Filip D., Vlad S., Cristea M., Butnaru M., Segmented biopolyurethanes for medical applications, J. Mater. Sci: Mater. Med., 20(2009), 1659-1668
  • 67. Gunatillake P., Mayadunne R., Adhikari R., Recent developments in biodegradable polymers, Biotech. Annu. Rev., 12(2006), 1387-2656
  • 68. Santerre J.P, Woodhouse K., Laroche G., Labow R.S., Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials, Biomaterials, 26(2005), 7457-7470
  • 69. Timmins M., Liebmann-Vinson A., Biodegradable polymers: degradation mechanisms. Part 1, PBM series, 2003, vol. 2, chapter 9
  • 70. Tatai L., Moore T.G., Adhikari R., Malherbe F., Jayasekara R., Griffiths I., Gunaiiliake G.A, Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation, Biomaterials, 28(2007), 5407-5417
  • 71. Guelcher S.A., Gallagher K.M., Didier J.E., Klinedinst D.B., Doctor J.S., Goldstein A.S., et al. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders, Acta Biomater., 1(2005), 471-484
  • 72. Younes H.M., Bravo-Grimaldo E., Amsden B.G., Synthesis, characterization and in-vitro degradation of a biodegradable elastomers, Biomaterials, 25(2004), 5261-5269
  • 73. Sheth M., Kmar R.A., Dave V., Gross R.A., McCarthy S.P., Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol), J. Appl. Polym. Sci., 66(1997), 1495-1505
  • 74. Loh X.-J., Tan K.-K., Li X., Li J., The in-vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol), Biomaterials, 27(2005), 1841-1850
  • 75. Hassan M.K., Mauritz K.A., Storey R.F., Wiggins J.S., Biodegradable aliphatic thermoplastic polyurethane based on poly(e-caprolactone) and L-Lysine diisocyanates, J. Polym. Sci., Part A: Polym. Chem., 44(2006), 2990-3000
  • 76. Abouzahr S., Wilkes G.L., Ophir Z., Structure-Property Behavior of Segmented Polyether-MDI-Butanediol Based Urethanes: Effects of Composition Ratios, Polymer, 23(1982), 1077-1086
  • 77. Hwang K.K.S., Hemker D.J., Cooper S.L., Phase diagrams and morphology of a urethane model hard segment and polyether macroglycols, Macromolecules, 17(1984), 307-315
  • 78. Wilkes G.L., Samuels S.L., Crystal R., Scanning and Transmission Electron Microscopy Studies on a Model Series of Spherulitic Segmented Polyurethanes, J. Macromol. Sci.-Phys., B10(1974), 203-208
  • 79. Chang Y.-J., Wilkes G.-L., Superstructure in Segmented Polyether Urethanes, J. Polym. Sci.-Phys. (ed.), 13(1975), 455-461
  • 80. Seymour R.W., Overton J.R., Corley H.S., Morphology Characterization of polyester based elastoplastics, Macromolecules, 8(1975), 331-335
  • 81. Wilkes G.L., Bagrodia S., Humphries W., Wildnauer R., The Time Dependence of the Thermal and Mechanical Properties of Segmented Urethanes Following Thermal Treatment, Polymer Lett., 13(1975), 321-327
  • 82. Sheth J.P., Xu J., Wilkes G.L., Solid state structure-property behavior of semicrystalline poly-(ether-block-amide) PEBAX® thermoplastic elastomers, Polymer, 44(2003), 743-756
  • 83. Ryszkowska J., Struktura i właściwości uretanomoczników z krystalicznych prepolimerów estrowoizocyjanianowych, rozprawa doktorska. Warszawa 2000
  • 84. Yen M.-S., Kuo S.-C., PCL-PEG-PCL Triblock Copolydiol-Based Waterborne Polyurethane. I. Effects of the Soft-Segment Composition on the Structure and Physical Properties, J. Appl. Polym. Sci., 65(1997), 883-892
  • 85. Ioan S., Lupu M., Epure V., loanid A., Macocinschi D., Macromolecular Assemblies of Segmented Poly(ester urethane)s and Poly(ether urethane)s, J. Appl. Polym. Sci., 107(2008), 1414-1422
  • 86. Kim B.-K., Lee Y.-M., Structure-Property Relationship of Polyurethane Ionomer, Colloid Polym. Sci., 270(1992), 956-961
  • 87. Kim B.-K., Jeong H.-M., Aqueous Dispersion of Polyurethane Ionomers From H12MD1/IPDI, PCL, BD, and DMPA, J. Appl. Polym. Sci., 53(1994), 371-378
  • 88. Ping P., Wang W., Chen X., Jing X., Poly(e-caprolactone) polyurethane and its shape-memory property, Biomacromolecules, 6(2005), 587-592
  • 89. Jianjun G.-J., Wagner W.R., Synthesis. characteriazation and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity, Biomacromolecules, 6(2005), 2833-2842
  • 90. Wang G.B., Labow R.S., Santerre J.P., Probing the surface chemistry of a hydrated segmented polyurethane and a comparison with its dry surface chemical structure, Macromolecules, 33(2000), 7321-7327.
  • 91. Wisse E., Spiering A.J.H., van Leeuwen E.N.M., Renken R.A.E., Dankers P.Y.W., Brouwer L.A., van Luyn M.J.A., Harmsen M.C., Sommerdijk N.A.J.M., Meijer E.W., Molecular recognition in poly(e-caprolactone)-based thermoplastic elastomers, Biomacrornolecules, 7(2006):3385-3395
  • 92. Bonart R., X-Ray Investigations Concerning the Physical Structure of Cross-Linking in Segmented Urethane Etastomers, J. Macromolec. Sci.-Phys., B2, (1)(1968), 115-138
  • 93. Clough S.B., Schneider N.S., King A.O., Small angle X-ray scattering from polyurethane elastomers, J. Macromol. Sci.-Phys., B2(1968), 641-648
  • 94. Koutsky J.A., Hien N.V., Cooper S.L., Some Results on Electron Microscope Investigations of Polyether-Urethaneand Polyester-Urethane Block Copolymers, J. Polymer Sci., B8(1970), 353-359
  • 95. Xu M., MacKnight W.J., Chen-Tsai C.H.Y., Thomas E.L., Structure and morphology of segmented polyurethanes: 4: Domain structures of different scales and the composition heterogeneity of the polymers, Polymer 28(1987), 2183-2189
  • 96. Chen-Tsai C.H.Y., Thomas E.L., MacKnight W.J., Schneider N.S., Structure and morphology of segmented polyurethanes: 3. Electron microscopy and small angle X-Ray studies of amorphous random segmenled polyurethanes, Polymer, 27(1986), 659-666
  • 97. Serrano M., MacKnight W.J., Thomas E.L., Ottino J.M., Transport-Morphology Relationships in Segmented Polybutadiene Polyurethanes. 2. Analysis, Polymer, 28(1987), 1674-1679
  • 98. Raiford L.C., Freyermuth H.B., Formation and properties of some uretediones, J. Org. Chem., 8(1943), 230-238
  • 99. Wilkes G.L., Yusek C.S., Investigation of Domain Structure in Urethane Elastomers by X-ray and Thermal Methods, J. Macromol. Sci.-Phys., B7(1973), 157-175
  • 100. Cooper S.L., Tobolsky A.V., Properties of linear elastomeric polyurethanes, J. Polym. Sci., 10(1966), 1837-1844
  • 101. Tanaka T., Yokoyama T., Yamaguchi Y., Quantitative study on hydrogen bonding between urethane compound and ethers by infrared spectroscopy, J. Polym. Sci., A-1: Polym. Chem., 6(1968), 2137-2152
  • 102. Paik Sung C.S., Schneider N.S., Infrared studies of hydrogen bonding in toluene diisocyanate based polyurethanes, Macromolecules, 8(1975), 68-73
  • 103. Lin S.-B., Hwang K.-S., Tsay S.-Y., Cooper S.L., Segmental Orientation Studies Polyether Polyurethane Block Copolymers With Different Hard Segment Lengths and Distributions, Colloid Polym. Sci., 263(1985), 128-140
  • 104. Abouzar S., Wilkes G.L., Structure-Property Studies of Polyester and Polyether-Based MDI-BD Segmented Polyurethanes: Effect of I Versus II Stage Polymerization Conditions, J. Appl. Polym. Sci., 29(1984), 2695-2711
  • 105. Coleman M.M., Graf J.F., Painter P.C., Specific interactions and the miscibility of polymer blends, Lancaster, PA: Technomic, 1991
  • 106. Blackswell J., Lee C.D- in: Frisch K.C., Klempner D. (ed.), Advances in urethane science and technology, vol. 9. Lancaster, PA: Technomic, 1984, 25-46
  • 107. Yeh F., Hsiao B.-S., Sauer B.S., Michel S., Siesler H. W., In-situ Studies of Structure Development during Deformation of a Segmented Poly(urethane-urea) Elastomer, Macromolecules, 36(2003), 1940-1954
  • 108. Tao H.-J., Fan C.-F., MacKnight W.J., Hsu S.-L., Application of a Molecular Simulation Technique for Prediction of Phase-Separated Structures of Semirigid Model Polyurethanes. Macromolecules, 27(1994), 1720-1728
  • 109. Speckhard T.A., Hwang K.-K.-S., Yang C.-Z., Laupan W.R., Cooper S.L., Properties of Segmented Polyurethane Zwitterionomer Elastomers, J. Macromol. Sci.-Phys., B23(1984), 175-199
  • 110. Meuse C.W., Yang X., Yang D., Hsu S.-L., Spectroscopic analysis of ordering and phase-separation behavior of model polyurethanes in a restricted geometry, Macromolecules, 25(1992), 925-932
  • 111. Nakamae K., Nishino T., Asaoka S., Sudaryanto A., Microphase separation and surface properties of segmented polyurethane - effect of hard segment content, Int. J. Adhes, Adhes., 19(1999), 345-351
  • 112. Heraandez R., Weksler J., Padsalgikar A., Choi T., Angelo E., Lin J.S., Xu L.-C., Siedlecki C.A., Runt J., A Comparison of Phase Organization of Model Segmented Polyurethanes with Different Intersegment Compatibilities, Macromolecules, 41(2008), 9767-9776
  • 113. Legge N.R., Holden G., Schroeder H.E. (ed.), Thermoplastic Elastomers: A Comprehensive Review, Hanser, Munich 1987
  • 114. van Bogart, J.W.C., Lilaonitkul A., Cooper S.L., Morphology and Properties of Short Segment Block Copolymers, J. Macromol. Sci.-Phys., 817(1980), 267-301
  • 115. Hepburn C, Polyurethane Elastomers, Elsevier Science Publishers Ltd, New York 1992
  • 116. Estes G.M., Seymour R.W., Cooper S.L., Infrared studies of segmented polyurethane elastomers, II Macromolecules, 4(1971), 452-457
  • 117. Gray J.E., Norton P.R., Griffiths K., Surface modification of a biomedical poly(ether)urethane by a remote airplasma, Applied Surface Science, 217(2003), 210-222
  • 118. Blackswell J., Gardner K.H., Structure of the hard segments in polyurethanes elastomers, Polymer, 20(1979), 13-17
  • 119. Foks J., Janik H., Microscopic Investigation of Segmented Polyurethanes, Advances in Urethane Science and Technology, Technomic Publ. Co. Inc. Lancaster, Bazylea, 11(1992), 137-156
  • 120. Bonart R., Muller-Riederer G., Modellvorstellungen zur molekulorientierung in gedehnten segmentierten polyurethan elastomeren, Colloid Polym. Sci., 259(1981), 926
  • 121. Saiani A., Rochas C., Eeckhaut G., Daunch W.A., Leenslag J.-W., Higgins J.S., Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 2. Structural Investigation, Macromolecules, 37(2004), 1411-1421
  • 122. Chen K.-S., Yu T.-L., Tseng Y.-H., Effect of Polyester Zigzag Structure on the Phase Segregation of Polyester-Based Polyurethanes, J. Polym. Sci. A.: Polym. Chem., 37(1999), 2095-2104
  • 123. Koberstein J.T., Russell T.P., Simultaneous SAXS-DSC Study of Multiple Endothermic Behavior in Polyether-Based Polyurethane Block Copolymers, Macromolecules, 19(1986), 714-720
  • 124. Koberstein J.T., Galambos A.F., Multiple Melting in Segmented Polyurethane Block Copolymers, Macromolecules, 25(1992), 5618-5624
  • 125. Koberstein J.T., Galambos A.F., Leung L.M., Compression-Molded Polyurethane Block Copolymers. I Microdomain Morphology and Thermomechanical Properties, Macromolecules, 25(1992), 6195-6204.
  • 126. Koberstein J.T., Leung L.M., Compression-Molded Polyurethane Block Copolymers. 2. Evaluation of Microphase Compositions, Macromolecules, 25(1992), 6205-6213
  • 127. Li Y., Gao T., Liu J., Linliu K., Desper C.R., Chu B., Multiphase structure of a segmented polyurethane: effects of temperature and annealing, Macromolecules, 25(1992), 7365-7372
  • 128. Li Y., Kang W., Stoffer J.O., Chu B., Effect of hard - segment flexibility on phase separation of segmented polyurethanes, Macromolecules, 27(1994), 612-614
  • 129. Goddard R.J., Cooper S.L., Polyurethane Cationomers with Pendant Trialkylammonium Groups: Effects of Ion Content, Alkyl Group and Neutralizing Anion, J. Polymer Sci., Polymer Phys. (ed.), 32(1994), 1557-1571
  • 130. Grady B.P., O'Connell E.M., Yang C.Z., Cooper S.L., Blends of Metal Acetates and Polyurethanes Containing Pyridine Groups II. SAXS and EXAFS Studies, J. Polymer Sci., Polymer Phys. (ed.), 32(1994), 2357-2366
  • 131. Goddard R.J., Cooper S.L., Polyurethane Cationomers with Pendant Trimethylammonium Groups II. Investigation of the Microphase Separation Transition, Macromolecules, 28(1995), 1401-1406
  • 132. Paik S.C.S., Hu C.-B., Wu C.-S., Properties of Segmented Poly(urethaneureas) Based on 2,4-Toluene Diisocyanate. I. Thermal Transitions, X-ray Studies and Comparison with Segmented Poly(urethanes), Macromolecules, 13(1980), 111-116
  • 133. Miller J.A., Cooper S.L., An Investigation of the Effects of Sample Preparation on the Small Angle X-Ray Scattering From a Polyurethane Block Polymer, J. Polym. Sci., Polym. Phys. (ed.), 23(1985), 1065-1077
  • 134. Goddard R J., Cooper S.L., Polyurethane Cationomers with Pendant Trimethylammonium Groups I. Fourier Transform Infrared Temperature Studies, Macromolecules, 28(1995), 1390-1400
  • 135. West J.C., Cooper S.L., Infrared studies of Block copolymers, J. Polym. Sci., Polym. Symp., 60(1977), 127-150
  • 136. Coleman M.M., Lee K.H., Skrovanek D.J., Painter P.C., Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane, Macromolecules, 19(1986), 2149-2157
  • 137. Tao H.-J., Meuse C-W., Yang X., MacKnight W.J., Hsu S.-L., A spectroscopic analysis of phase separation behavior of polyurethane in restricted geometry: chain rigidity effects, Macromolecules, 27(1994), 7146-7151
  • 138. Skrovanek D.J., Howe S.E., Painter P.C., Coleman M.M., Hydrogen bonding in polymers: infrared temperature studies of an amorphous poliamide, Macromolecules, 18(1985), 1676-1683
  • 139. Camargo R.E., Macosko C.W., Tirrell M.,Wellinghoff S.T., Phase separation studies in RIM polyurethanes: catalyst and hard segment crystallinity effects, Polymer, 26(1985), 1145-1154.
  • 140. Brunette C.M., Hsu S.-L., Rossman M., MacKnight W.J., Schneider N.S., Thermal and mechanical properties of linear segmented polyurethanes with butadiene soft segment, Polym. Eng. Sci., 21(1981), 668-674
  • 141. Foks J., Janik H., Microscopic Studies of Segmented Urethanes with Different Hard. Segment Content, Polym. Eng. Sci., 29( 1989), 113-119
  • 142. Pretsch T., Jakob I., Muller W., Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane), Polymer Degradation and Stability, 94(2009), 61-67
  • 143. Tien Y.-I., Wei K.-H., Hydrogen bonding and mechanical properties in segmented montmorillonite/polyuremane nanocomposites of different hard segment ratios, Polymer, 42(2001), 3213-3221
  • 144. Seymour R.W., Estes G.M., Cooper S.L., Infrared Studies of Segmented Polyurethane Elastomers. I. Hydrogen Bonding, Macromolecules, 3(1970), 579-583
  • 145. Coleman M.M., Skrovanek D.J., Hu J., Painter P.C., Hydrogen bonding in polymer blends. I. FTIR studies of urethane-ether blends, Macromolecules, 21(1988), 59-65
  • 146. Ayres E., Oréfice R.L., Yoshida M.I., Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions, European Polymer Journal, 43(9)(2007), 3510-3521
  • 147. Jena K.K., Chattopadhyay D.K, Raju. K.V.S.N., Synthesis and characterization of hyperbranched polyurethane-urea coatings, European Polymer Journal, 43(2007), 1825-1837
  • 148. Queiroz D.P., de Pinho M.N., Dias C., ATR-FTIR Studies of Poly(propylene oxide)/Polybutadiene Bi-Soft Segment Urethane/Urea Membranes, Macromolecules, 36(2003), 4195-4200
  • 149. Paik Sung C.S., Smith T.W., Properties of segmented polyether poly(urethaneureas) based on 2,4-toluene diizocyjanate. 2. Infrared and mechanical studies, Macromolecules, 13(1980), 117-122
  • 150. Wang C.B., Cooper S.L., Morphology and properties of segmented polyether polyurethaneureas, Macromolecules, 16(1983), 775-783
  • 151. Ishihara H., Kimura I., Saito K., Ono H., Infrared studies on segmented polyurethane-ureas elastomers, J. Macromol. Sci.-Phys., B10, 4(1974), 591-598
  • 152. Stuart B., Infrared Spectroscopy, Fundamentals and Applications, John Wiley, Chichester 2004
  • 153. Irusta L., Iruin J.J.: Fernández-Berridi M.J., Sobkowiak M., Painter P.C., Coleman M.M., Infrared spectroscopic studies of the self-association of ethyl urethane, Vibrational Spectroscopy, 23(2000), 187-197
  • 154. Schuur M., Noordover B . Gaymans R.J., Polyurethane elastomers with amide chain extenders of uniform length, Polymer, 47, 4(2006),1091-1100.
  • 155. Teo L.S., McCarthy S.J., Meijs G.F., Mitchell N., Gunatillake P.A., Heath G., Brandwood A., Schindhelm K., In vivo degradation of polyurethanes: transmission - FTIR microscopic characterization of polyurethanes sectioned by cryomicrotomy, Biomaterials, 18(1997), 1387-1409.
  • 156. Mattia J., Painter P.,. A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly(urethane-urea) and Their Blends with Poly(ethylene glycol), Macromolecules 40(2007), 1546-1554
  • 157. Teo L.-S., Chen C.-Y., Kuo J.-F., Fourier Transform Infrared Spectroscopy Study on Effects of Temperature on Hydrogen Bonding in Amine-Containing Polyurethanes and Poly(urethane-urea)s, Macromolecules, 30(1997), 1763-1779
  • 158. Coleman M.M., Sobkowiak M., Pehlert G.J., Painter PC., Infrared temperature studies of a simple polyurea, Macromol. Chem. Phys., 198(1997), 117-136
  • 159. Ning L., Coleman M.M., Skrovanek D.J., Hu J., Painter P.C., FTIR Studies of Urethane-ether Blends, Macromolecules, 21(1988), 59-65
  • 160. McCarthy K., Ishihara H., Kimura I., Saito K., Ono H., Infrared Studies on Segmented Polyurethane-Urea Elastomers, J. Macromol. Sci.-Phys., 10, 591(1974), 63-67
  • 161. Irusta I., Fernandez-Berridi M.J., Aromatic poly(ester-urethanes): effect of the polyol molecular weight on the photochemical behaviour, Polymer, 41 (2000). 3297-3302.
  • 162. Yilgor I., Yilgor E., Guler I.G., Ward T.C., Wilkes G.L., FTIR investigation of the influence of diisocyanates symmetry on the morphology development in model segmented polyurethanes, Polymer 47(2006), 4105-4114.
  • 163. Lee H.-S., Wang Y.-K., Hsu S.-L., Spectroscopic Analysis of Phase Separation Bchavior of Model Polyurethanes, Macromolecules, 20(1987), 2089-2095
  • 164. Moore W.H., Krimm S., Vibrational analysis of peptides. polypeptides, and proteins. I. Polyglycine I, Biopolymers, 15(1976), 2439-2464
  • 165. Chen T.-K., Tien Y.-I., Wei K., Synthesis and characterization of novel segmented polyurethane/clay nanocomposites, Polymer, 41(2000), 1345-1353.
  • 166. Garrett J.T., Xu R., Cho J., Runt J., Phase separation of diamine chain-extended poly(urethane) copolymers: FTIR Spectroscopy and phase transitions, Polymer, 44(2003), 2711-2719
  • 167. Brunette C.M., Hsu S.L., MacKnight W.J., Hydrogen-Bonding Properties of Hard-Segment Model Compounds in Polyurethane Block Copolymers, Macromolecules, 15(1982), 71-77
  • 168. Mishra A.K., Chattopadhyay D.K., Sreedhar B., Raju K.V.S.N., FT-IR and XPS studies of polyurethane-urea-imide coatings, Progress in Organic Coatings, 55(2006), 231-243
  • 169. Lee H.-S., Yoo S.-R., Seo S.-W., Domain and segmental deformation behaviour of thermoplastic elastomers using synchrotron SAXS and FTIR methods, J. Polym. Sci. Part B: Polym. Phys., 37(1999), 3233-3245
  • 170. Desper C.R., Schneider N.S., Jasinski J.P., Lin J.S., Deformation of microphase structures in segmented polyurethanes, Macromolecules, 18, 12(1985), 2755-2761
  • 171. Martin D.J., Meijs G.F., Gunatillake P.A., Yozghatlian R., Renwick G.M., The influence of composition ratio on the morphology of biomedical polyurethanes, J. Appl. Polym. Sci.: 71(1999),937-952
  • 172. Martin D.J., Meijs G.F., Gunitillake P.A., McCarthy S.J., Renwick G.M., The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. II. SAXS-DSC annealing study, J. Appl. Polym. Sci., 64(1997), 803-817
  • 173. Martin D.J., Meijs G.F., Renwick G.M., McCarthy S.J., Gunitillake P.A., The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. I. Characterization of the series, J. Appl. Polym. Sci. 62(1996), 1377-1386
  • 174. Chen T.-K., Chui J.-Y., Shieh T.-S., Glass-transition behaviours of a polyurethane hard segment based on 4,4'-diisocyantodiphenylmethane and 1,4-butanediol and the calculation of microdomain composition, Macromolecules, 30(1997), 5068-5074
  • 175. Galambos A.F., Russell T.R., Koberstein J.T., Multiple melting in polyurethane Block copolymers, Polym. Mat. Sci. Eng., 61(1989), 359-363
  • 176. Eisenbach C.D., Stadler E., Synthesis and Properties of Segmented Polyether-urethanes with Specially Designed and Symmetrically Chain-folding Poly(N-alkylurethane) Hard Segments, Macromol. Chem. Phys., 196(1995), 1981-1997
  • 177. Tonelli C., Ajroldi G., Marigo A., Marega C., Turturro A., Synthesis methods of fluorinated polyurethanes. 2. Effects on morphology and microstructure, Polymer, 42(2001), 9705-9711
  • 178. Ryan A.J., Stanford .I.L., Tao X.-Q., Morphology and properties of novel copoly(isocyanurate-urea)s formed by reaction injection moulding, Polymer, 34, 19(1993), 4020-4031
  • 179. Taylor J.E., Laity P.R., Wong S.S., Khunkamchoo P., Norris K., Cable M., Andrews G., Johnson A.F., Cameron R.E., Examination of hard segment and soft segment phase separation in polyurethane medical materials by electron microscopy techniques, Microsc. Microanal., 12, 2(2006), 151-155
  • 180. O'Sickey M.J., Lawrey B.D., Wilkes G.L., Structure-Property Relationships of Poly(urethane-urea)s with Ultralow Monol Content of Poly(propylene glycol) Soft Segments. III. Influence of Mixed Soft Segments of Ultralow Monol Poly(propylene glycol), Poly(tetramethylene ether glycol) and Tri(propylene glycol), J. Appl. Polym. Sci., 89(2003), 3520-3529
  • 181. O'Sickey M.J., Lawrey B.D., Wilkes G.L., Structure-property relationships of poly(urethane urea)s with ultra-low monol content poly(propylene glycol) soft segments. I. Influence of soft segment molecular weight and hard segment content, J. Appl. Polym. Sci., 84(2002), 229-243.
  • 182. Garrett J.T., Runt J., Lin J.S., Microphase separation of segmented poly(urethane urea) block copolymers, Macromolecules, 33(2000), 6353-6359.
  • 183. Kaushiva B.D., Wilkes G.L., Uniaxial Orientation Beriavior and Consideration of the Geometric Anisotropy of Polyurea Hard Domain Structure in Flexible Potyurethane Foams, Polymer, 41(2000), 6981-6986
  • 184. Garrett J.T., Lin J.S., Runt J., Influence of Preparation Conditions on Microdomain Formation in Poly(urethane urea) Block Copolymers, Macromolecules, 35(2002), 161-168
  • 185. Velankar S., Cooper S.L., Microphase Separation and Rheological Properties of Polyurethanes. II. Effect of Block Incompatibility on the Microstructure, Macromolecules, 33(2000), 382-394
  • 186. Velankar S., Cooper S.L., Microphase separation and rheological properties of polyurethane melts. I. Effect of Block length, Macromolecules, 31(1998), 9181-9192
  • 187. Savelyev Y.V, Akhranovich E.R., Grekov A.P., Privalko E.G., Korsanov V.V., Shtompel V.I., Privalko V.I., Pissis P., Kanapitsas A., Polymer, 39(1998), 3425-3429
  • 188. Krakovsky I., Bubenikova Z., Urikawa H., Kajiwara K., Inhomogeneous structure of polyurethane networks based on poly(butadiene)diol: 1. The effect of the poly(butadiene)diol content, Polymer, 38, 14(1997), 3637-3643
  • 189. Koberstein J.T., Stein R.S., Small-angle X-ray scattering measurements of diffuse phase boundary thicknesses in segmented polyurethane elaslomers, Journal of Polymer Science-Polymer Physics, 21(1983), 2181-2200
  • 190. Li W., Ryan A.J., Meier I.K., Morphology development via reaction-induced phase separation in fiexible polyurethane foam, Macromolecules, 35(2002), 5034-5042
  • 191. Hamley I.W., Stanford J.L., Wilkinson A.N., Elwell M.J, Ryan M.J., Structure development in multi-block copolymerisation: comparison of experiments with cell dynamics simulationy, Polymer, 41(2000), 2569-2576
  • 192. Elwell M.J., Mortimer S., Ryan A.J., A synchrotron SAXS study of the structure development kinetics during the reactive processing of flexible polyurethane foam, Macromolecules, 27(1994), 5428-5439
  • 193. Ryan A.J., Willkomm W.R., Bergstrom T.B., Macosko C.W., Koberstein J.T., Yu C.C., Russell T.P., Dynamics of (micro)phase separation during fast, bulk copolymerization: some synchrotron SAXS experiments, Macromolecules, 24(1991), 2883-2889
  • 194. Etienne S., Vigier G., Cuve L., Pascault J.P., Microstructure of segmented amorphous polyurethenes: small-angle X-ray scattering and mechanical properties studies, Polymer, 35(1994), 2737-2743
  • 195. Li Y., Gao T., Chu B., Synchrotron SAXS studies of phase-separation kinetics in a segmented polyurethane, Macromolecules, 25( 1992), 1737-1744
  • 196. Wilkes G.L., Emerson J.A., Time Dependence of Small Angle X-Ray Measurements on Segmented Polyurethanes FollowingThermal Treatment, J. Appl. Phys., 47(1976), 4261-4264
  • 197. Ryan A.J., Macosko C.W., Bras W., Order-disorder transition in o Block copolyurethane, Macromolecules, 25(1992), 6277-6283
  • 198. Blundell D.J., Eeckhaut G., Fuller W., Mahendrasingam A., Martin C., Time-resolved SAXS/ stress-strain studies of thermoplastic polyurethanes during mechanical cycling at large strains, Journal of Macromolecular Science and Physics, B43(2004), 125-142
  • 199. Blundell D.J., Eeckhaut G., Fuller W., Mahendrasingam A., Martin C., Real time SAXS/stress-strain studies of thermoplastic polyurethanes at large strains, Polymer, 43(2002), 5197-5207
  • 200. Martin C., Eeckhaut G., Mahendrasingam A., Blundell D.J., Fuller W., Oldman R.J., Bingham S.J., Dieing T., Riekel C., J. Synchrotron Radiat., 7(2000), 245-253
  • 201. Laity P.R., Taylor J.E., Wong S.S., Khunkamchoo P., Norris K., Cable M., Chohan V., Andrews G.T., Johnson A.F., Cameron R.E., Mechanical deformation of polyurethanes, J. Macromol. Sci.-Phys., 643(2004), 95-123.
  • 202. Roe R-J., Methods of X-ray and neutron scattering in polymer science, Oxford University Press, 2000
  • 203. Guinier A., X-ray diffraction in crystals, imperfect crystals and amorphous bodies, Dover Publications Inc, New York 1994
  • 204. Glatter O., Kratky O., Small-angle X-ray scattering, Academic Press, London 1982
  • 205. Vainshtein B.K., Diffraction of X-rays by chain molecules, Elsevier Publishing Co., Amsterdam 1966
  • 206. Hosemann R., Bagchi S.N., Direct analysis of diffraction by matter, North-Holland Publishing Co., Amsterdam 1962
  • 207. Laity P.R., Taylor J.E., Khunkamchoo S.S.P., Norris K., Cable M., Andrews G.T., Johnson A.F., Cameron R.E., A review of small-angle scattering models for random segmented poly-(ether-urethane) copolymers, Polymer, 45(2004), 7273-7291
  • 208. Hamley I.W., The physics of Block copolymers, Oxford University Press, Oxford 1998
  • 209. Fredrickson G.H., Milner S.T., Leibler L., Multicritical Phenomena and Microphase Ordering in Random Block Copolymer Melts, Macromolecules, 25(1992), 6341-6354
  • 210. Eisenbach C.D., Heinemann T., Ribbe A., Stadler E., Supramolecular Structure and Properties of Specially Designed Two-phase Macromolecular Systems. Macromol. Symp., 77(1994), 125-140
  • 211. Eisenbach C.D., Fleinemann T., Ribbe E., Stadler E., Chain Architecture and Molecular Self-Organization of Polyurethanes: Perspectives for Thermoplastic Elastomers Chain Architecture and Molecular Self-Organization of Polyurethanes: Perspectives for Thermoplastic Elastomers, Angew. Makromol. Chem., 202/203(1992), 221-241
  • 212. Li C., Cooper S.L., Direct Observation of Morphology in Polyether Urethanes by High Voltage Electron Microscopy. Polymer, 31(1990), 3-7
  • 213. Serrano M., MacKnight W.J., Thomas E.L., Ottino J.M., Transport-morphology relationships in segmented polybutadiene polyurethanes: 1. Experimental results, Polymer, 27(1987), 1667-1673
  • 214. Wang G., Fang B., Zhang Z., Study of the Domain-Structure and Mechanical-Properties of the Ethylene-Oxide Endcapped Poly(Propylene Oxide) Polyol 4,4'-Diphenylmethane Diisocyanate Ethylenediol Polyurethane System, Polymer, 35(1994), 3178-3183
  • 215. Cowie J.M.G., Polymers: chemistry and physics of modem materials, Chapman and Hall, London 1991
  • 216. Gedde U.W., Polymer physics, Kluwer Academic Publishers, Dordrecht 1999
  • 217. Schultz J.M., Polymer crystallisation: the development of crystalline order in thermoplastic polymers, Oxford University Press/American Chemical Society, New York/Washington 2001
  • 218. Zernike F., Prins J.A., X-ray scattering in the liquid state resulting from molecular order, Z. Phys., 41(1927), 184-194
  • 219. Hosemann R., X-ray scattering from liquid structure, Z. Phys. 127(1949), 16-40
  • 220. Teubner M., Strey R., Origin of the scattering peak in microemulsions, J. Chem. Phys., 87(1987), 3195-3200
  • 221. Laity P.R., Taylor J.E., Wong S.S., Khunkamchoo P., Norris K., Cable M., Andrews G.T., Johnson A.F., Cameron R.E., A 2-dimensional small-angle X-ray scattering study of the microphase separated morphology exhibited by thermoplastic polyurethanes and its response to deformation, Polymer, 45(2004), 5215-5232
  • 222. Sun Y.-S., Jeng U.-S., Huang Y.-S., Keng S., Liang K.-S., Lin T.-L., Tsao C.-S., Complementary SAXS and SANS for structural characteristics of a polyurethane elastomer of low hard-segment content, Physica, 6385-386(2006), 650-652
  • 223. Korley L.T.J., Pate B.D., Edwin L., Thomas E.L., Hammond P.T., Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes, Polymer, 47(2006), 3073-3082
  • 224. Hernandez R., Weksler J., Padsalgikar A., Runt J., Microstructural Organization of Three-Phase Polydimethylsiloxane-Based Segmented Polyurethanes, Macromolecules, 40(2007), 5441-5449
  • 225. Kojio K., Nakashima S., Furukawa M., Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes, Polymer, 48(2007), 997-1004
  • 226. Koerner H., Kelley J.J., Vaia R.A., Transient Microstructure of Low Hard Segment Thermoplastic Polyurethane under Uniaxial Deformation, Macromolecules, 41(2008), 4709-4716
  • 227. Pielichowski K., Flejtuch K., Zastosowanie modulowanej różnicowej kalorymetrii skaningowej (MDSC) w badaniach właściwości polimerów, Polimery, 47, 11-12(2002), 784-792
  • 228. Qiu Z., Ikehara T., Nishi T., Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide), Polymer, 44(2003), 3095-3099
  • 229. Wang Z.G., Hsiao B.S., Sauer B.B., Kampert W.G., The nature of secondary crystallization in poly(ethylene terephthalate), Polymer, 40(1999), 4615-4627
  • 230. Wang L.F., Effect of soft segment length on the thermal behaviors of fluorinated polyurethanes, Eur. Polym. J., 41(2005) 293-301
  • 231. Song M., Hourston D.J., Correlation Between Mechanical Damping and Interphase Content in Interpenetrating Polymer Networks, J. Appl. Polym. Sci., 81(2001), 2439-2442
  • 232. Hourston D.J., Song M., Hammiche A., Pollock H.M., Reading M., Modulated differential scanning calorimetry: 6. Thermal characterization of multicomponent polymers and interfaces, Polymer, 38(1997), 1-7
  • 233. Hourston D.J., Song M., Hammiche A., Pollock H.M., Reading M., Modulated differential scanning calorimetry: 2. Studies of physical ageing in polystyrene, Polymer, 37(1996), 243-247
  • 234. Song M., Hourston D.J., Silva G.G., Machado J.C., Effect of Residual Water and Free Volume on the Glass-Transition Temperature and Heat Capacin in Polystyrene/Poly(vinyl acetate-co-butyl acrylate) Structured Latex Films, J. Polym. Sci. Part B: Polym. Phys., 39(2001), 1659-1664
  • 235. Song M., Liao B., A modulated DSC characterization of morphology of composite latex particles, Thermochim. Acta, 243(2004), 57-61
  • 236. di Lorenzo M.L., Wunderlich B., Melling of polymers by non-isothermal, temperature-modulated calorimetry: analysis of various irreversible latent heat contributions to the reversing heat capacity, Thermochimica Acta, 405(2003), 255-68
  • 237. Okazaki I., Wunderlich B., Reversible Melting in Polymer Crystals Detected by Temperature-Modulated Differential Scanning Calorimetry, Macromolecules, 30(1997), 1758-1764
  • 238. Wunderlich B., Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules, Prog. Polym. Sci., 28(2003) 383-450
  • 239. Kampert W.G., Sauer B.B., Temperature modulated DSC studies of melting and recrystallization in poly(ethylenc-2,6-naphthalene dicarboxylate) (PEN) and blends with poly(ethylene terephthalate) (PET), Polymer, 42(2001), 8703-8714
  • 240. Gill P.S., Sauerbrunn S.R., Reading M., Modulated differential scanning calorimetry, J. Therm. Anal., 40(1993), 931-939
  • 241. Reading M., Elliott D., Hill V.L., A new approach to the calorimetric investigation of physical and chemical transitions, J. Them. Anal. 40(1993), 949-955
  • 242. Schawe J.E.K., Winter W., Description of the irreversible melting of polymers measured by temperature modulated calorimetry, Thermochimica Acta, 330(1999), 85092
  • 243. Verdonck E., Schaap K., Thomas L.C., A discussion of the principles and applications of modulated temperature DSC (MTDSC), Int. J. Pharm., 192(1999), 3-20
  • 244. Mohamed A., Gordon S.H., Biresaw G., Polycaprolactone/polystyrene bioblends characterized by thermogravimetry, modulated differential scanning calorimetry and infrared photoacoustic spectroscopy, Polymer Degradation and Stability, 92(2007), 1177-1185
  • 245. Xia H., Song M., Characteristic length of dynamic glass transition based on polymer/clay intercalated nanocomposites, Thermochimica Acta, 429(2005), 1-5
  • 246. Fa Cheng Y.-W., Li H., Yu J., Thermal properties and micromorphology of polyurethane resin based on liquefied benzylated wood, J. Sci. Ind. Research, 64(2005), 435-439
  • 247. Yao K.,-J., Song M., Hourston D.J., Luo D.Z., Polymer/layered clay nanocomposites: 2. polyurethane nanocomposites, Polymer, 43(2002), 1017-1020
  • 248. Seymour R.W., Cooper S.L., DSC studies of polyurethane block polymers, J. Polym. Lett., 9(1971), 689-694
  • 249. Finnigan B., Mattin D., Halley P., Truss R., Campbell K., Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates, Polymer, 45(2004) 2249-2260
  • 250. Hesketh T.R., van Bogart J.W.C., Cooper S.L., Differential scanning calorimetry analysis of morphological changes in segmented elastomers, Polymer Eng. Sci., 20(2004), 190-197
  • 251. Eisenbach C.D., Baumgartner M., Gunter C., Lal J., Mark J.E., Advances in elastomers and rubber elasticity, Plenum, New York 1986, 51
  • 252. Soenen S., Liskewa A., Reynders K., Berghmans H., Winter H.H., Overbergh N., Ordering and structure formation in triblock copolymer solutions. Part II. Small angle X-ray scattering and calorimetric observations, Polymer, 38(1997), 5661-5665
  • 253. Leary D.F., Williams C., Statistical thermodynamics of ABC block copolymers. III. Microstructural transitions and model verification, J. Polymer Sci.: Polymer Physics (ed.): 12(1973), 265-287
  • 254. Tonelli L., Trombetta T., Scicchitano M., Castiglioni G., New perfluoeropolyether soft segment containing polyurethanes, J. Appl. Polym. Sci., 57(1995), 1031-1042
  • 255. Tan H., Guo M., Du R., Xie X., Li J., Zhong Y., The effect of fluorinated side chain attached on hard segment on the phase separation and surface topography of polyurethanes, Polymer, 45(2004), 1647-1657
  • 256. Jin J., Song M., Yao K.J., A MTDSC analysis of phase transition in polyurethane-organoclay nanocomposites, Thermochimica Acta, 447(2006), 202-208
  • 257. Jin J., Song M., A DSC study of the order-disorder transition of SEPS Block copolymers in the Block copolymer/paraffin oil/layered silicate nanocomposite gels, Thermochimica Acta, 438(2005), 95-101
  • 258. Hourston D.J., Song M., Quantitative Characterization of Interfaces in Rubber-Rubber Blends by Means of Modulated-Temperature DSC, J.Appl. Polym. Sci., 76(2000), 1791-1798
  • 259. Voda A., Beck K., Schauber A., Adler M., Dabisch T., Bescher M., Viol M., Demco D.E., Blümich B., Investigation of soft segments of thermoplastic polyurethane by NMR, differential scanning calorimetry and rebound resilience investigation of soft segments of thermoplastic polyurethane by NMR, differential scanning calorimetry and rebound resilience, Polymer Testing, 25(2006), 203-213
  • 260. Camberlin Y., Pascault J.P., Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas, J. Polym. Sci.: Polym. Chem. (ed.), 21(1983), 415-423.
  • 261. Saiani A., Daunch W.A., Verbeke H., Leenslag J.-W,. Higgins J.S., Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. I. Thermodynamic Investigation, Macromolecules, 34(2001), 9059-9068
  • 262. Yang W.P., Macosko C.W., Wellinghoff S.T., Thermal degradation of urethanes based on 4,4'-diphenylmethane diizycoanate and 1,4-butanediol (MDI/BDO), Polymer, 27(1986), 1235
  • 263. Lee D.-K., Tsai H.-B., Properties of segmented polyurethanes derived from different diisocyanates, J. Appl. Polym. Sci., 75(2000), 167-174
  • 264. Shirasaka H., Inoue S.-I., Asai K., Okamoto H., Polyurethane urea elastomer having monodispersed poly(oxytetramethylene) as a soft segment with a uniform hard segment, Macromolecules, 33(2000), 2776-2778
  • 265. Hamley I.W., Introduction to Soft Matter, John Wiley and Sons, Chichester 2000, 109
  • 266. Hatakeyama T., Quinn F.X., Thermal Analysis: Fundamentals and Applications to Polymer Science, John Wiley and Sons, Chichester 1999, 90-95
  • 267. Hu W., Koberstein J.T., The effect of thermal annealing on the thermal properties and molecular weight of a segmented polyurethane copolymer, J. Polym. Sci. B: Polym. Phys., 32(1994), 437-446
  • 268. Chen T.-K., Shieh T.-S., Chui J.-Y., Studies on the first DSC endotherm of polyurethane hard segment based on 4,4'-diphenylmethane diisocyanate and 1,4-butanediol, Macromolecules, 31(1998), 1312-1320
  • 269. Martin D.J., Meijs G.F., Renwick G.M., McCarthy S.J., Gunitillake P.A., The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. I. Characterization of the series, J. Appl. Polym. Sci., 62(1996), 1377-1386
  • 270. Miller J.A., Lin S.-B., Hwang K.K.-S., Wu K.-S., Gibson P.E., Cooper S.L., Properties of Polyether-Polyurethane Block Copolymers: Effects of Hard Segment Length Distribution, Macromolecules, 18(1985), 32-44
  • 271. Rueda-Larraz L., Fernandez d'Arlas B., Tercjak A., Ribes A., Mondragon I., Eceiza A., Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL Block copolymer as soft segment, European Polymer Journal, 45(2009), 2096-2109
  • 272. Montasser I., Fessi H., Coleman A.W., Atomic force microscopy imaging of novel type of polymeric colloidal nanostructures, Eur. J. Pharm. Biopharm., 54(2002), 281-284
  • 273. Karbach A., Drechsler D., Atomic Force Microscopy - a powerful tool for industrial applications, Surf. Interf. Anal., 27(1999), 401-409
  • 274. Garrett J.T., Siedlecki C.A., Runt J., Microdomain Morphology of Poly(urethane urea) Multiblock Copolymers, Macromolecules, 34(2001), 7066-7070
  • 275. Rutkowska M., Jastrzębska M., Janik H., Kim J.-S., The morphology of polyurethane grafts and blends, Comp. Sci.Tech., 57(1997), 1155-1158
  • 276. Stanciu A., Airinei A., Timpua D., Ioanid A., Ioan C., Bulacovschi V., Polyurethane/polydimethylsiloxane segmented copolymers, European Polymer Journal, 35(1999), 1959-1965
  • 277. Sawyer L.C., Grubb D.T., Polymer microscopy, Chapman & Hall, London 1996
  • 278. Feng D., Wilkes G.L., Leir C.M., Stark J.E.L., Structure-Property Behavior of Elastomeric Segmented PTMO-Ionene Polymers, II. Macromol. Sci.-Chem., A26( 1989), 1151-1181
  • 279. Sauer B.B., McLean R.S., AFM and X-ray studies of crystal and ionic domain morphology in poly(ethylene-co-methacrylic acid) ionomers, Macromolecules, 33(2000), 7939-7949
  • 280. Aneja A., Wilkes G.L., Polym. Prep. (ACS Div. Polym. Chem.), 42, 2(2001), 685-686
  • 281. Zhang D., Gracias D.H., Ward R., Gauckler M., Tian Y., Shen Y.R., Somorjai G.A., J. Phys. Chem., 102(1998), 6225
  • 282. Aneja A., Wilkes G.L., A systematic of „model” PTMO based segmented polyurethanes reinvestigated using atomic force microscopy, Polymer, 44(2003), 7221-7228
  • 283. Chen X., Roberts C.J., Zhang J., Davies M.C., Tendler S.J.B., Surf. Sci., 519, 1-2(2002), L593-L598
  • 284. Żenkiewicz M., Adhezja i modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych, WNT, Warszawa 2000
  • 285. Kaczmarek H., Czajka R., Nowicki M., Wiśniewski M., Badania polimerów z wykorzystaniem metody mikroskopii sił atomowych (AFM), Polimery, 48, 2(2003), 91-99
  • 286. Król P., Król B., Skrzypiec K., Wizualizacja struktur nadcząsteczkowych w jonomerach poliuretanowych metodą mikroskopii sił atomowych, Polimery, 50, 2(2005), 123-130
  • 287. Sormana J.L., Meredith J.C., High-Throughput Discovery of Structure-Mechanical Property Relationships for Segmented Poly(urethane-urea)s, Macromolecules, 37(2004), 2186-2195
  • 288. Chen C-P.-C., Dai S.-A., Chang H.-L., Su W.-C., Wu T.-M., Jeng R.-J., Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures, Polymer, 46(2005), 11849-11857
  • 289. Ming W., Tian M., van de Grampel R.D., Melis F., Jia X., Loos J., et al., Low surface energy polymeric films from solventless liquid oligoester and partially fluorinated isocyanates, Macromolecules, 35(2002), 6920-6929
  • 290. Kim J.-H., Kim S.-C., Rubber Modified Epoxy Resin: II. Phase Separation Behavior, Macromolecules, 36(2003), 2867-2872
  • 291. Grandy D.B., Hourston D.J., Price D.M., Reading M., Silva G.G., Song M., Sykes P., Microthermal Characterization of Segmented Polyurethane Elastomers and a Polystyrene-Poly(methyl methacrylate) Polymer Blend Using Variable Temperature Pulsed Force Mode Atomic Force Microscopy, Macromolecules, 33(2000) 9348-9359
  • 292. Nanoscope III command reference manual. Update Version 4.10. Digital Instruments Nanoscope scanning probe microscopes, August 1995, 12.52-12.60
  • 293. O'Sickey M.J., Lawrey B.D., Wilkes G.L., Structure-Property Relationships of Poly(urethane urea)s with Ultra-low Monol Content Poly(propylene glycol) Soft Segments. Part II. Influence of Low Molecular Weight Polyol Components, J. Appl. Polym. Sci., 84(2002), 229-243
  • 294. Otts D.B., Urban M.W., Heterogeneous crosslinking of waterbome two-component polyurethanes (WB 2K-PUR); stratification processes and the role of water, Polymer, 46(2005), 2699-2709
  • 295. Xu Y., Petrovic Z., Das S., Wilkes G.L., Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments, Polymer, 49(2008), 4248-4258
  • 296. Aneja A., Wilkes G.L., Hard Segment Connectivity in Low Molecular Weight Model Trisegment Polyurethanes Based on Monols, Polymer, 45(2004), 927-935
  • 297. Chen Y., Zhou S., Yang H., Gu G., Wu L., Preparation and characierization of nanocomposite polyurethane, Journal of Colloid and Interface Science, 279(2004), 370-378
  • 298. Waletzko R.S., Korley L.T.J., Pate B.D., Thomas E.L., Hammond P.T., Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO-PPO-PEO Soft Segments and HDI Hard Segments, Macromolecules, 42(2009), 2041-2053
  • 299. Ji F.-L., Hu J.-L., Li T.-C., Wong Y.-W., Morphology and shape memory effect of segmented polyurethanes. Part I: With crystalline reversible phase, Polymer, 48, 17(2007), 5133-5145
  • 300. Gogolewski S., Selected Topics in Biomedical Polyurethanes - a Review, Colloid Polym. Sci. 267, 9(1989), 757-785
  • 301. Yilgor I., Yilgor E., Structure-morphology-property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders, Polym. Rev., 47, 4(2007), 87-510
  • 302. Lee D.-K., Tsai H.-B., Properties of segmented polyurethanes derived from different diisocyanates, J. Appl. Polym. Sci., 75, 1(2000), 167-174
  • 303. Skarja G.A., Woodhouse K.A., Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender, J. Appl. Polym. Sci., 75, 12(2000), 1522-1534
  • 304. Xu L.-C, Soman P., Runt J., Siedlecki C.A., Characterization of surface microphase structures of poly(urethane urea) biomaterials by nanoscale indentation with AFM, J. Biomater. Sci., Polym. (ed.), 18, 4(2007), 353-368
  • 305. Song M., Xia H.-S., Yao K.-J., Hourston D.J., A study on phase morphology and surface properties of polyurethane/organoclay nanocomposites, European Polymer Journal, 41(2005), 259-266
  • 306. Samuels S.L., Wilkes G.L., The rheo-optical and mechanical behavior of a systematic series of hard-soft segmented urethanes, J. Polym. Sci. Symp., 43(1973), 149-178
  • 307. Das S., Yilgor I., Yilgor E., Inci B., Tezgel O., Beyer F.L., Wilkes G.L., Structure, property relationships and melt rheology of segmented, non-chain extended polyureas: Effect of soft segment molecular weight, Polymer. 48(2007), 290-301
  • 308. Sauer B.B., Mclean R.S., Gaymans R.J., Niesten M.C.J.E., Crystalline Morphologies in Segmented Copolymers with Hard Segments of Uniform Length, Journal of Polymer Science, Part B: Polymer Physics, 42(2004), 1783-1792
  • 309. Gogolewski S., Swelling-induced crystallization of segmented polyurethanes, Kolloid-Z u.Z. Polymere, 251(1973), 502-503
  • 310. Janik H.Z., Struktury nadcząsteczkowe i wybrane właściwości rozgałęzionych i usieciowanych poli(estrouretanów), poli(eterouretanów) i poli(uretanobiuretów) formowanych reaktywnie. Zeszyty Naukowe Politechniki Gdańskiej, 599, 2005
  • 311. McLean R.S., Sauer B.B., Nanometer resolution of crystalline morphology using scanning probe microscopy, Macromolecules, 30(1997), 8314-8317
  • 312. Garrett J.T., Siedlecki C.A., Runt J., Microdomain Morphology of Poly(urethane urea) Multiblock Copolymers, Macromolecules, 34(2001), 7066-7070
  • 313. Rutkowska M., Jastrzebska M., Janik H., Kim J.-S., The morphology of polyurethane grafts and blends, Comp. Sci. Tech., 57(1997), 1155-1158
  • 314. Stanciu A., Airinei A., Timpua D., Ioanid A., Ioan C., Bulacovschi V. Polyurethane/polydimethylsiloxane segmented Copolymers, European Polymer Journal, 35(1999), 1959-1965
  • 315. Sawyer L.C., Grubb D.T., Polymer microscopy, Chapman & Hall, London 1996
  • 316. Feng D., Wilkes G.L., Leir C.M., Stark J.E.L., Structure-Property Behavior of Elastomeric Segmented PTMO-Ionene Polymers. II. Macromol, Sci.-Chem., A26(1989), 1151-1181
  • 317. Lagasse R.R., Domain Structure and time-dependent properties of a crosslinked urethane elastomer, J. Appl. Polym. Sci., 21(1977), 2489-2503
  • 318. Chang A.L.,Thomas E.L., In Multiphase Polymers, Cooper S.L., Estes G.M. (eds.), American Chemical Society, Washington 1979
  • 319. Briber R.M., Thomas E.L., The Investigation of Two Crystal Forms in MDI/BDO Based Polyurethanes, J. Macromol. Sci.-Phys., B22(1983), 509-526
  • 320. Cowie J.M.G., In Developments in Block Copolymers: Goodman I. (ed.), Applied Science, London 1982
  • 321. Roche E.J., Thomas E.L., Defocus electron microscopy of multiphase polymers: use and misuse, Polymer, 22(1981), 333-341
  • 322. Handlin D.L., MacKnight W.J., Thomas E.L., A Critical Evaluation of Electron Microscopy of Ionomers, Macromolecules, 14(1980), 795
  • 323. Kato K., The osmium tetraoxide procedure for light and electron microscopy of ABS plastics, Polym. Eng. Sci., 7(1967), 3839
  • 324. Chou T.M., Prayoonthong P., Aitouchen A., Libera M., Nanoscale artifacts in Ru04-stained poly(styrene), Polymer, 43(2002), 2085-2088
  • 325. Berry V.K., Low voltage scanning electron microscopy in polymer characterization, Proc. EMSA, 1987, 468-469
  • 326. Foks J., Michler G., Electron-microscopical investigation of the morphology of polyurethanes, J. Appl. Polym. Sci., 31(1986), 1281-1291
  • 327. Li C., Goodman S.L., Albrecht R.M., Cooper S.L., Morphology of Segmented Polybutadiene-Polyurethane Elastomers, Macromolecules, 21(1988), 2367-2375
  • 328. Górna K., Gogolewski S., The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications, Polymer Degradation and Stability, 79(2003), 465-474
  • 329. Alves P., Coelho J.F.J., Haack J., Rota A., Bruinink A., Gil M.H., Surface modification and characterization of thermoplastic polyurethane, European Polymer Journal, 45(2009), 1412-1419
  • 330. Ibarboure E., Baron A., Papon E., Rodriguez-Hernandez J., Self-assembly of graft polyurethanes having both crystallizable poly(ε-caprolactone) blocks and soft poly(n-butyl acrylate) segments, Thin Solid Films, 517(2009), 3281-3286
  • 331. Widmaier J.M., Microphase separation during the concurrent formation of two polymer networks, Macromol. Symp., 93(1995), 179-186
  • 332. Chen P., Tian H., Zhang L., Chang P.-R., Structure and Properties of Soy protein Plastics with ε-Caprolactone/Glycerol as Binary Plasticizers, Ind. Eng. Chem. Res., 47(2008), 9389-9395
  • 333. Wang Z., Zhou Y., Sun Y., Preparation. Characterization and Infrared Emissivity Study of Attapulgite@helical Polyurethane Composites, J. Inorg. Organomet. Polym., 19(2009), 202-207
  • 334. Xu M., Zhang T., Gu B., Wu J., Chen Q., Synthesis and Properties of Novel Polyurethane Urea/Multiwalled Carbon Nanotube Composites, Macromolecules, 39(2006), 3540-3545
  • 335. Kuan H.-C., Ma C.-C.-M., Chang W-P., Yuen S-M., Wu H-H., Lee T-M., Synthesis. Thermal. mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite, Composites Science and Technology, 65(2005), 1703-1710
  • 336. McClory C., McNally T., Brennan G.P., Erskine J., Thermosetting Polyurethane Multiwalled Carbon Nanotube Composites, J. App. Polymer Sci., 105(2007), 1003-1011
  • 337. Foks J., Michler G., Nauman I., Determination of Lamellae in Segmented Polyurethanes by Electron Microscopy, Polymer, 28(1987), 2195-2199
  • 338. Fridman I.D., Thomas E.L., Lee L.J., Macosko C.W., Morphological Characterisation of Reaction Injection Moulded (RIM) Polyester-Based Polyurethanes, Polymer, 21(1980), 393-402
  • 339. Saiani A., Daunch W.A., Verbeke H., Leenslag J.-W., Higgins J.S., Origin of Multiple Melling Endotherms in a High Hard Block Content Polyurethane. I. Thermodynamic Investigation. Macromolecules, 37(2004), 1411-1421
  • 340. Tocha E., Janik H., Debowski M., Vancso G.J., Morphology of polyurethanes revisited by complementary AFM and TEM, J. Macromol. Sci.-Phys., B41(2002)T 1291-304
  • 341. KongpunT., Kojio K., Furukawa M., Effect of Polymer Glycolson Micro-Aggregation Structure and Mechanical Properties of Spherulite Size Graded Polyurethane Elastomers, J. App. Polymer Sci., 113(2009), 1454-1461
  • 342. Eceiza A., Larraňaga M., de la Caba K., Kortaberria G., Marieta C., Corcuera M.A., Mondragon I., Structure-Property Relationships of Thermoplastic Polyurethane Elaslomers Based on Polycarbonate Diols, J. Appl. Polym. Sci., 108(2008), 3092-3103
  • 343. Ryszkowska J., Quantitative analysis of polyurethane nanocomposites with boehmite modified using lactic acid structure, Computational Methods and Experiments in Materials Characterization III, 2007, 159-167
  • 344. Ryszkowska J., Application of quantitative image analysis to the description of the morphology of boehmite and their polyurethane nanocomposites, Materials Science Forum, 514-516(2006X887-891
  • 345. Boczkowska A., Ryszkowska J., Morphology and properties of urea-urethane nanocomposites obtained from crystalline prepolymers with different chemical structure, Solid State Phenomena, Trans. Tech. Publ., 2003, 329
  • 346. Lee M., Hong S.-C., Lee S.-W., Effect of diisocyanate structures on the properties of liquid crystalline polyurethanes, Polym. Eng. Sci., 47, 4(2007), 439-446
  • 347. Riese W., Ulrich H. (eds). Reaction polymers, Hanser, Munich 1992
  • 348. Macosko C.W., RIM, fundamentals of reaction injection molding, Hanser, Munich 1989
  • 349. Sekkar V., Gopalakrishnan S., Devi K.A., Studies on allophanate-urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics, Eur. Polym. J., 39(2003), 1281-1290
  • 350. Sekkar V., Bhagawan S.S., Prabhakaran N., Rao M., Ninan K.N., Polyurethanes based on hydroxyl terminated polybutadiene: modeling of network parameters and correlation with mechanical properties, Polymer, 41(2000), 6773-6786
  • 351. Subramani S., Cheong I.-W., Kim J.-H., Chain extension studies of waterborne polyurethanes from methyl ethyl ketoxime/varepsiloncaprolactam - blocked aromatic isocyanates, Prog. Org. Coat., 51(2004), 329-338
  • 352. D'Arlas B.F., Rueda L., de la Caba K., Mondragon I., Eceiza A., Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI, Polym. Eng. Sci., 48, 3(2008), 519-529
  • 353. Stanford J.L., Still R.H., Wilkinson A.N., Effects of soft-segment prepolymer functionality on structure-property relations in RIM copolyurethanes, Polymer, 44, 14(2003), 3985-3994
  • 354. Sanchez-Adsuar M.S., Influence of the composition on the crystallinity and adhesion properties of thermoplastic polyurethane elastomers, Int. J. Adhes., 20(2000), 291-298
  • 355. Król P., Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers. Copolymers and ionomers, Prog. Mater. Sci., 52(2007), 915-1015
  • 356. Sarier N., Onder E., Thermal characteristics of polyurethane foams incorporated with phase change materials, Thermochim Acta, 454(2007), 90-98
  • 357. Christenson E.M., Anderson J.M., Hiltner A., Biodegradation mechanisms of polyurethane elastomers, Corr. Eng. Sci. Tech., 42, 4(2007), 312-323
  • 358. Urbano J., Manzarbetia F., Caramelo C., Cholesterol embolism evaluated by polarized light microscopy after primary renal artery stent placement with filler protection, J. Vasc. Interv. Radiol., 19(2008), 189-194
  • 359. Chandran K.B., Kim S.-H., Han G., Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position, J. Biomech., 24(1991), 385-387
  • 360. Chen Z.-S., Yang W.-P., Macosko C.W., Polyurea synthesis and properties as a function of hard-segment content, Rubber Chem. Technol., 61(1987), 86-99
  • 361. Król P., Pilch-Pitera B., Mechanical properties of crosslinked polyurethane elastomers based on well-defined prepolymers, J. Appl. Polym. Sci., 107, 3(2008), 1439-1448
  • 362. Lyu S., Grailer T., Belu A., Schley J., Bartlett T., Hobot C., et al. Nanoadsorbents control surface properties of polyurethane, Polymer, 48(2007), 6049-6055
  • 363. Yeganeh H., Hojati-Talemi P., Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol), Polym. Degrad. Stabil., 92(2007), 480-489
  • 364. Phaneuf M.D., Dempsey D.J., Bide M.J., Quist W.C., LoGerfo F.W., Coating of Dacron vascular grafts with an ionic polyurethane: a novel sealant with protein binding properties, Biomaterials, 22(2001), 463-469
  • 365. Speckhard T.A., Cooper S.L., Ultimate Tensile Properties of Segmented Polyurethane Elastomers: Factors Leading to Reduced Properties for Polyurethanes Based on Non-Polar Soft Segments, Rubber Chem. Technol, 59(1986), 405-431
  • 366. Martin D.J., Meijs G.F., Renwiek G.M., Gunatillake P.A., McCarthy S.J., Effect of Soft-Segment CHJO Ratio on Morphology and Properties of a Series of Polyurethane Elastomers, J. Appl. Polym. Sci., 60(1996), 557-571
  • 367. Pukánszky B. Jr, Bagdi K., Tóvöloyi Z., Varga J., Botz L., Hudak S., Dóczi T., Pukánszky B., Nanophase separation in segmented polyurethane elastomers: Effect of specific interactions on structure and properties, European Polymer Journal, 44(2008), 2431-2438
  • 368. Kojio K., Nakashima S., Furukawa M., Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes, Polymer, 48(2007), 997-1004
  • 369. Stanford J.L., Still R.H., Wilkinson A.N., Effects of soft-segment prepolymer functionality on structure-property relations in RIM copolyurethanes, Polymer 44, 14(2003), 3985-3994
  • 370. Dobrowski S.A., Goodman I., Johnson A.F., Experimental studies of chain-size distributions in hard segments of linear segmented copolyesterurethanes, Macromol. Rapid Commun., 7(1986), 273-279
  • 371. Elwell M.J., Ryan A.J., Grünbauer H.J.M., Lieshout H.C.V., An FT i.r. study of reaction kinetics and structure development in model flexible polyurethane foam systems, Polymer, 37(1996), 1353-1361
  • 372. Pompe G., Pohlers A., Pötschke P., Pionteck J., Influence of processing conditions on the multiphase structure of segmented polyurethane, Polymer, 39(1998), 5147-5153
  • 373. Stanford J.L., Still R.H., Wilkinson A.N., Effects of soft segment prepolymer functionality on structure development in RIM copolymers, Polymer, 36, 18(1995), 3555-3564
  • 374. Harrell L.L., Segmented polyurethans properties as a function of segment size and distribution, Macromolecules, 2(1969), 607-612
  • 375. Camberlin Y., Pascault J.P., Phase segregation kinetics in segmented linear polyurethanes: relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter, J. Polym. Sci. Polym. Phys., 22(1984), 1835-44
  • 376. Tien Y.I., Wei K.H., Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios, Polymer, 42, 7(2001), 3213-3221
  • 377. Pretsch T., Jakob I., Müller W., Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane), Polymer Degradation and Stability, 94, 1(2009), 61-73
  • 378. Seymour R.W., Estes G.M., Cooper S.L., Infrared Studies of Segmented Polyurethane Elastomers. I. Hydrogen Bonding, Macromolecules, 3(1970), 579-583
  • 379. Coleman M.M., Skrovanek D.J., Hu J., Painter P.C., Hydrogen bonding in polymer blends. I. FTIR studies of urethane-ether blends, Macromolecules, 21(1988), 59-65
  • 380. Ayres E., Oréfice R.L., Yoshida M.I., Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions, European Polymer Journal, 43, 8(2007), 3510-3521
  • 381. Wang L.-F., Effect of soft segment length on the thermal behaviors of fluorinated polyurethanes. European Polymer Journal 41, 2(2005), 293-301
  • 382. Howland R., Benatar L., tł. polskie Woźniak M., Kozubowski J.A., STM/AFM Mikroskopy ze skanującą sondą, Warszawa 2002
  • 383. Wejrzanowski T., Micrometer, WIM PW. 1999
  • 384. Broniewski T., Kapko J., Płaczek W., Thomalla J., Metody badań i ocena właściwości tworzyw sztucznych, Wydawnictwa Naukowo-Techniczne, Warszawa 2000, 22-31, 47, 163
  • 385. Riese W., Ulrich H. (eds), Reaction polymers, Hanser, Munich 1992
  • 386. Macosko C.W., RIM, fundamentals of reaction injection molding, Hanser, Munich 1989
  • 387. Lee M., Hong S.-C., Lee S.-W., Effect of diisocyanate structures on the properties of liquid crystalline polyurethanes, Polym. Eng. Sci., 47, 4(2007), 439-446
  • 388. Sekkar V., Gopalakrishnan S., Ambika K., Devi K.A., Studies on allophanate-urethane networks based on hydroxyl terminated polybutadiene: effect of isocyanate type on the network characteristics, European Polymer Journal, 39, 6(2003), 1281-1290
  • 389. Sekkar V., Bhagawan S.S., Prabhakaran N., Rao M., Ninan K.N., Polyurethanes based on hydroxyl terminated polybutadiene: modelling of network parameters and correlation with mechanical properties, Polymer, 41, 18(2000), 6773-6786
  • 390. Subramani S., Cheong I.-W., Kim J.-H., Chain extension studies of water-borne polyurethanes from methyl ethyl ketoxime/-caprolactam-blocked aromatic isocyanates, Progress in Organic Coatings, 51, 4(2004), 328-338
  • 391. Stanford J.L., Still R.H., Wilkinson A.N., Effects of soft-segment prepolymer functionality on structure-property relations in RIM copolyurethanes, Polymer, 44, 14(2003), 3985-3994
  • 392. Dobrowski S.A., Goodman I., Johnson A.F., Experimental studies of chain-size distributions in hard segments of linear segmented copolyesterurethanes, Macromol. Rapid Commun., 7(1986), 273-279
  • 393. Elwell M.J., Ryan A.J., Grünbauer H.J.M., Lieshout H.C.V., An FT i.r. study of reaction kinetics and structure development in model flexible polyurethane foam systems, Polymer, 37, 8(1996), 1353-1361
  • 394. Pompe G., Pohlers A., Pötschke P, Pionteck J., Influence of processing conditions on the multiphase structure of segmented polyurethane, Polymer, 39, 21(1998), 5147-5153
  • 395. Garrett J.T., Xu R., Cho J., Runt J., Phase separation of diamine chain-extended poly(urethane) copolymers: FTIR spectroscopy and phase transitions, Polymer, 44, 9(2003), 2711-2719
  • 396. Stanford J.L., Still R.H., Wilkinson A.N., Effects of soft segment prepolymer functionality on structure development in RIM copolymers, Polymer, 36, 18(1995), 3555-3564
  • 397. Harrell L.L., Segmented polyurethans properties as a function of segment size and distribution, Macromolecules, 2(1969), 607-612
  • 398. Camberlin Y., Pascault J.P., Phase segregation kinetics in segmented linear polyurethanes: relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter, J. Polym. Sci. Polym. Phys., 22(1984), 1835-1844
  • 399. Szycher M., Szycher's Handbook of Polyurethanes, CRS Press, Boca Raton, 1999
  • 400. Schoen F.J., Levy R.J., Piehler H.R., Pathological considerations in replacement cardlac valves, Cardiovascular Pathology, 1(1992), 29-52
  • 401. Palsson B., Hubbell J.A., Plonsey R., Bronzino J.D., Tissue Engineering. CRS Press, Boca Raton 2003, 402
  • 402. Anselme K., Bigerelle M., Modelling approach in cell/material interactions studies, Biomaterials, 27, 8(2006), 1187-1199
  • 403. Santerre J.P., Woodhouse K., Laroche G., Labow R.S., Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials, Biomaterials, 26, 35(2005), 7457-7470
  • 404. Ferber D., Lab-grown organs begin to take shape, Science, 284(1999), 422-425
  • 405. Król P., Linear polyurethanes, VSP, Leiden, Boston 2008
  • 406. Lambda N.M.K., Woodhouse K.A., Cooper S.L., Polyurethanes in Biomedical Application. CRS Press, Boca Raton 1997
  • 407. Ryszkowska J. i in., Raport z projektu badawczego zamawianego nr PBZ-KBN-082- /T08/2002 pt: Nowe materiały i technologie dla inżynierii biomedycznej - Nowe materiały - nośniki dla żywych komórek do stosowania w inżynierii tkankowej, zadania Wydziału Inżynierii Materiałowej Politechniki Warszawskiej
  • 408. Ryszkowska J., Auguścik M., Właściwości poliuretanów do zastosowań jako podłoża do hodowli tkanek kostnych, Czasopismo Techniczne, z. 3 (106), Mechanika, z. 1-M, Politechnika Krakowska, 2009, 287-293
  • 409. Ryszkowska J., Bil M., Przybytniak G., The effect of radiation sterilization on physical and mechanical properties of polyurethanes for medical application, J. Biomaterials Engineering, 47-53(2005), 157-159
  • 410. Ryszkowska J., Bil M., Woźniak P., Lewandowska-Szumieł M., Kurzydłowski K.J., Influence of catalyst type on biocompatibility of polyurethanes, Materials Science Forum, 514-516(2006), 887-891
  • 411. Przybytniak G., Kornacka E., Bil M., Ryszkowska J., Radiation sterilization of polyurethane based materials used in tissue engineering, Biomaterials Engineering, 47-53(2005), 154-157
  • 412. Woźniak P., Bil M., Chróścicka A., Olkowski R., Przybytniak G., Ryszkowska J., Lewandowska-Szumieł M., The influence of radiosterilisation on biocompatibility of polyurethanes-preliminary study, Biomaterials Engineering, 47-53(2005), 193-196
  • 413. Bil M., Ryszkowska J., Woźniak P., Kurzydłowski K.J., Lewandowska-Szumieł M., Optimization of the structure of polyurethanes for bone tissue engineering applications, Acta Biomaterialia, 6(2010), 2501-2510
  • 414. Bil M., Ryszkowska J., Kurzydłowski K.J., Effect of polyurethane composition and the fabrication process on scaffold properties, Journal of Materials Science, 44, 6(2009), 1469-1476
  • 415. Woźniak P., Bil M., Ryszkowska J., Wychowański P., Wróbel E., Ratajska A., Hoser G., Przybylski J., Kurzydłowski K.J., Lewandowska-Szumieł M., Candidate bone-tissue-engineered product based on human-bone-derived cells and polyurethane scaffold. Acta Biomaterialia, 6(2010), 2484-2493
  • 416. Bil M., Poliuretanowe podłoża do hodowli tkanki kostnej. Rozprawa doktorska, Warszawa 2009
  • 417. Bil M., Ryszkowska J., Sienkiewicz-Łatka E., Lewandowska-Szumieł M., Kurzydłowski K.J., Influence of soft domains' size on biocompatibility prepared polyurethanes, The International Journal of Artificial Organs, 28, 2005
  • 418. Bil M., Ryszkowska J., Waśniewski B., Kurzydłowski K.J., Structure of polyurethane scaffolds prepared by coagulation/salt leaching technique, European Conference on Biomaterials including the 4th Young Scientists Forum, 10-15 September 2005, Sorrento
  • 419. Bil M., Ryszkowska J., Woźniak P., Lewandowska-Szumieł M., Kurzydłowski K.J., Influence of Polyol's Molecular weight on biocompalibility of polyurethanes, EUROMAT 2005, 5-8 September. Prague
  • 420. Woźniak P., Chróścicka A., Olkowski R., Bil M., Ryszkowska J., Lewandowska-Szumieł M., Effect of Hard Segment Content on Polyurethanes Biocompatibility in Human Bone Derived Cells Culture In Vitro, BMAT2005 Workshop, 13-14 May 2005, Warsaw
  • 421. Bil M., Ryszkowska J., Roether J.A., Bretcanu O.A., Boccaccini A.R., Bioactivity of polyurethane-based scaffolds coated with Bioglass®, Biomedical materials, 2(2007), 93-101
  • 422. Ryszkowska J. i in., Raport z projektu rozwojowego nr R1301901 pt. Optymalizacja właściwości kompozytowych trójwymiarowych rusztowań zasiedlanych ludzkimi komórkami osteogennymi do stosowania w inżynierii tkankowej kości na podstawie oceny biozgodności in vitro i w tkankach zwierząt doświadczalnych, zadania Wydziału Inżynierii Materiałowej Politechniki Warszawskiej
  • 423. Ryszkowska J.L., Auguścik M., Sheikk A., Boccaccini A.R., Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering, Compos. Sci. Tech., 70(2010), 1894-1908
  • 424. Ryszkowska J., Auguścik M., Właściwości kompozytów poliuretanowych z BIOGLASEM® do zastosowań medycznych, Czasopismo Techniczne, z. 3, (106), Mechanika, z. 1-M. Politechnika Krakowska, 2009, 281-286
  • 425. Ryszkowska J., Poly (e-caprolactone) urethane/calcium carbonate composite porous scaffolds for bone tissue engineering, Elastomery, 14(2010), 3-14
  • 426. Dulińska-Molak I., Ryszkowska J., Kompozyty PUR/CACO3 do zastosowań jako podłoża do hodowli tkanek kostnych, Czasopismo Techniczne, z. 3, (106). Mechanika, z. 1-M. Politechnika Krakowska, 2009, 81-85
  • 427. Dulińska-Molak I., Ryszkowska J., Poliuretanowe pianki kompozytowe z kalcytem przeznaczone do hodowli tkanek kostnych, Kompozyty, 3(2009), 9, 228-233
  • 428. Zawadzak E., Bil M., Ryszkowska J., Nazhat S.N., Cho J., Bretcanu O., Roether J.A., Boccaccini A.R., Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds, Biomedical Materials, 4(2009), 1-9
  • 429. Jansen J.A., Recum A., Textured and porous materials, Biomaterials Science: An Introduction to materials in Medicine, Elsevier Science &Technology Books, 2002, 218-224
  • 430. Smart J.D., Bioadhesion. Encyclopedia of Biomalerials and Biomedica Engineering ed. by Marcel Dekker, New York 2004, 62-67
  • 431. Ratner B.D., Schoen F.J., Hoffman A.S., Lemons J.E., Biomaterials Science: An Introduction to materials in Medicine, Surface properties and surface characterization of materials, Elsevier Science &Technology Books, 2002, 40-62
  • 432. Wilson C.J., Clegg R.E., Leaversly D.J., Pearcy M.J., Modification of Biomaterials-cell interaction by adsorbed proteins, Review, Tissue Engineering, 11, 1-2(2005), 1-18
  • 433. Gorna K., Gogolewski S., In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ε-caprolactone and Pluronics® with various hydrophilicities, Polymer Degradation and Stability, 75, 1(2002), 113-122
  • 434. Chen T.-K., Tien Y.-I., Wei K.-H., Synthesis and characterization of novel segmented polyurethane/clay nanocomposites, Polymer, 41, 4(2000), 1345-1353
  • 435. Wang G., Zhang C., Guo X., Ren Z., FTIR and molecular mechanics studies of H-bonds in aliphatic polyurethane and polyamide-66 model molecules, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 2(2008), 407-412
  • 436. Mishra A.K., Chattopadhyay D.K., Sreedhar B., Raju K.V.S.N., FTIR and XPS Studies of Polyurethane-Urea-Imide Coatings, Progress in Organic Coating, 55(2006), 231-243
  • 437. McCarthy S.J., Meijs G.F., Mitchell N., Gunatillake P.A., Brandwood GHA, Schindhelm K., In-vivo degradation of polyurethanes: transmission-FTIR microscopic characterization of polyurethanes sectioned by cryomicrotomy, Biomaterials, 18, 21(1997), 1387-1409
  • 438. Irusta L., Fernandez-Berridi M.J., Aromatic poly(ester-urethanes): effect of the polyol molecular weight on the photochemical behaviour, Polymer, 41, 9(2000), 3297-3302
  • 439. Tocha E., Janik H., Debowski M., Vancso G.J., Morphology of polyurethanes revisited by complementary AFM and TEM. J. Macromol. Sci.-Phys., B41(2002), 1291-304
  • 440. Ryszkowska J., Bil M., Zastosowanie technik analizy obrazu do ilościowej oceny przebiegu degradacji poliuretanów biomedycznych, Inżynieria Biomateriałów, 34(2004), 18-21
  • 441. Sun Y.-S., Jeng U.-S., Huang Y.-S., Liang K.S., Lin T.-L., Tsao C.-S., Complementary SAXS and SANS for structural characteristics of a polyurethethane elastomer of low hard-segment content, Physica B: Condensed Matter, 385-386, Part 1, 15(2006), 650-652
  • 442. Eceiza A., Larraňaga M., Caba K., Kortaberria G., Marieta C., Corcuera M.A., Mondragon I., Structure-Property Relationships of Thermoplastic Polyurethane Elastomers Based on Polycarbonate Diols, Journal of Applied Polymer Science, 108(2008), 3092-3103
  • 443. Harbers G.M., Grainer D.W., Cell-Material Interaction: Fundamental Design issues for Tissue Engineering and Clinical Consideralion, The Biomedical Engineering Series, Taylor & Francis Group, 2002
  • 444. Baxter L.C., Frauchiger V., Textor M., Gwynn I., Richards R.G., Fibroplast and osteoblast adhesion and morphology on calcium phosphate surface, European Cells and Materials, 12(2000), 1-16
  • 445. Gruin I., Novel approach to structure-property investigations of segmented polyurethane elastomers, their synthesis and industrial usefulness, Advances in Urethane, Science and Technology 11(1992), 217-249
  • 446. Gruin I., Piotrowska H., Ryszkowska J,. Lubas W., Markiewicz B., Sposób wytwarzania nowych polinitrylouretanomoczników i polinitrylomoczników, PL148671, 1990
  • 447. Gruin I., Piotrowska H., Markiewicz B., Ryszkowska J., Lubas W., Mońka T., Kompozycja do wytwarzania polinitrylouretanomoczników i polimoczników, PL150154, 1991
  • 448. Robert C.W., Melvin J.A., CRC Handbook of Data on organic compounds, 1(1985), 465
  • 449. Hughes E.W., The crystal structure of dicyandiamide, J. Am. Chem. SOC., 62(1940), 1258-1267
  • 450. Zhang J.-B., Tan Z.-C., Meng S.-H., Li S.-H., Zhang L.-M., Heat capacity and thermal decomposition of dicyandiamide, Thermochimica Acta, 307, 1(1997), 11-15
  • 451. Hong S.-G., Wu C.-S., DSC and FTIR analysis of the curing behaviors of epoxy/DICY/solvent open systems, Thermochimica Acta, 316, 2(1998), 167-175
  • 452. Gruin I., Ryszkowska J., Boczkowska A., Markiewicz B., Zależność właściwości makroskopowych od budowy lanych elastomerów nitrylouretanowo-mocznikowych, Polimery 39(1994), 226-231
  • 453. Gruin I., Ryszkowska J., Boczkowska A., Markiewicz B., Elastomery nitrylomocznikowouretanowe modyfikowane pochodną aminową, Polimery, 41(1996), 350-358
  • 454. Lubas W., Gruin I., Produkcja części maszyn z elastomerów poliuretanowych, Polimery 32(1987), 484-489
  • 455. Ryszkowska J., Fabianowski W., Bil M., Jurczyk M., Stramowska M., Zależności pomiędzy parametrami procesu wytwarzania a strukturą i właściwościami poliuretanomoczników, Materiały polimerowe, Pomerania-Plast 2-4 czerwca 2004, Szczecin-Miedzyzdroje, Materiały konferencyjne, 218-220
  • 456. Ryszkowska J., Jurczyk-Kowalska M., Zawadzak E., Bil M., Jędrzejczyk M., Properties of hybrid polyurea-nitryle-urethanes, E-MRS 2005 Fall Meeting, 5-9 September, Warsaw, 120
  • 457. Ryszkowska J., Zawadzak E.A, Dulińska I., Kurzydłowski K.J., Applications of quantitative image analysis to the description of the morphology of hybrid polyureanitryleurethanes, E-MRS 2005 Fall Meeting, 5-9 September, Warsaw, 118
  • 458. Fabianowski W., Ryszkowska J., i in. Sprawozdanie z projektu badawczego 4T08E 096 24 pt: Modyfikacja dicyjanodiamidu stosowanego jako środek wydłużający do wytwarzania poliuretanomoczników o wysokiej odporności na zużycie ścierne
  • 459. Ryszkowska J., Pietrzak K., Właściwości poliuretanomoczników wytwarzanych metodą prepolimerową, Czasopismo Techniczne z. 3, (106), Mechanika, z. 1-M. Politechnika Krakowska, 2009, 295-299
  • 460. Pietrzak K., Ryszkowska J., Właściwości poliuretanomoczników wytwarzanych metodą prepolimerową z DCDA różnych dostawców, Materiały polimerowe '2010, Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, praca zbiorowa, pod redakcją T. Spychaj, S. Spychaj, Szczecin 2010, 495-498
  • 461. Ryszkowska J., Wasniewski B., Synthesis of Urea-Nitryle-Urethanes with Aid of Microwaves, Materials Science Forum, 587-588(2008), 582-586
  • 462. Ryszkowska J., Quantitative description of the microstructure of microwave cured ureanitrile-urethanes, Inżynieria Materiałowa, 4(2008), 208-210
  • 463. Hepburn C., Polyurethane Elastomers, Elsevier Science Publishers LTD, New York 1992
  • 464. Ryszkowska J. i in., Raport z projektu PBZ-KBN-095/T08/2003 pt: Polimery z dodatkiem nanonapełniaczy, zadania Wydziału Inżynierii Materiałowej
  • 465. Ryszkowska J., Zawadzak E., Poliuretany o wysokiej przeświecalności do zastosowań w optoelektronice, Technologia polimerów, stan obecny i perspektywy postępu, 28-29 września 2006, Łódź, 28
  • 466. Zawadzak E., Ryszkowska J., Modification of polyurethane matrix for nanocomposites production with addition of ceramic powder containing rare-earth elements, MATERIALS 2005, III International Materials Symposium, Aveiro, 20-23 March 2005, 89
  • 467. Ryszkowska J., Jurczyk M., Structure and properties of polyurethane nanocomposites modified by dibutyl phosphate boehmite, Materials Science-Poland, 26, 2(2008), 365-371
  • 468. Zawadzak E., Nanokompozyty poliuretanowe o cechach luminescencyjnych: otrzymywanie, struktura i właściwości, praca doktorska, Warszawa 2009
  • 469. Wirpsza Z., Poliuretany chemia, technologia, zastosowanie, WNT, Warszawa 1991
  • 470. Janik H.Z., Struktury nadcząsteczkowe i wybrane właściwości rozgałęzionych i usieciowanych poli(estrouretanów), poli(eterouretanów) i poli(uretanobiuretów) formowanych reaktywnie, Zeszyty Naukowe Politechniki Gdańskiej, 599, 2005
  • 471. Miller J.A., Lin S.-B., Hwang K.-K.-S., Wu K.-S., Gobson P.E., Cooper S.L., Properties of polyether-polyurethane block copolymers: effects of hard segment length distribution, Macromolecules, 18(1985), 32-44
  • 472. Abouzahr S.S., Wilkes G.L., Ophir Z., Processing, structure and properties of block copolymers, Polymer, 23(1982), 1077-1086
  • 473. Legge N.R., Holden G., Schroeder H.E., Thermoplastic Elastomers, Hanser Publisher, 1987
  • 474. Seymour R.W., Cooper S.L., Thermal Analysis of Polyurethane Block Polymers, Macromolecules, 6(1973), 48-53
  • 475. Goyert W., Hespe H., Thermoplastic polyurethane elastomers-properties and applications, Kunststoffe, 68(1978), 819-823
  • 476. Abouzahr S., Wilkers G.L., Structure property studies of polyester- and polyether-based MDI-BD segmented polyurethanes: Effect of one- vs. two-stage polymerization conditions, J. Appl. Polym. Sci., 29, 9(1984), 2695-2711
  • 477. Huang S.-L., Lai J.-Y., On the gas permeability of hydroxyl terminated polybutadiene based polyurethane membrane, J. Membrane Sci., 105(1995), 137-143
  • 478. Huang S.-L., Ruaan R.-C., Lai J.-Y.: Gas permeability of cupric ion containing HTPB based polyurethane membranes, J. Membrane Sci., 123(1997), 71-79
  • 479. Mallakpour S., Rafiemanzelat F., Preparation and properties of new copoly(amide-imide-ether-urethane)s based on bis(p-amido benzoic acid)-Ntrimellitylimido-L-leucine by two different polymerization methods, Polymer Bulletin, 58(2007), 339-350
  • 480. Sanchez-Aduar M.S., Papon E., Villenave J.J., Influence of the synthesis conditions on the properties of thermoplastic polyurethane elastomers, J. Appl. Polym. Sci., 76(2000), 1590-1595
  • 481. Tonelli C., Ajroldi G., Turturroc A., Marigo A., Synthesis methods of fluorinated polyurethanes 1, Effects on thermal and dynamic-mechanical behaviours, Polymer, 42(2001), 5589-5598
  • 482. Tonelli C., Ajroldib G., Marigo A., Mariga C., Turturroc A., Synthesis methods of fluorinated polyurethanes. 2. Effects on morphology and microstructure, Polymer, 42( 2001), 9705-9711
  • 483. Gedye R.N., Smith F.E., Westaway K., et al., The use of microwave ovens for rapid organic synthesis, Tetrahedron Lett., 27(1986), 279-282
  • 484. Loupy A. (ed.). Microwaves in Organic Synthesis, Wi1ey-VCH, Weinheim 2002
  • 485. Lu J.-M., Ji S.-J., Chen N.-Y., et al., Novel synthesis of polyimides of the third-order optical nonlinearities by microwave assistance, J. Appl. Polym. Sci., 87, 11(2003), 1739-1747
  • 486. Pielichowski J., Penczek R. Bogdal D., Wolf E., Gorczyk J., Microwave assisted synthesis of unsaturated polyester resins, Polimery, 49, 11-12(2004), 763-766
  • 487. Polaczek J., Pielichowski J., Pielichowski K., Tylek E., Dziki E., Nowa metoda syntezy poli(kwasu asparaginowego) w warunkach promieniowania mikrofalowego, Polimery, 50, 11-12(2005), 812-820
  • 488. Lu J.-M., Ji S.-J., Chen N.-Y., et al., Third-order nonlinear optical properties of polyureas and polyimide synthesized by microwave irradiation, J. Appl. Polym. Sci., 89, 10(2003), 2611-2617
  • 489. Loupy A., Petit A., Hamelin J., Texier-Boullet F., Jacquault P., Mathe D., New Solvent-Free Organic Synthesis Using Focused, Microwaves, Synthesis, 1998, 1213-1234
  • 490. Bogdal D., Prociak A., Microwave-Enhanced Polymer Chemistry and Technology, Blackwell Publishing, 2007
  • 491. Silinski B., Kuzmycz C., Gourdenne A., Synthesis under microwaves (2,45 GHz) of polyurethane polymers I: Model study from diisocyanate and polyether triol prepolymers, Eur. Polym. J., 23(1987), 273-277
  • 492. Jullien H., Valot H., Polyurethane curing by a pulsed be used effectively and easily for preparation of the semicrowave filed, Polymer, 26(1985), 506-510
  • 493. Mijovic J., Wijaya J., Review of cure of polymers and composites by microwave energy, Polym. Comp., 11(1990), 184-191
  • 494. Yeganeh H., Barikani M., Noei Khodabadi F., Synthesis and properties of novel thermoplastic poly(urethaneimide)s, Eur. Polym. J., 36(2000), 2207-2211
  • 495. Chen W.-P., Frisch K.C., Kenney D.J., Wong S.-W., Moore R., Effect of Soft Segment Molecular Weight and 3-Methyl Side Group on Microstructural Separation in Polyurethane Elastomers, J. Macrom. Sci., Part A, 29, 7(1992), 567-568
  • 496. Peng C.-H., Hwang C.-C., Wan J., Tsai J.-S., Chen S.-Y., Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method, Mater. Sci. Eng., B117, 1(2005), 27-36
  • 497. Kim H., Urban M.W., Microwave plasma reactions of imidazole in polyurethane elastomers surfaces - A spectroscopic study, Langmuir, 12(1996), 1051-1055
  • 498. Liu X.Q., Wang Y.S., Zhu J.H., Epoxy resin/polyurethane functionally graded material prepared by microwave irradiation, J. Appl. Polym. Sci., 94(2004), 994-999
  • 499. Yeganeh H., Moslem Mansour Lakouraj M.M., Sadegh J., Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(ε-caprolactone) and poly-(ethylene glycol), S. European Polymer Journal, 41(2005), 2370-2379
  • 500. Prociak A., Ryszkowska J. i in., Raport z projektu badawczego 3T08E/045271 pt: Zastosowanie promieniowania mikrofalowego w procesie otrzymywania nowych materiałów poliuretanowych o różnej budowie chemicznej
  • 501. Khan I., Smith N., Jones E., Finch D., Cameron R., Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation, Biomaterials, 26(2005), 633-643
  • 502. Burel F., Feldman A., Bunel C., Hydrogenated hydroxyterminated polyisoprene (HHTPI) based urethane network:network properties, Polymer, 46(2005), 483-489
  • 503. Krakovsky I., Pleštil J., Baldrian J., Wübbenhorst M., Structure of inhomogeneous polymer networks prepared from telechelic polybutadiene, Polymer, 43(2002), 4989-4996
  • 504. Oprea S., Oprea V., Mechanical behavior during different weathering tests of the polyurethane elastomers films, Euro. Polym. J., 38(2002), 1205-1210
  • 505. Wang L., Wei Y., Effect of soft segment length on properties of fluorinated polyurethanes, Colloids Surf B: Biointerf., 41(2005), 249-255
  • 505. Spirkova M., Polyurethane elastomers made from linear polybutadiene diols, J. Appl. Polym. Sci., 85(2002), 84-91
  • 507. Cohn D., Aronhime M., Stern T., Synthesis and derivatization of polybutadiene containing poly(ether urethane amide)s, Polymer, 41(2000), 6519-6526
  • 508. Geceler K.E., Rosenberg E., Functional Nanomaterials, American Scientific Publishers, North Lewis Way Stevenson Ranch, 2006
  • 509. Gogotsi Y., Nanomaterials Handbook, CRC Taylor &Francis, New York 2006
  • 510. Gupta R.K., Kennel E., Kim K.-J., Polymer nanocomposites Handbook, CRC Press, Taylor & Francis, New York 2008
  • 511. Ajayan P.M., Schadler K.L., Braun P.V., Nanocomposites Science and Technology, Wiley-VCH Verlag, Weinheim 2003
  • 512. Nicolais L., Carontenuto G., Metal-Polymer nanocomposites, John Wiley and Sons, New York 2005
  • 513. Mai Y.-W., Yu Z.-Z., Polymer nanocomposites, CRC Press. Boca Raton 2006
  • 514. Schulz M.J., Kelkar A.D., Sundaresan M.J., Nanoengineering of Structural Functional and Smart Materials, CRC Taylor & Francis, New York
  • 515. Ijima S., Helical microtubules of graphitic carbon, Nature, 354(1991), 56-58
  • 516. Thostenson E., Ren Z., Chou T.-W., Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci, Technol., 61(2001), 1899-1912
  • 517. Thess A., i in., Crystalline ropes of metallic carbon nanotubes, Science, 273(1996), 483
  • 518. Alexandre M., Dubois P., Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. Reports, 28, 1-2(2000), 1-63
  • 519. Singhal R., Capracotta M., Martin J., Khan S., Fedkiwransport P., Properties of Hectorite Based Nanocomposite Single-ion Conductors, J. Power Sources, 128, 2(2004), 247-255
  • 520. Tjong S.-C., Meng Y.-Z., Xu Y., Structure and properties of polyamide 6/vermiculite nanocomposites prepared by direct melt compounding, J. Polym. Sci. B Polymer Physics, 40(2002), 2860
  • 521. Spychaj T., i in., Modyfikowane bentonity (montmorylonity) jako podstawa rozwoju nanomateriałów polimerowych w kraju, Inżynieria Materiałowa, 6(2006), 1296-1302
  • 522. Nalwa H.S., Handbook of organic-inorganic hybrid materials and nanocomposites. vol. 2: Nanocomposites, American Scientific Publishers, 63, 109(2003), 151-177
  • 523. Kyokane J., Ishimoto H., Yugen H., Hirai T., Ueda T., Yoshino K., Electro-striction effect of polyurethane elastomer (PUE) and its application to actuators, Synthetic Metals 103, 1-3(1999), 2366-2367
  • 524. Ando N., Manabu T., Electrical resistivity of the polymer layers with polymer grafted carbon blacks, Thin Solid Films 334, 1-2(1998), 182-186
  • 525. Xiao-Lin X., et al., Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization, Polymer, 45, 19(2004), 6665-6673
  • 526. Ng C.-B., Schadler L.S., Siegel R.W., Synthesis and mechanical properties of TiO2-epoxy nanocomposites, Nanostructured Materials, 12, 1-4(1999), 507-510
  • 527. Xie S.-H., Zhu B.-K., Wei X.-Z., Xu Z.-K., Xu Y.-Y., Polyimide/BaTiO3 composites with controllable dielectric properties, Composites, A36(8)(2005), 1152-1157
  • 528. Ash B.J., Schadler L.S., Siegel R.W., Glass transition behaviour, Mat. Lett., 55, 1-2(2002), 83-87
  • 529. Kuan H.-C., Ma C.-C.-M., Chang W.-P., Yuen S.-M., Wu H.-H., Lee T.-M., Comp. Sci.Tech., 65(2005), 1703-1710
  • 530. Kwiatkowska M., Broza G., Męcfel J., Sterzyński T., Rosłaniec Z., Otrzymywanie i charakterystyka nanokompozytów polimerowych PBT/nanorurki węglowe, Kompozyty, 5, 2(2005), 99-104
  • 531. Ryszkowska J., Jurczyk-Kowalska M., Szymborski T., Kurzydłowski K.J., Physica E: Low-dimensional Systems and Nanostructures, 39(2007), 124-127
  • 532. Ryszkowska J. i in., Raport z projektu badawczego nr 3T08A 07428 pt: Metody stereologicznej analizy ilościowej w kształtowaniu struktury tworzyw poliuretanowych
  • 533. Ryszkowska J., Quantitative description of the microstructure of polyurethane nanocomposites with YAG including Tb3+, Materials Sci. Eng. B, Solid-state materials for advanced technology, 146(2008), 54-58
  • 534. Ryszkowska J., Zawadzak E., Selection of nanofiller dispersion method and properties evaluation of polurethane/ZrO2:Eu composites for optoelectronic applications, Materials Science Forum III, 587-588(2008), 448-452
  • 535. Ryszkowska J., Zawadzak E., Łojkowski W., Opalińska A., Kurzydłowski K.J., Structure and properties of polyurethane nanocomposites with zirconium oxide including Eu3+, Materials Sci. Eng., C27(2007), 994-997
  • 536. Ryszkowska J., Zawadzak E., Hreniak D., Stręk W., Kurzydłowski K.J., Structure and properties of polyurethane/YAG:Tb3+, Polimery, 52(2007), 20-24
  • 537. Ryszkowska J., Zawadzak E., Łojkowski W., Opalińska A., Kurzydłowski K.J., The influence of ZrO2 containing 10% Eu 3+ on the polyurethane hard domain structure in the nanocomposites with luminescence properties, Solid State Phenomena, 128(2007), 151-156
  • 538. Zawadzak E., Ryszkowska J., Struktura i właściwości nanokompozytów poliuretanowych otrzymywanych w wyniku zmiennego sposobu wprowadzania tlenku cyrkonu modyfikowanego metalami ziem rzadkich, Czasopismo Techniczne Wydawnictwo Politechniki Krakowskiej, 6(2006), 527-530
  • 539. Wong W.-Y, Poon S.-Y., Shi J.-X., Cheah K.-W., Optical Properties, and Photoluminescence of Organometallic Acetylide Polymers of Platinum Functionalized with Si and Ge-Bridged Bis(3,6-Diethynyl-9-butylcarbazole), Synthesis, Chem. Mater. Sci., 17, 1(2007), 189-200
  • 540. Guo L., Yang S., Yang C., Yu P., Wang J., Ge W., Wong G.-K.-L., Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties, Appl. Phys. Lett., 76(2000), 2901-2903
  • 541. Dabbousi B.O., Bawendi M.G., Onitsuka O., Rubner M.F., Electroluminescence from CdSe quantum-dot/polymer composites, Appl. Phys. Lett., 66(1995), 1316-1318
  • 542. Huang J., Yang Y., Xue S., Yang B., Liu S., Shen J., Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks, Appl. Phys. Lett., 70(1997), 2335-2337
  • 543. Furukawa K., Fujino M., Matsumoto N., Optical properties of silicon network polymers, Macromolecules, 23, 14(1990), 3423-3426
  • 544. Zhang J., Wang B., Ju X., Liu T., Hu T., New observations on the optical properties of PPV//TiO2 nanocomposites, Polymer, 42, 8(2001), 3697-3702
  • 545. Wong K.S., Sun T., Liu X.-L., Pei J., Huang W., Optical properties and time-resolved photoluminescence of conjugated polymers with europium complex side chain as an emitter, Thin Solid Films, 417, 1-2(2002), 85-89
  • 546. Xiao X., Xu S., Yan B., Journal of Alloys and Compounds, 429(2007), 255-259
  • 547. Dresselhaus M.S., Dresselhaus G., Avouris Ph. (Eds.), Carbon Nanotubes, Topics Appl. Phys., 80(2001), 1-9
  • 548. Vaia R.A., Wagner D.H., Framework for nanocomposites, Matter. Today, 7, 11 (2004), 33-37
  • 549. Curtin W.A., Sheldon B., CNT-reinforced ceramics and metals, Mater. Today, 7, 11(2004), 44-49
  • 550. Gojny F.H., Wichmann M.H.G., Köpke U., Fiedler B., Schulte K., Carbon Nanotube-reinforced epoxy-composites - Enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol., 64(2004), 2363-2371
  • 551. Ruan S.-L., Gao P., Yang X.-G., Yu T.-X., Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes, Polymer, 44(2003), 5643-5654
  • 552. Stephan C., Nguyen T.-P., Lamy de la Chapelle M., Lefrant S., Journet C., Bernier P., Synthetic Metals, 108(2000), 139-149
  • 553. Philip B., Xie J., Abraham J.K, Yaradan V.K, Characterization of singlewalled carbon nanotubes-PMMA composites, Polymer Bulletin, 53(2005), 127-138
  • 554. Meincke O., Kaempfer D., Weickmanna H., Friedrich C., Vathauer M., Warth H., Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene, Polymer, 45(2004), 739-748
  • 555. Potschke P., Bhattacharyya A., Janke A., Goering H., Mell mixing of polycarbonate/multiwall carbon nanotubes composites, Compos. Interf., 10, 4-5(2003), 389-404
  • 556. Koerner H., Liu W., Alexander M., Mirau P., Dowty H., Vaia R., Deformation-morphology correlations in electrically conductive carbon nanotube-thermoplastic polyurethane nanocomposites, Polymer, 46(2005), 4405-4420
  • 557. Foster J., Singamaneni S., Kattumenu R., Bliznyuk V., Dispersion and Phase Separation of Carbon Nanotubes in Ultra Thin Polymer Films, J. Coll. Int. Sci., 287(2005), 167-172
  • 558. Itkis E., Hu H., Love J., Bekyarova E., Haddon R.C., Purity Evaluation of As-Prepared Single- Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy, Nano Lett., 4, 3(2004)
  • 559. Kuan H.-C., Ma C.-C.M., Chang W.-P., Yuen S.-M., Wu H.-H., Lee T.-M., Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/water-borne polyurethane nanocomposite, Compos. Sci. Technol., 65(2005), 1703-1710
  • 560. Cho J.-W., Kim J.-W., Jung Y.-C., Goo N.-S., Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes, Macromol. Rapid Commun., 26(2005), 412-416
  • 561. Park K.-Y, Lee S.-E., Kim C.-G., Han J.-H., Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures, Comp. Sci. Technol., 66(2006), 576-584
  • 562. Woźniak M.J., Ryszkowska J., Szymborski T., Chen G., Tateishi T., Kurzydłowski K.J., Application of phase imaging and force modulation mode for description of dispersion of carbon nanotubes in polyol matrix, Materials Science - Poland, 26, 2(2008), 245-253
  • 563. Ryszkowska J., Jurczyk-Kowalska M., Szymborski T., Kurzydłowski K.J., Dispersion of carbon nanotubes in polyurethane matrix, Physica E: Low-dimensional Systems and Nanostructures, 39(2007), 124-127
  • 564. Zhu Z.-K., Yang Y., Yin J., Qi Z.-N., Preparation and properties of organosoluble polyimide//silica hybrid materials by sol-gel process, J. Appl. Polym. Sci., 73(1999), 2977-2984
  • 565. Dekkers M.E.J., Heikens D., The effect of interfacial adhesion on the tensile behavior of polystyrene-glass-bead composites, J. Appl. Polym. Sci., 28(1983), 3809-3815
  • 566. Fu S.-Y., Lauke B.J., Characterization of tensile behaviour of hybrid short glass fibre calcite particle ABS composites, Composite Part A, 29A(1998), 575-583
  • 567. Fu S.-Y., Lauke B.J., Analysis of mechanical properties of injection molded short glass fibre (SGF)/calcite/ABS composites, Mater. Sci. Technol., 13(1997), 389-396
  • 568. Eirich F.R., Some mechanical and molecular aspects of the performance of composites, J. Appl. Polym. Sci., Appl. Polym. Symp., 39(1984), 93-102
  • 569. Radford K.C., The mechanical properties of an epoxy resin with a second phase dispersion, J. Mater. Sci., 6(1971), 1286-1291
  • 570. Spanoudakis J., Young R.J, Crack propagation in a glass particle filled epoxy-resin. 1. Effect of particle-volume fraction and size, J. Mater. Sci., 19(1984), 473-486
  • 571. Amdouni N., Sautereau H., Gerard J.F., Epoxy composites based on glass-beats. 2. Mechanical-properties, J. Appl. Polym. Sci., 46(1992), 1723-1735
  • 572. Wang M., Berry C., Braden M., Bonfield W., Young's and shear moduli of ceramic particle filled polyethylene, J. Mater. Sci. Mater. Med., 9(1998), 621-624
  • 573. Hsueh C.H., Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites, J. Am. Ceram. Soc., 72(1987), 344-347
  • 574. Young R.J., Beaumont P.W.R., Effect of composition upon fracture of silica particle-filled epoxy-resin composites, J. Mater. Sci., 12(1977), 684-692
  • 575. Pukanszky B., Voros G., Mechanism of interfacial interactions in parliculate filled composites, Compos. Interf., 1(1993), 411-127
  • 576. Nakamura Y., Yamaguchi M., Okubo M., Matsumoto T., Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica, J. Appl. Polym. Sci., 45(1992), 1281-129
  • 577. Reynaud E., Jouen T., Gauthier C., Vigier G., Varlet J., Nanofillers in polymeric matrix: a study on silica reinforced PA6, Polymer, 42(2001), 8759-8768
  • 578. Ou Y., Yang F., Yu Z.-Z., A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization, J. Polym. Sci., Part B Polym. Phys., 36(1998), 789-795
  • 579. Liang J.-Z., Li R.-K.-Y., Tjong S.-C., Tensile fracture behaviour and morphological analysis of glass bead filled low density polyethylene composites, Plast. Rubber Compos. Process. Appl., 26(1997), 278-282
  • 580. Chacko V.P., Farris R.J., Karasz F.E., Dynamic mechanical spectrometry of nylon-12, J. Appl. Polym. Sci., 28(1983), 2701-2705
  • 581. Tjong S.-C., Xu S.-A., Ternary polymer composites: PA6.ć/maleated SEBS/glass beads, J. Appl. Polym. Sci., 81(2001), 3231-3237
  • 582. Danusso F., Tieghi G., Strength versus composition of rigid matrix particulate composites, Polymer, 27(1986), 1385-1390
  • 583. Levita G., Marchetti A., Lazzeri A., Fracture of ultrafine calcium carbonate/polypropylene composites, Polym. Compos., 10(1989), 39-43
  • 584. Nicolais L., Narkis M., Stress-strain behavior of styrene-acrylonitrile/glass bead composites in the glassy region, Polym. Eng. Sci., 11(1971), 194-199
  • 585. Nicolais L., Nicodemo L., Effect of particles shape on tensile properties of glassy thermoplastic composites, Int. J. Polym. Mater., 3(1974), 229
  • 586. Xie X.-L., Zhou X.-P., Mai Y.-W., Dispersion and alignment of carbon nanotubes in polymer matrix: a review, Mater. Sci. Eng., R49(2005), 89-112
  • 587. Zhang Q., Tian M., Wu Y., Lin G., Zhang L., Effect of particle size on the properties of Mg(OH)2-filled rubber composites, J. Appl. Polym. Sci., 94(2004), 2341-2346
  • 588. Lazzeri A., Thio Y.S., Cohen R.E., Volume strain measurements on CaCO3/polypropylene particulate composites: the effect of particle size, J. Appl. Polym. Sci., 91(2004), 925-935
  • 589. Suprapakorn N., Dhamrongvaraporn S.S., Effect of CaCO3 on the mechanical and rheological properties of a ring-opening phenolic resin: polybenzolazine, Polym. Compos., 19(1998), 126-132
  • 590. Singh R.P., Zhang M., Chan D., Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction, J. Mater. Sci., 37(2002), 781-788
  • 591. Lange F.F., Radford K.C., Fracture energy of an epoxy composite system, J. Mater. Sci., 6(1971), 1197-1203
  • 592. Mishra S., Sonawane S.H., Singh R.P., Studies on characterization of nano CaCO3 prepared by the in situ deposition technique and its application in PP-nano CaCO3 composites, J. Polym. Sci., Part B, Polym. Phys., 43(2005), 107-113
  • 593. Douce J., Boilot J.P., Biteau J., Scodellaro L., Jimenez A., Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings, Thin Solid Films, 466(2004), 114-122
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0056-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.