PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The evolutionary heuristics applied to the analysis of multidimensional data

Identyfikatory
Warianty tytułu
Konferencja
Evolutionary Computation and Global Optimization 2006 / National Conference (9 ; 31.05-2.06.2006 ; Murzasichle, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper describes the pattern recognition system for analysis of multidimensional data, based on natural meta-heuristics. The system consists of tree modules: preprocessing, feature extraction and clustering. Feature extraction module is based on Molecular Dynamic (MD). In clustering are used two natural methods: Simulated Annealing (SA) and Taboo Search (TS). The system is used to analyze an evolving population of individuals equipped with 'genetic codes'. Clustering module extracts groups of data with similar genetic code named clusters and make of possible to observe their geographical localization. The feature extraction verifies the clustering and allows analyzing of clustering patterns, their shapes and the distances between them.
Rocznik
Tom
Strony
163--170
Opis fizyczny
Bibliogr. 13 poz., tab., rys.
Twórcy
  • University of Technology, Institute of Telecomputing, Cracow, Poland, anka@pk.edu.pl
Bibliografia
  • [1] Ismail, M.A., Kamel, M.S., Multidimensional data clustering utilizing hybrid search strategies, Pattern Recognition, Vol. 22, No. 1, pp 75-89, 1989
  • [2] Theodoris, S., Koutroumbas, K., Pattern Recognition, Academic Press, San Diego, London, Boston, 1998
  • [3] I. Sarafis, A.M.S. Zalzala and P. Trinder, A Genetic Rule-Based Data Clustering Toolkit, IEEE World Congress on Computational Intelligence, CEC02 Proceedings, pp. 1238-43, IEEE Press, 2002
  • [4] Handl, J. and Knowles, J. Multiobjective clustering and cluster validation, Yaochu Jin (editor) Multiobjective Machine Learning. Springer Series on Computational Intelligence, 2006
  • [5] Dzwinel, W., Błasiak, J., Method of particles in visual clustering of multi-dimensional and large data sets, Future generation Computer Systems 599, 1-15, 1999
  • [6] Dzwinel, W., Informatyczne problemy i perspektywy symulacji metodą cząstek,Wydawnictwa AGH, Rozprawy monografie, 50, 1996
  • [7] Siedlecki, W., Siedlecka, K., Sklansky, J., An overview of mapping techniques for exploratory pattern analysis, Pattern Recognition, Vol. 31, No. 5, pp. 411-429, 1998
  • [8] Ingber, L., Simulated annealing: Practice versus theory, J. Math. Comput. Modelling, 1993, 18(11), 29
  • [9] Al-Sultan, K.A., Tabu Search approach to the clustering problem, Pattern Recognition, Vol. 28, No. 9
  • [10] Battiti, R., Tecchiolli, G., Local Search with Memory: Benchmarking RTS, Operations Reserch Spectrum 1995
  • [11]Chopard, B., Droz, M., Cellular Automata Modeling of Physical Systems, Cambridge Univ. Press, London, 1998
  • [12] Jasińska-Suwada, A., Dzwinel, W., Evolution of population with limited resources by using genetic operators, V Krajowa Konferencja Algorytmy Ewolucyjne i Optymalizacja Globalna, Jastrzębia Góra 2001
  • [13] Jasińska-Suwada, A., Dzwinel, W., Pattern recognition methods in understanding of evolutionary systems, Proceedings of the Symposium on Methods of Artificial Intelligence AI-METH 2002, Gliwice 2002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0052-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.