PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of fuel composition on Solid Oxide Fuel Cell obtained by using the advanced mathematical model

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advanced mathematical model of Solid Oxide Fuel Cell (SOFC) is presented. The governing equations of the model are presented and described. Based on the model the influence of fuel composition on SOFC performance is shown. Hydrogen is used as the reference fuel.
Rocznik
Strony
179--185
Opis fizyczny
Bibliogr. 39 poz., tab., rys., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland, milewski@itc.pw.edu.pl
Bibliografia
  • [1] A. Lanzini, M. Santarelli, G. Orsello, Residential solid oxide fuel cell generator fuelled by ethanol: Cell, stack and system modelling with a preliminary experiment, Fuel Cells 10 (4) (2010) 654-675.
  • [2] F. Mueller, R. Gaynor, A. Auld, J. Brouwer, F. Jabbari, G. G.S. Samuelsen, Synergistic integration of a gas turbine and solid oxide fuel cell for improved transient capability, Journal of Power Sources 176 (1) (2008) 229-239.
  • [3] K. Colombo, V. Kharton, O. Bolland, Simulation of an oxygen membrane-based gas turbine power plant: Dynamic regimes with operational and material constraints, Energy and Fuels 24 (1) (2010) 590-608.
  • [4] B. Tarroja, F. Mueller, J. Maclay, J. Brouwer, Parametric thermodynamic analysis of a solid oxide fuel cell gas turbine system design space, Journal of Engineering for Gas Turbines and Power 132 (7) (2010) 072301.
  • [5] J.-H. Wee, Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources, Applied Energy doi:10.1016/j.apenergy.2011.05.043 (2011) Article in Press.
  • [6] W. Wu, J.-J. Luo, Nonlinear feedback control of a preheater-integrated molten carbonate fuel cell system, Journal of Process Control 20 (7) (2010) 860-868.
  • [7] L. G. C. J. Zhang, H., Performance analysis and multi-objective optimization of a new molten carbonate fuel cell system, International Journal of Hydrogen Energy 36 (6) (2011) 4015-4021.
  • [8] F. Al-Sulaiman, I. Dincer, F. Hamdullahpur, Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic rankine cycle, International Journal of Hydrogen Energy 35 (10) (2010) 5104-5113.
  • [9] J. Milewski, K. Świrski, M. Santarelli, P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling, 1st Edition, Springer-Verlag London Ltd., 2011.
  • [10] S. Kakac, A. Pramuanjaroenkij, X. Zhou, A review of numerical modeling of solid oxide fuel cells, International Journal of Hydrogen Energy 32 (7) (2007) 761-786.
  • [11] S. Hajimolana, M. Hussain, W. Daud, M. Soroush, A. Shamiri, Mathematical modeling of solid oxide fuel cells: A review, Renewable and Sustainable Energy Reviews 15 (4) (2011) 1893-1917.
  • [12] K. Wang, D. Hissel, M. Pera, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinen, A review on solid oxide fuel cell models, International Journal of Hydrogen Energy 36 (12) (2011) 7212-7228.
  • [13] H. Cao, Z. Deng, X. Li, J. Yang, Y. Qin, Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives, International Journal of Hydrogen Energy 35 (4) (2010) 1749-1758.
  • [14] H. Cao, X. Li, Z. Deng, J. Jiang, J. Yang, J. Li, Y. Qin, Dynamic modeling and experimental validation for the electrical coupling in a 5-cell solid oxide fuel cell stack in the perspective of thermal coupling, International Journal of Hydrogen Energy 36 (7) (2011) 4409-4418.
  • [15] K. Christman, M. Jensen, Solid oxide fuel cell performance with cross-flow roughness, Journal of Fuel Cell Science and Technology 8 (2) (2011) 024501.
  • [16] N. Kishor, S. Mohanty, Fuzzy modeling of fuel cell based on mutual information between variables, International Journal of Hydrogen Energy 35 (8) (2010) 3620-3631.
  • [17] N. Sisworahardjo, T. Yalcinoz, M. El-Sharkh, M. Alam, Neural network model of 100 w portable pem fuel cell and experimental verification, International Journal of Hydrogen Energy 35 (17) (2010) 9104-9109.
  • [18] J. Milewski, B. Deszczyński, K. Świrski, Artificial neural network as sofc model, in: Elsevier, Fuel Cells Science and Technology, no. 4, 2008, p. 1B.2.
  • [19] J. Milewski, M. Santarelli, K. Świrski, Modelling of solid oxide fuel cell behaviour by artificial neural network, in: Fundamentals and Development in Fuel Cells, Grenoble, France, 2008.
  • [20] J. Milewski, K. Świrski, M. Santarelli, P. Leone, Modelling of fuel composition influences on solid oxide fuel cell performance by artificial neural network, Archives of Thermodynamics 30 (4) (2009) 13-24.
  • [21] J. Milewski, K. Świrski, Modelling the SOFC behaviours by artificial neural network, International Journal of Hydrogen Energy 34 (13) (2009) 5546-5553.
  • [22] J. Milewski, K. Świrski, P. Leone, M. Santarelli, Modelling the influence of fuel composition on SOFC performance by artificial neural network, in: European Fuel Cell Technology & Applications - "Piero Lunghi Conference", no. EFC09-17007, 2009.
  • [23] J. Milewski, K. Świrski, Hybrid - artificial neural network as solid oxide fuel cell model, in: Hydrogen + Fuel Cell, 2009.
  • [24] Hyprotech Corporation, HYSYS. Plant Steady State Modelling (1998).
  • [25] J. Milewski, A. Miller, Influences of the type and thickness of electrolyte on solid oxide fuel cell hybrid system performance, Journal of Fuel Cell Science and Technology 3 (4) (2006) 396-402.
  • [26] Y. Jiang, A. V. Virkar, Fuel composition and diluent effect on gas transport and performance of anode-supported sofcs, Journal of The Electrochemical Society 150 (7) (2003) A942-A951.
  • [27] F. Zhao, A. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, Journal of Power Sources 141 (1) (2005) 79-95.
  • [28] A. Virkar, Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes, Journal of Power Sources 147 (1-2) (2005) 8-31.
  • [29] Łukasz Nikonowicz, J. Milewski, Determination of electronic conductance of solid oxide fuel cells, Journal of Power Technologies 91 (2) (2011) 82-92.
  • [30] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Solid oxide fuel cell using co doped la(sr)ga(mg)o3 perovskite oxide with notably high power density at intermediate temperature, Chemical communications 13 (1999) 1227-1228.
  • [31] Z. Cai, T. Lan, S. Wang, M. Dokiya, Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by slurry coating and co-firing, Solid State Ionics 152-153 (1) (2002) 583-590.
  • [32] B. Madsen, S. Barnett, Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes, Solid State Ionics 176 (2005) 2545-2553.
  • [33] J. Ding, J. Liu, An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (ysz) electrolyte film, Solid State Ionics 179 (2008) 1246-1249.
  • [34] W. Zhou, H. Shi, R. Ran, R. Cai, Z. Shao,W. Jin, Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying, Journal of Power Sources 184 (1) (2008) 229-0237.
  • [35] D. Young, A. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer, T. Reitz, Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells, Journal of Power Sources 184 (1) (2008) 191-196.
  • [36] H. Park, A. Virkar, Bimetallic (ni-fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte, Journal of Power Sources 186 (2009) 133-137.
  • [37] Z. Yao, Z. Chunming, R. Ran, R. Cai, Z. Shao, D. Farrusseng, A new symmetric solid oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-Δ perovskite oxide as both the anode and cathode, Acta Materialia 57 (4) (2009) 1665-1175.
  • [38] J. Milewski, J. Lewandowski, Comparative analysis of time constants in solid oxide fuel cell processes-selection of key processes for modeling power systems, Journal of Power Technologies 91 (1) (2011) 1-5.
  • [39] W. Budzianowski, Role of catalytic technologies in combustion of gaseous fuels, Rynek Energii 82 (3) (2009) 59-63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0051-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.