PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on flame propagation in n-heptane/air mixture with the use of a gradient LES combustion model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of numerical simulations with a combustion model using Large Eddy Simulation (LES). The objective is to check whether the proposed combustion model is capable of representing the laminar reacting flow. The numerical results are compared with flame front propagation data gained from experiments. The combustion model is based on the gradient method, which determines flame propagation. The gradient is calculated from the mass fraction of fuel or products. Laminar burning velocity is described by empirical correlation. Flame generated turbulence is used in this study to represent the nonlinear flame propagation effects in the laminar reacting flow. From the results it is concluded that flame generated turbulence can be used for laminar reacting flows and is important for representation of the combustion process in numerical simulations. The gradient combustion model for turbulence reacting flow is capable of proper representation of the flame front in laminar reacting flows. The gradient combustion model for LES did not increase the time needed for calculation, making it an attractive method in full engine cycle simulations.
Rocznik
Strony
114--121
Opis fizyczny
Bibliogr. 19 poz., tab., rys., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland, pjawor@itc.pw.edu.pl
Bibliografia
  • [1] A. Amsden, P. O'Rourke, T. Butler, KIVA-ii: a computer program for chemically reactive flows with sprays, Tech. Rep. LA-11560-MS, Los Alamos National Laboratory (1989).
  • [2] B. Khalighi, S. E. Tahry, D. Haworth, M. Huebler, Computation and measurement of flow and combustion in a four-valve engine with intake variations, in: International Congress & Exposition, no. 950287, SAE, 1995.
  • [3] S. E. Tahry, D. Haworth, A perspective on the state-of-the-art in ic engine combustion modeling, in: SIAM Sixth International Conference on Combustion, New Orleans, LA, 1996.
  • [4] D. Haworth, S. E. Tahry, M. Huebler, A global approach to error estimation and physical diagnostics in multidimensional computational fluid dynamics, International Journal for Numerical Methods in Fluids 17 (1993) 75-97.
  • [5] V. Moureau, I. Barton, C. Angelberger, T. Poinsot, Towards large eddy simulation in Internal-Combustion engines: simulation of a compressed tumble flow, in: SAE International, no. 2004-01-1995, 1995.
  • [6] I. Celik, I. Yavuz, A. Smirnov, Large eddy simulations of in-cylinder turbulence for ic engines: A review, International Journal of Engine Research 2 (2) (2001) 119-148.
  • [7] D. Haworth, K. Jansenb, Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines, Computers & Fluids 29 (2000) 493-524.
  • [8] E. Oran, J. Boris, Numerical Simulation of Reactive Flow, 2nd Edition, Cambridge University Press, 2001.
  • [9] V. Molkov, D. Makarov, Modelling and large eddy simulation of deflagration dynamics in a closed vessel, Combustion, Explosion, and Shock Waves 40 (2) (2004) 136-144.
  • [10] V. Molkov, D. Makarov, A. Grigorash, Cellular structure of explosion flames: modelling and large eddy simulation, Combustion Science and Technology 176 (2004) 851-85.
  • [11] V. Molkov, D. Makarov, H. Schneider, Les modelling of an unconfined large-scale hydrogen-air deflagration, Journal of Physics D: Applied Physics 39 (2006) 4366.
  • [12] Fire v2009 - ICE Physics & Chemistry Users Guide, 08.0205.2009 (2009).
  • [13] H. Bayraktar, Experimental and theoretical investigation of using gasoline-ethanol blends in spark-ignition engines, Renewable Energy 30 (2005) 1733-1747.
  • [14] S. Liao, D. Jiang, Q. Cheng, Z. H. Huang, Q. Wej, Investigation of the cold-start combustion characteristics of ethanol-gasoline blends in a constant-volume chamber, Energy Fuels 19 (3) (2005) 813-819.
  • [15] S. Liao, D. Jiang, Q. Cheng, Z. Huang, K. Zeng, Determination of the laminar burning velocities for mixtures of ethanol and air at elevated temperatures, Applied Thermal Engineering 27 (2007) 374-380.
  • [16] C. T. Chong, S. Hochgreb, Measurements of laminar flame speeds of liquid fuels: Jet-a1, diesel, palm methyl esters and blends using particle imaging velocimetry (piv), Proceedings of the Combustion Institute 33 (2011) 979-986.
  • [17] A. N. Lipatnikov, J. Chomiak, Lewis number effects in premixed turbulent combustion and highly perturbed laminar flames, Combustion Science and Technology 137 (1998) 277-298.
  • [18] S. Jarzembeck, N. Peters, P. Pepiot-Desjardins, H. Pitsch, Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation, Combustion and Flame 156 (2009) 292-301.
  • [19] S. Jarzembeck, N. Peters, Experimental and numerical determination of laminar burning velocities of nitrogen diluted n-heptane-and iso-octane-air-mixtures at high pressure conditions, in: Third European Combustion Meeting, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0051-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.