PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Przegląd metod modelowania struktury geometrycznej powierzchni

Autorzy
Identyfikatory
Warianty tytułu
EN
Review of methods of surface topography modeling
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono dwa zasadnicze sposoby podejścia do modelowania struktury geometrycznej powierzchni. Pierwszym z nich jest modelowanie nieuwzględniające warunków technologicznego lub eksploatacyjnego kształtowania powierzchni, natomiast drugim modelowanie odzwierciedlające rzeczywiste warunki tworzenia powierzchni. Przedstawiono wyniki własnych badań na tle osiągnięć innych badaczy.
EN
Two fundamental approaches to surface topography modeling are presented. Modeling not taking into consideration surface creation during technological or operational processes is the first of them. The second approach takes into account real condition of surface creation. The authors presented the results of own investigations in relation to works of other scientists.
Rocznik
Strony
105--125
Opis fizyczny
Bibliogr. 82 poz., rys., wykr.
Twórcy
autor
autor
  • Uniwersytet Rzeszowski
Bibliografia
  • 1. Pawlus P.: Topografia powierzchni. Pomiar, analiza, oddziaływanie. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2006.
  • 2. Bernardos P.O., Vosniakos G.-C.: Predicting surface roughness in machining: a review. Int. J. of Machine Tools and Manufacture, 43/8, 2003, 833-84.
  • 3. Boryczko A.: Measurement of relative tool displacement to the workpiece for the assessment of influences of machining errors on surface profiles. Measurement, 31, 2002, 93-105.
  • 4. Ehmann K.F.: Machining process modelling: a review. Journal of Manufacturing Science and Engineering, 119, 1997, 655-663.
  • 5. Grzesik W.: Surface finish assessment using a tribomechanical coupled model of the cutting process. Tribologia, 6, 1995, 726-744.
  • 6. Lin W.S., Lee B.Y., Wu C.L.: Modelling the surface roughness and cutting force in turning. Journal of Material Processing Technology, 108, 2001, 286-293.
  • 7. Lipski J., Nieszczeta W. Warmiński J., Zaleski K.: Wpływ nierówności powierzchni obrabianej na siły skrawania i chropowatość powierzchni po toczeniu. III Ogólnokrajowa Konferencja Naukowo-Techniczna "Postępy w technice wytwarzania maszyn". Politechnika Krakowska, Kraków 1999, 153-160.
  • 8. Lee K.Y., Kang M.C., Jeong Y.H., Lee D.W., Kim J.S.: Simulation of surface roughness and profile in high-speed end milling. Journal of Material Processing Technology, 113, 2001, 410-415.
  • 9. Miko E.: Chropowatość powierzchni frezowanych walcowo. Przegląd Mechaniczny, 11, 2002, 30-36.
  • 10. Box G.E.P., Jenkins G.M.: Analiza szeregów czasowych. Prognozowanie i sterowanie. PWN, Warszawa 1983.
  • 11. Whitehouse D.J.: Handbook of surface metrology. Bristol and Philadelphia: Inst. of Physics, 1994.
  • 12. Watson Q., King T.G., Spedding T.A., Stout K.J.: The machined surface - time series modelling. Wear, 57, 1979, 195-205.
  • 13. Watson W., Spedding T.A.: The time series modelling of non-Gaussian engineering processes. Wear, 83, 1992, 215-231.
  • 14. DeVries W.R.: A three-dimensional model of surface asperities developed using moment theory. ASME Journal of Engineering for Industry, 104, 1982, 342-348.
  • 15. Staufert G.: Characterization of random profiles - a comparison of AR-modeling technique and profile description by means of commonly used parameters. CIRP Annals, 28/1, 1979, 431-435.
  • 16. Patir N.: A numerical procedure for random generation of rough surfaces. Wear, 45, 1977, 263-277.
  • 17. Gu X., Huang Y.: The modelling and simulation of rough surface. Wear, 137, 1990, 275-285.
  • 18. Uchidate M., Shimizu T., Iwabuchi A., Yanagi K.: Generation of reference data of 3-D texture using the non-casual 2-D AR model. 9th International Conference on Metrology and Properties of Engineering Surfaces. Halmstad University, Szwecja 2003.
  • 19. Nemoto K., Yanagi K., Aketagawa M., Kanda D., Yoshida I., Uchidate M.: A study on surface material measures for areal surface texture measuring instruments - measuring conditions for the areal profiling. Proceedings of ISTMII 2007 Congress, Sendai, Japan, 801-804.
  • 20. Uchidate M., Yanagi K., Yoshida I., Shimizu T, Iwabuchi A.: Generation of 3-D random topography datasets with periodic boundaries for surface metrology algorithms and measurement standards. Proceedings of the 12th Conference on Metrology and Properties of Engineering Surfaces, Rzeszów 2009, 71-75.
  • 21. Wieczorowski M., Cellary A., Ehmann K.F.: Trójwymiarowa analiza chropowatości powierzchni za pomocą autoregresji. Materiały konferencji "Metrologia w technikach wytwarzania", Rzeszów 1995, 101-109.
  • 22. Hu Y.Z., Tonder K.: Simulation of 3-D random surface by 2-D digital filter and Fourier analysis. Int. J. Mach. Tools Manufact., 32, 1992, 82-90.
  • 23. Ao Y., Wang Q.J., Chen P.: Simulating the worn surface in a wear process. Wear, 252, 2002, 37-47.
  • 24. Manesh K.K., Ramamoorthy B., Singaperumal M.: Numerical calculation of anisotropic 3D Gaussian engineering surfaces. 9th International Symposium on Measurement and Quality Control (9th ISMQC), 2007, Madras (Indie), 48-53.
  • 25. Wu J.-J.: Simulation of rough surfaces with FFT. Tribology International, 33, 2000, 47-58.
  • 26. Newland D.E.: An introduction to random vibration and spectral analysis. 2nd ed, Longman, London 1984.
  • 27. Bakolas V.: Numerical generation of arbitrary oriented non-Gaussian three-dimensional rough surfaces. Wear, 254/5-6, 2003, 546-554.
  • 28. Reizer R.: Simulation of 3D Gaussian surface topography. 12th International Conference on Metrology and Properties of Engineering Surfaces, Rzeszów 2009, 77-82. (w druku).
  • 29. Rosen B.-G.: Mathematical machining - a way to control the surface engineering cycle. Proceedings of the Workshop of Engineered Surfaces, Corps la Salette, 1998.
  • 30. Michalski J., Pawlus P.: Modelowanie komputerowe topografii powierzchni cylindrów po gładzeniu. Prace Naukowe Instytutu Technologii Maszyn i Automatyzacji, Politechnika Wrocławska, t. 82, z. 39, 2002, 261-266.
  • 31. Reizer R.: Modelowanie struktury geometrycznej powierzchni kształtowanych procesami ściernymi. Praca doktorska, Politechnika Rzeszowska, Rzeszów 2009.
  • 32. Malburg M.C., Raja J.: Characterization of surface texture generated by plateau-honing process. CIRP Annals, 42/1, 1993, 637-640.
  • 33. Whitehouse D.J.: Assessment of surface finish profiles produced by multi-process manufacture. Proceeding of the Inst. Mech. Engrs, 199/4, 1985, 263-270.
  • 34. Pawlus P., Reizer R.: Modelling of cylinder surface topography. ASPE 2008 Annual Meeting and the 12th ICPE.
  • 35. Kumar K.S., Stathopoulos T.: Synthesis of non-Gaussian wind pressure time series on low building roofs. Engineering Structures, 21, 1999, 1086-1100.
  • 36. Wu J.-J.: Simulation of non-Gaussian surfaces with FFT. Tribology International, 27, 2004, 339-346.
  • 37. Tayebi N., Polycarpou A.A.: Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribology International, 37, 2004, 491-505.
  • 38. Hasegawa M., Liu J., Okuda K., Nunobiki M.: Calculation of the fractal dimension of machined surface profiles. Wear, 192, 1996, 40-45.
  • 39. Ganti S., Bhushan B.: Generalized fractal analysis and its application to engineering surfaces. Wear, 180 1995, 17-34.
  • 40. Russ J.C.: Fractal Surfaces. Plenum Press, New York 1994.
  • 41. Majumdar A., Tien C.L.: Fractal characterization and simulation of rough surfaces. Wear, 136, 1990, 313-327.
  • 42. Blackmore D., Zhou G.: A new fractal model for anisotropic surfaces. Transactions of 7th International Conference on Metrology and Properties of Engineering Surfaces. Gothenburg, Sweden, 1997, 147-153.
  • 43. Jabłoński J., Pawłowski S.: 3-D fraktalny model powierzchni honowanej typu plateau. Archiwum Technologii Maszyn i Automatyzacji, 19/2, Poznań 1999, 83-91.
  • 44. Jabłoński J.: Digital generation of surface of asymmetrical height distribution. Measurement, 34, 2003, 187-191.
  • 45. Jabłoński J., Pawłowski S., Liubimov W.: 3D-numerical model of surface after laser machining. Proceedings of the 4th International Conference "Measurement 2003", Bratysława, Słowacja, 451-454.
  • 46. Koshy P., Ives L.K., Jahanmir S.: Simulation of diamond-ground surfaces. International Journal of Machine Tools and Manufacture, 39, 1999, 1451-1470.
  • 47. Pandit S.M., Sathyanarayan G.: Data-dependent systems approach to surface generation in grinding. Transaction of the ASME. Journal of Engineering for Industry, 106, 1984, 205-212.
  • 48. Bhateja C.P.: An enveloping profile approach for the generation of ground surface texture. CIRP Annals, 26, 1977, 333-337.
  • 49. Konig W., Steffens K.: A numerical method to determine the kinematics of grinding. CIRP Annals, 31/1, 1982, 201-204.
  • 50. Inasaki I.: Grinding process simulation based on wheel topography measurement. CIRP Annals, 45, 1996, 347-350.
  • 51. Chen X., Rowe B.: Analysis and simulation of the grinding process. Part I: Generation of the grinding wheel surface. Int. J. of Machine Tools & Manufacture, 36/8, 1996, 871-892.
  • 52. Chen X., Rowe B.: Analysis and simulation of the grinding process. Part II: Mechanics of grinding. Int. J. of Machine Tools & Manufacture, 36/8, 1996, 883-89.
  • 53. Chen X., Rowe B.: Analysis and simulation of the grinding process. Part III: Comparison with experiment. Int. J. of Machine Tools & Manufacture, 36/8, 1996, 897-906.
  • 54. Chen X., Rowe B.: Analysis and simulation of the grinding process. Part IV: Effects of wheel wear. Int. J. of Machine Tools & Manufacture, 38/1, 2, 1998, 41-49.
  • 55. Hecker R.L., Liang S.L., Woodruff G.W.: Predictive modelling of surface roughness in grinding. Int. J. of Machine Tools and Manufacture, 43/8, 2003, 755-761.
  • 56. Salisbury E.J., Domala K.V., Moon K.S., Miller M.H., Sutherland D.W.: A three-dimensional model for the surface texture in surface grinding. Part I. Surface generation model. ASME J. of Manufacturing Science and Engineering, 123, 2001, 576-581.
  • 57. Zhou X., Xi F.: Modeling and predicting surface roughness of the grinding process. Int. J. of Machine Tools & Manufacture, 42, 2002, 969-977.
  • 58. Zhang B., Uematsu T.: Surface generation mechanism in helical scan grinding: an analytical study. Journal of Material Processing Technology, 91, 1999, 206-214.
  • 59. Namba Y., Shiokawa M., Yu J.: Surface roughness generation mechanism of ultra-precision grinding of optical materials with a cut-type resinoid-bonded diamond wheels. CIRP Annals, 1997, 46/1, 253-256.
  • 60. Ali Y.M., Zhang L.C.: Surface roughness predictions of ground components using a fuzzy logic approach. Journal of Material Processing Technology, 89-90/1999, 561-568.
  • 61. Storz G.E., Dow T.A.: Virtual modelling of contour grinding. Proceedings of the ASPE, 1993, 193-196.
  • 62. Warnecke G., Zitt U.: Kinematic simulation for analyzing and predicting high-performance grinding process. CIRP Annals, 47/1, 1998, 265-270.
  • 63. Porzycki J.: Modelowanie szlifowania osiowego zewnętrznych powierzchni walcowych. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2004.
  • 64. Kacalak W.: Metody i zastosowania sztucznej inteligencji do diagnostyki, optymalizacji i sterowania w procesach szlifowania. XIX Naukowa Szkoła Obróbki Ściernej. Łódź 1996, 231-246.
  • 65. Królikowski T., Kacalak W, Białasz B.: Wybrane problemy generowania modeli topografii ściernicy. XXII Naukowa Szkoła Obróbki Ściernej, Gdańsk 1999, 179-184.
  • 66. Jain R.K., Jain V.K.: Simulation of surface generated in abrasive flow machining process. Robotics and Computer Integrated Manufacturing, 15, 1999, 403-312.
  • 67. Pawlus P., Reizer R., Dzierwa A.: Surface topography of chromium coatings after pneumatic ball peening. Key Engineering Materials, 381-382, 2008, 635-638.
  • 68. Kowalski M.: Metodyka wyboru parametrów chropowatości do opisu topografii powierzchni. Praca doktorska, Politechnika Wrocławska, Wrocław 2005.
  • 69. Mathia T.G., Zahouani T., Schissler J.M., Rakowski W.: Analysis of cylinder bores - the relationship between metallurgical structure, manufacture and wear characterization. Proc. Int. Congress on Tribology, Vol. 4, 1993, 311-316.
  • 70. Rosen B.-G., Ohlsson R., Thomas T.R.: Wear of cylinder bore microtopography. Wear, 198, 1996, 271-279.
  • 71. Stout K.J., Davis E.J., Sullivan P.J.: Atlas of Machined Surfaces. Chapman and Hall, London 1990.
  • 72. Stout K.J., Davis E.J.: Surface topography of cylinder bores - the relationship between manufacture, characterization and function. Wear, 95, 1984, 111-125.
  • 73. Sugimura J., Kimura Y., Amino K.: Analysis of the topography changes due to wear-geometry of the running-in process. JSLE, 31/11, 1986, 813-820.
  • 74. King T.G., Watson W., Stout K.J.: Modelling the micro-geometry of lubricated wear. [In:] Proceedings of the 4th Leeds-Lyon Symposium on Tribology. MEP, London 1978, 333-343.
  • 75. Nonogaki M., Morimoto T., Nakahara T.: Method of determination of truncation parameters from measured surface profile. Tribology International, 36/10, 2003, 745-752.
  • 76. Pawlus P., Michalski J.: Simulation of cylinder “zero-wear” process. Wear, 266, 2009, 208-13.
  • 77. Pawlus P: Simulation of stratified surface topographies. Wear, 264, 2008, 457-63.
  • 78. Krzyżak Z.: Modelowanie topografii powierzchni eksploatowanych płaszczy tłoków silników spalinowych. Rozprawa doktorska, Politechnika Rzeszowska, Rzeszów 2005.
  • 79. Jacobson S., Wallen P., Hogmark S.: Correlation between groove size, wear rate and topography of abraded surfaces. Wear, 115, 1987, 83-93.
  • 80. Jacobson S., Wallen P., Hogmark S.: Fundamental aspects of abrasive wear studied by a new numerical simulation model. Wear, 123, 1988, 207-223.
  • 81. Jiang J., Sheng F., Ren F.: Modelling of two-body abrasive wear under multiple contact conditions. Wear, 217, 1998, 35-45.
  • 82. Fang L., Cen Q., Sun K., Liu W., Zhang X., Huang Z.: FEM computation of groove ridge and Monte Carlo simulation in two-body abrasive wear. Wear, 258, 2005, 265-274
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0049-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.