PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation of hydrogen-air detonation in tube with obstacles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An experimental and computational study of flame propagation, acceleration and transition to detonation in stoichiometric hydrogen-air mixtures in 6 m long tube filled with obstacles located at different configurations was performed. The initial conditions of the hydrogen-air mixtures were 0.1 MPa and 293 K. Four different cases of obstacle blockage ratio (BR) 0.7, 0.6, 0.5 and 0.4 and three cases of obstacle spacing were used. The wave propagation was monitored by piezoelectric pressure transducers PCB. Pressure transducers were located at different positions along the channel to collect data concerning detonation propagation. Tested mixtures were ignited by a weak electric spark at one end of the tube. In order to support the experimental results we performed series of CFD simulations for the same conditions of hydrogen-air mixtures and the geometry of the tube. The simulation tool used in this study was a two-dimensional DETO2D code, dedicated to simulate the propagation of gaseous detonations in complex geometries.
Rocznik
Strony
122--129
Opis fizyczny
Bibliogr. 14 poz., tab., rys., wykr.
Twórcy
autor
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland, wrudy@itc.pw.edu.pl
Bibliografia
  • [1] J. Hebral, J. Shepherd, User guide for detonation cell size measurement using photoshop and matlab, Tech. Rep. Report FM00-6, Explosion Dynamics Laboratory, Caltech (2000).
  • [2] http://www.galcit.caltech.edu/edl/public/cantera/mechs/cti/web/
  • [3] W. R. Chapman, R. V. Wheeler, The propagation of flame in mixtures of methane and air. part iv. the effect of restrictions in the path of the flame, Journal of Chemical Society (1926) 2139-2147.
  • [4] S. Dorofeev, V. Sidorov, M. Kuznetsov, I. Matsukov, V. Alekseev, Effect of scale on the onset of detonations, Shock Waves 10 (2000) 137-149.
  • [5] M. Kuznetsov, G. Ciccarelli, S. Dorofeev, V. Alekseev, Y. Yankin, T. H. Kim, Ddt in methane-air mixtures, Shock Waves 12 (2002) 215-220.
  • [6] J. Lee, On the transition from deflagration to detonation, in: Dynamics of explosions; International Colloquium on Dynamics of Explosions and Reactive Systems, 10th, Berkeley, CA, USA, 1986, pp. 3-18.
  • [7] J. H. S. Lee, The Detonation Phenomenon, Cambridge University Press, 2008.
  • [8] J. H. S. Lee, I. O. Moen, The mechanism of transition from deflagration to detonation in vapor cloud explosions, Progress in Energy and Combustion Science 6 (4) (1980) 359-389.
  • [9] K. Shchelkin, Occurrence of detonation in gases in rough-walled tubes, Soviet Journal of Technical Physics 17.
  • [10] K. Shchelkin, Influence of tube roughness on the formation and detonation propagation in gas, Journal of Experimental and Theoretical Physics 10 (1940) 823-827.
  • [11] J. Shepherd, J. Lee, On the transition from deflagration to detonation, in: P. Hussaini, P. Kumar, P. Voigt (Eds.), Major research topics in combustion, Springer-Verlag, 1992.
  • [12] A. Teodorczyk, Deflagration to detonation transition, in: J. Jarosinski, B. Veyssiere (Eds.), Combustion Phenomena, CRC Press Taylor & Francis Group, 2009.
  • [13] A. Teodorczyk, J. Lee, R. Knystautas, Propagation mechanisms of quasi-detonations, Proceedings of the Combustion Institute 22 (1988) 1723-1731.
  • [14] P. A. Urtiew, A. K. Oppenheim, Experimental observations of the transition to detonation in an explosive gas, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 295 (1440) (1966) 13-28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0051-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.