PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The expansion of biogas fuelled power plants in Germany during the 2001-2010 decade: Main sustainable conclusions for Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the period 2001-2010 the number of biogas fuelled power plants have increased in Germany by almost 20% year-on-year, from 1050 at the beginning of 2001 to 6000 at the end of 2010. The main drivers behind this rapid expansion were: (i) technological advancement, (ii) attractive financial incentives such as feed-in-tariffs, (iii) the search for increasing energy security and (iv) the strong German farming sector. Due to existing similarities between German and Polish economies, Poland has the potential to replicate Germany's example and Polish biogas energy might also undergo expansion at a similar rate in the near-term. This article reviews aspects of Polish energy policy and investigates factors that could provide impetus for an upsurge of agricultural biogas energy in Poland. It is emphasized that amendments to the Polish tradable certificate system are urgently needed in order to encourage investment into biogas energy. For instance, the introduction of biomass and technological bonuses could improve feedstock availability and boost the take-up of best available biopower technologies, respectively. Promising, but mostly unexplored feedstock potentials in Poland, such as energy crops, grasses, sorted municipal organic wastes and algae are discussed. The role of agrobiogas in the possible solving of Polish CCS dilemmas is explained. Further, it is shown that the cost of electricity is almost independent of the size of agrobiogas CHP power plants in the range of 0.2 to 5 MWe. Therefore, agrobiogas energy could be dominated by small-scale agrobiogas power plants offering more green jobs and improved local waste management characteristics. New national and international research and development initiatives are needed in order to enhance the development of biogas energy in Poland.
Rocznik
Strony
102--113
Opis fizyczny
Bibliogr. 43 poz., tab., rys., wykr.
Twórcy
autor
Bibliografia
  • [1] Fachverband Biogas e.V. www.biogas.org (accessed 2011-05-02).
  • [2] W. M. Budzianowski, Opportunities for bioenergy in Poland: Biogas and solid biomass fuelled power plants, Rynek Energii 94 (3) (2011) 138-146.
  • [3] K. Chudy, M. Worsa-Kozak, A. Grafender, W. Śliwiński, L. Poprawski, W. Budzianowski, Analiza wykorzystania naturalnych bogactw regionu w kontekście rozwoju społeczno-gospodarczego z uwzględnieniem przekrojów przestrzennych, w związku z perspektywą wyczerpania się złóż naturalnych bogactw. opracowanie założeń do strategii zrównoważonego rozwoju w tym zakresie, Tech. Rep. POKL.08.01.04-02-003/08, Analiza zrealizowana w ramach projektu "Analizy, badania i prognozy na rzecz Strategii Rozwoju Województwa Dolnośląskiego" współfinansowanego przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (2010).
  • [4] GE Jenbacher GmbH & Co OHG, www.jenbacher.com (accessed 2011-05-02).
  • [5] N. R. Banapurmath, P. G. Tewari, R. S. Hosmath, Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as injected fuels, Renewable Energy 33 (9) (2008) 2007-2018.
  • [6] Y. Shiratori, T. Oshima, K. Sasaki, Feasibility of directbiogas SOFC, International Journal of Hydrogen Energy 33 (21) (2008) 6316-6321.
  • [7] J. Milewski, J. Lewandowski, Solid oxide fuel cell fuelled by biogas, Archives of Thermodynamics 30 (4) (2009) 3-12.
  • [8] J. Milewski, J. Lewandowski, Comparative analysis of time constants in Solid Oxide Fuel Cell processes-selection of key processes for modeling power systems, Journal of Power Technologies 91 (1) (2011) 1-7.
  • [9] W. M. Budzianowski, J. Milewski, Solid-oxide fuel cells in power generation applications: A review, Recent Patents on Engineering 5 (2011).
  • [10] K. Badyda, Characteristics of advanced gas turbine cycles, Rynek Energii 88 (3) (2010) 80-86.
  • [11] W. M. Budzianowski, Role of catalytic technologies in combustion of gaseous fuels, Rynek Energii 82 (3) (2009) 59-63.
  • [12] W. M. Budzianowski, R. Miller, Catalytic converters and processes in selected energy technologies: I. gas turbines and II. radiant burners in drying, Recent Patents on Chemical Engineering 2 (3) (2009) 181-206.
  • [13] Z. Gnutek, A. Bryszewska-Mazurek, The thermodynamic analysis of multicycle ORC engine, Energy 26 (12) (2001) 1075-1082.
  • [14] B. Thomas, Benchmark testing of Micro-CHP units, Applied Thermal Engineering 28 (16) (2008) 2049-2054.
  • [15] M. Lantz, M. Svensson, L. Bjornsson, P. Borjesson, The prospects for an expansion of biogas systems in Sweden - incentives, barriers and potentials, Energy Policy 35 (3) (2007) 1830-1843.
  • [16] W. M. Budzianowski, A rate-based method for design of reactive gas-liquid systems, Rynek Energii 83 (4) (2009) 21-26.
  • [17] W. M. Budzianowski, Negative net CO2 emissions from oxy-decarbonization of biogas to H2, International Journal of Chemical Reactor Engineering 8 (2010) A156.
  • [18] Urząd Regulacji Energetyki (URE), www.ure.gov.pl (accessed 2011-05-02).
  • [19] Ministerstwo Gospodarki (MG) www.mg.gow.pl (accessed 2011-05-02).
  • [20] Instytut Energetyki Odnawialnej (EC BREC IEO), Przewodnik dla inwestorów zainteresowanych budową biogazowni rolniczych, Warsaw (2011).
  • [21] Główny Urządd Statystyczny (GUS), Odnawialne źrodła energii w 2009 roku, Warsaw (2010).
  • [22] Ministerstwo Gospodarki (MG), Polityka energetyczna polski do roku 2030, Warsaw (2009).
  • [23] Ministerstwo Gospodarki (MG), Directions of development for agricultural biogas plants in poland between 2010-2020, Warsaw (2010).
  • [24] J. Lichota, Computations of district heating network, Rynek Energii 91 (6) (2010) 71-76.
  • [25] P. Krawczyk, K. Badyda, Modeling of thermal and flow processes in a solar waste-water sludge dryer with supplementary heat supply from external sources, Journal of Power Technologies 91 (1) (2011) 37-40.
  • [26] S. Simon, K. Wiegmann, Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries, Biomass and Bioenergy 33 (4) (2009) 603-609.
  • [27] M. de Wit, A. Faaij, European biomass resource potential and costs, Biomass and Bioenergy 34 (2) (2010) 188-202.
  • [28] F. Cherubini, S. Bargigli, S. Ulgiati, Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration, Energy 34 (12) (2009) 2116-2123.
  • [29] A. Dibenedetto, The potential of aquatic biomass for CO2-enhanced fixation and energy production, Greenhouse Gases: Science and Technology 1 (1) (2011) 58-71.
  • [30] B. Sialve, N. Bernet, O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances 27 (4) (2009) 409-0416.
  • [31] W. M. Budzianowski, Low-carbon power generation cycles: The feasibility of CO2 capture and opportunities of integration, Journal of Power Technologies 91 (1) (2011) 6-13.
  • [32] W. M. Budzianowski, An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane, International Journal of Hydrogen Energy 35 (14) (2010) 7754-7769.
  • [33] W. M. Budzianowski, Engineering benefits of mass recirculation in novel energy technologies with CO2 capture, Rynek Energii 88 (3) (2010) 151-158.
  • [34] M. Poeschl, S. Ward, P. Owende, Prospects for expanded utilization of biogas in Germany, Renewable and Sustainable Energy Reviews 14 (7) (2010) 1782-1797.
  • [35] N. M. Power, J. D. Murphy, Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol, Biomass and Bioenergy 33 (10) (2009) 1403-1412.
  • [36] C. Walla, W. Schneeberger, The optimal size for biogas\ plants, Biomass and Bioenergy 32 (6) (2008) 551-557.
  • [37] W. M. Budzianowski, Thermal integration of combustion-based energy generators by heat recirculation, Rynek Energii 91 (6) (2010) 108-115.
  • [38] J. Janczura, R. Weron, An empirical comparison of alternate regime-switching models for electricity spot prices, Energy Economics 32 (5) (2010) 1059-1073.
  • [39] J. Kotowicz, L. Bartela, The influence of the legal and economical environment and the profile of activities on the optimal design features of a natural gas-fired combined heat and power plant, Energy 36 (1) (2011) 328-338.
  • [40] R. Gnatowska, Characteristics of the Polish electricity certification system, Polityka Energetyczna 13 (2) (2010) 145-155.
  • [41] International Energy Agency (IEA), www.iea.org (accessed 2011-05-04).
  • [42] K. Gaj, F. Knop, I. Trzepierczyńska, Technological and environmental issues of biogas combustion at municipal sewage treatment plant, Environment Protection Engineering 35 (4) (2009) 73-79.
  • [43] B. Igliński, W. Kujawski, R. Buczkowski, M. Cichosz, Renewable energy in the Kujawsko-Pomorskie voivodeship (Polska), Renewable and Sustainable Energy Reviews 14 (4) (2010) 1336-1341.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0051-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.