PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular inference network experimental approximation

Identyfikatory
Warianty tytułu
Konferencja
Evolutionary Computation and Global Optimization 2006 / National Conference (9 ; 31.05-2.06.2006 ; Murzasichle, Poland)
Języki publikacji
EN
Abstrakty
EN
Implementation of the inference system based on DNA chains molecular computing is a new paradigm to perform calculations using nanotechnology means. This work presents a new approach to the implementation of inference engines based on DNA. It introduces the subject of inference methods designed to be used with molecular expert systems. The main part of this work includes the concept of the inference engine based on a rule tree specially customized to allow implementation using deoxyribonucleic acid chains. The approach presented allows the drawing of inferences based on a variable number of predicates using the most reliable techniques employed in standard operations of genetic engineering. In this approach cross cells are bases of multidimensional DNA structures. An experiment was conducted to confirm the capabilities of the implementation suggested. In addition, laboratory evaluation results and perspectives for the further use of the proposed architectural approach are discussed.
Rocznik
Tom
Strony
405--412
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
Bibliografia
  • [1] L.M. Adleman. Molecular comp. of solutions to combinatorial problems. Science, 266, 1994:1021-1024.
  • [2] L.M. Adleman. On the potential of molecular computing - reply. Science, 268(5210), 1995:483-484.
  • [3] L.M. Adleman. Computing with DNA. Scientific American, 279, 1998.
  • [4] M. Amos and P.E. Dunne. DNA simulation of boolean circuits. Technical Report CTAG-97009, Department of Computer Science, University of Liverpool, UK, 1997.
  • [5] The Bibliography of Molecular Computation and Splicing Systems, Internet.
  • [6] R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov and L.M. Adleman. Solution of a satisfability problem on a gel-based DNA computer. In DNA Computing, 6th International Workshop on DNA-Based Computers, Leiden, The Netherlands, 2000.
  • [7] T.H. LaBean and H. Yan and J. Kopatsch and F. Liu and E. Winfree and H.J. Reif and N.C. Seeman. The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc., 122, 2000.
  • [8] F. Guarnieri, M. Fliss and C. Bancroft. Making DNA add. Science, 273, 1996.
  • [9] V. Gupta, S. Parthasarathy and M.J. Zaki. Arithmetic and logic operations with DNA. In Proceedings of the 3rd DIMACS Workshop on DNA Based Computers, held at the University of Pennsylvania, 1997.
  • [10] K. Komiya, K. Sakamoto, H. Gouzo, S. Yokoyama, M. Arita, A. Nishikawa and M. Hagiya. Successive state transitions with i/o interface by molecules. LNCS 2054, 17-26.
  • [11] T. Maniatis, E.F. Fritsch and J. Sambrook. Molecular cloning: a Lab. Manual. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY, 1982.
  • [12] J.J. Mulawka. Expert Systems (in Polish). Warsaw: Wydawnictwa Naukowo-Techniczne (WNT), 1999.
  • [13] J.J. Mulawka, P. Borsuk and P. Weglenski. Implementation of the inference engine based on molecular computing technique. In Proc. IEEE Int. Conf. on Evolutionary Computation, Anchorage, USA, 1998.
  • [14] M. Ogihara and A. Ray. Simulating boolean circuits on a DNA computer. Technical Report TR 631, University of Rochester. Computer Science Department, August 1996.
  • [15] J.S. Oliver. Computation with DNA-matrix multiplication. In Proceedings of the Second Annual Meeting on DNA Based Computers, held at Princeton University, 1996.
  • [16] X. Li, X. Yang, J. Qi and N.C. Seeman. Antiparallel DNA Double Crossover Molecules as Components for Nanoconstruction. Journal of the Am. Chemical Society, 118, 1996.
  • [17] L.M. Smith, R.M. Corn, A.E. Condon, M.G. Lagally, A.G. Frutos, Q. Liu and A.J. Thiel. A surface-based approach to DNA computation. Journal of Computational Biology, 5, 1998.
  • [18] P.W.K. Rothemund. Theory and experiments in algorithmic self-assembly. Dissertation for PhD degree, University of Southern California, 2001.
  • [19] P. Sa-Ardyen, N. Jonoska, N.S. Seeman. Self-assembling DNA Graphs. LNCS 2568, 1-9.
  • [20] G. Tomczuk, P. Wąsiewicz. Molecular binary trees. In Proc. of the VI Polish Conference on Evolutionary Algorithms and Global Optimization, Korbielow, 249-254.
  • [21] H. Uejima, M. Hagiya, S. Kobayashi. Horn Clause Computation by Self-Assembly of DNA Molecules. LNCS 2340, 308-320.
  • [22] P. Wąsiewicz, R. Rudnicki, J.J. Mulawka and B. Lesyng. Adding numbers with DNA. In Proceedings 2000 IEEE International Conference on Systems, 2000.
  • [23] P. Wąsiewicz, A. Malinowski, R. Nowak, J.J Mulawka, P. Borsuk, P. Weglenski and A. Plucienniczak. DNA computing: Implementation of data flow logical operations. Future Generation Computer Systems, 17/4, 2001, 361-378.
  • [24] P. Wąsiewicz, G. Tomczuk, A. Plucienniczak. Molecular Neuron Network Experimental Approximation. In Proc. 7th WSEAS Int. Conf. Automatic Control, Modelling and Simul., Prague, Czech, 2005, 489-493.
  • [25] P. Wąsiewicz, A. Dydynski, J. Mulawka. Implementation of molecular neuron model on DNA strings. Polish-Czech-Hungarian Workshop, Warsaw, Poland, 2002.
  • [26] P. Wąsiewicz, A. Dydynski, G. Tomczuk, J.J. Mulawka, A. Plucienniczak. Molecular Neuron Realization. WSEAS Trans. Journal on Biology and Biomedicine, 1(1):73-75.
  • [27] P. Wąsiewicz, T. Janczak. J.J. Mulawka, A. Plucienniczak. The Inference Based on Molecular Computing. Int. Journal of Cybernetics and Systems 31/3, 2000:283-315.
  • [28] P. Wąsiewicz, J.J. Mulawka. Molecular Genetic Programming. Soft Computing, Springer-Verlag 5(2), 2001:106-113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0052-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.