PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of electronic conductance of solid oxide fuel cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work considers electronic conductance in solid oxide fuel cells and consequences of its existence. Various types of electrolyte are analyzed. The voltage characteristics of cells show differences between a theoretical maximum circuit voltage and open circuit voltage (OCV). A relationship is assumed between the OCV value and electronic conductance. Based on experimental measurements an appropriate mathematical model was created. The model is used to calculate the temperature dependence of electronic conductance for the most popular types of electrolytes: GDC (Gadolinia-Doped Ceria), ScSZ (Scandia Stabilized Zirconia), LSGMC (Cobalt, Strontium, and Magnesium Doped Lanthanum Gallate), YSZ (Yttria-Stabilized Zirconia). The obtained results point to the possible existence of a very tight relationship between the electronic conductance and the open circuit voltage. This relationship enables OCV to be calculated when electronic conductance is known. Appropriate formulae can be determined. Temperature is one of the factors which influences the value of electronic conductance. Other influencing factors also exist but their impact on OCV is not well know. This article mentions some of them.
Rocznik
Strony
82--92
Opis fizyczny
Bibliogr. 10 poz., rys., wykr.
Twórcy
autor
Bibliografia
  • [1] Z. Cai, T. N. Lan, S. Wang, M. Dokiya, Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by slurry coating and co-firing, Solid State Ionics (2002) 152-153.
  • [2] J. Ding, J. Liu, An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (YSZ) electrolyte film, Solid State Ionics 179.
  • [3] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Solid oxide fuel cell using Co doped La(Sr)Ga(Mg)O3 perovskite oxide with notably high power density at intermediate temperature, Chem. Commun.
  • [4] B. D. Madsen, S. A. Barnett, Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes, Solid State Ionics 76.
  • [5] H. C. Park, A. Virkar, Bimetallic (Ni-Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte, Journal of Power Sources 186.
  • [6] Z. Yao, R. R. Z. Chunming, R. Cai, Z. Shao, D. Farrusseng, A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode, Acta Materialia 57.
  • [7] D. Young, A. M. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer, T. Reitz, Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells, Journal of Power Sources 184.
  • [8] W. Zhou, H. Shi, R. Ran, R. Cai, Z. Shao,W. Jin, Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying, Journal of Power Sources 184.
  • [9] J. Milewski, A. Miller, A. Dmowski, P. Biczel, The control strategy for a solid oxide fuel cell hybrid system, ASME Turbo EXPO 2009, GT2009-59050.
  • [10] J. V. Herle, A. J. McEvoy, K. R. Thampi, Conductivity measurements of various yttria-stabilized zirconia samples, Journal of Materials Science 29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0051-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.