PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault diagnosis of dynamical systems using evolutionary algorithms

Identyfikatory
Warianty tytułu
Konferencja
Evolutionary Computation and Global Optimization 2006 / National Conference (9 ; 31.05-2.06.2006 ; Murzasichle, Poland)
Języki publikacji
EN
Abstrakty
EN
Challenging and complex design problems arise regularly in modern fault diagnosis systems. Unfortunately, the classical analytical techniques cannot often provide acceptable solutions to such difficult tasks. This explains why soft computing techniques such as evolutionary algorithms are becoming more and more popular in industrial applications of fault diagnosis. The main objective of this paper is to present recent developments regarding the application of evolutionary algorithms in fault diagnosis. The main attention is on the techniques that integrate the classical and evolutionary approaches. A selected example, dealing with the DAMADICS benchmark, is carefully described in the paper.
Rocznik
Tom
Strony
413--420
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Bäck T., Hammel U. and Schwefel H.P. (1997): Evolutionary computation: comments on the history and current state. - IEEE Trans. Evolutionary Computation, Vol. 1, No. 1, pp. 3-17.
  • [2] Chen J., Patton R.J. and Liu G.P. (1996): Optimal residual design for fault diagnosis using multi-objective optimization and genetic algorithms. - Int. J. Syst. Sci., Vol. 27, No. 6, pp. 567-576.
  • [3] Chen Z., He Y., Chu F. and Huang J. (2003): Evolutionary strategy for classification problems and its application in fault diagnosis. - Engineering Applications of Artificial Intelligence, Vol. 16, No. 1, pp. 31-38.
  • [4] DAMADICS (2004): Website of DAMADICS: Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems. http://diag.mchtr.pw.edu.pl/damadics/
  • [5] Chen J. and Patton R.J. (1999): Robust Model-based Fault Diagnosis for Dynamic Systems. - London: Kluwer Academic Publishers.
  • [6] Chryssolouris G., Lee M. and Ramsey A. (1996): Confidence interval prediction for neural network models. - IEEE Trans. Neural Networks, Vol. 7, No. 1, pp. 229-232.
  • [7] Fleming P.J. and Purshouse (2002): Evolutionary algorithms in control systems engineering: a survey. - Control Eng. Practice, Vol. 10, No. 11, pp. 1223-1241.
  • [8] Fogel, L.J., Owens, A.J. and Walsh, M.J. (1999): An overview of evolutionary programming. - In: Evolutionary Algorithms (De Jong K., Vose M.D. and Whitley L.D., Eds.) (Heidelberg: Springer-Verlag).
  • [9] Frank P.M. and Köppen-Seliger (1997): New developments using AI in fault diagnosis. - Engineering Applications of Artificial Intelligence, Vol. 10, No. 1, 3-14.
  • [10] Galar, R. (1989): Evolutionary search with soft selection. - Bio. Cyber., Vol. 51, pp. 124-141.
  • [11] Holland, J.H. (1975): Adaptation in natural and artificial systems. - Ann Arbor, MI: The University of Michigan Press.
  • [12] Korbicz J., Kościelny J.M., Kowalczuk Z. and Cholewa W. (Eds.) (2004): Fault Diagnosis. Models, Artificial Intelligence, Applications. - Berlin: Springer-Verlag.
  • [13] Kowalczuk Z., Suchomski P. and Bialaszewski T. (1999): Evolutionary muti-objective pareto optimization of diagnostic state observers. - Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 3, pp. 689-709.
  • [14] Koza, J.R. (1992): Genetic Programming: On the Programming of Computers by Means of Natural Selection. - Cambridge: The MIT Press.
  • [15] Marcu T. (1997): A multiobjective evolutionary approach to pattern recognition for robust diagnosis of process faults. - Proc. Symp. Fault detection, supervision and safety for technical processes, SAFEPROCESS, Hull, UK, pp. 1183-1188.
  • [16] Metenidis M.F., Witczak M. and Korbicz J. (2004): A novel genetic programming approach to non-linear system modelling: application to the DAMADICS benchmark problem. - Engineering Applications of Artificial Intelligence, Vol. 17, No. 4, 363-370.
  • [17] Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs. - Berlin: Springer
  • [18] Miller J.A., Potter W.D., Gandham R.V. and Lapena C.N. (1993): An evaluation of local improvement operators for genetic algorithms. - IEEE Trans. Sys., Man and Cyber., Vol. 23, No. 5, pp. 1340-1351.
  • [19] Porter L.L. and Passino K.M. (1995): Genetic adaptive observers. - Engineering Applications of Artificial Intelligence, Vol. 8, No. 3, pp. 261-269.
  • [20] Ruano A.E. (Ed.) (2005): Intelligent Control Systems using Computational Intelligence Techniques. - London: The IEE Press.
  • [21] Sun R., Tsung F. and Qu L. (2004): Combining bootstrap and genetic programming for feature discovery in diesel engine diagnosis. - Int. J. Industrial Eng., Vol. 11, No. 3, pp. 273-281.
  • [22] Walter E. and Pronzato L. (1997): Identification of Parametric Models from Experimental Data. - Berlin: Springer.
  • [23] Witczak M., Obuchowicz A. and Korbicz J. (2002): Genetic programming based approaches to identification and fault diagnosis of non-linear dynamic systems. - Int. J. Contr., Vol. 75, No. 13, pp. 1012-1031.
  • [24] Witczak M. (2003): Identification and Fault Detection of Non-linear Dynamic Systems. - Zielona Góra: University of Zielona Góra Press.
  • [25] Witczak M. and Korbicz J. (2004): Observers and genetic programming in the indentification and fault diagnosis of non-linear dynamic systems. [In:] Fault Diagnosis. Models, Artificial Intelligence, Applications (Korbicz J., Kościelny J.M., Kowalczuk Z. and Cholewa W., Eds.). - Berlin: Springer-Verlag.
  • [26] Zolghardi A., Henry D. and Monision M. (1996): Design of non-linear observers for fault diagnosis. A case study. - Control. Eng. Practice. Vol. 4, No. 11, pp. 1535-1544.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0052-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.