PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Rola mikrostruktury w kształtowaniu właściwości inteligentnych kompozytów magnetoreologicznych

Autorzy
Identyfikatory
Warianty tytułu
EN
The role of microstructure in property formation of intelligent magnetorheological composites
Języki publikacji
PL
Abstrakty
PL
Praca dotyczy nowej grupy materiałów inteligentnych, jakimi są magnetoreologiczne kompozyty elastomerowe (MRE), złożone z ferromagnetycznych cząstek rozmieszczonych w elastomerowej osnowie. O ich atrakcyjności decyduje odwracalna zmiana właściwości i wymiarów pod wpływem pola magnetycznego, dzięki czemu mogą one znaleźć zastosowanie jako elementy tłumiące drgania, czujniki lub aktuatory. W literaturze nie ma pełnej zgodności co do wpływu poszczególnych składników kompozytu na właściwości MRE. Dlatego podjęto badania własne mające na celu szczegółowy opis roli mikrostruktury w kształtowaniu właściwości użytkowych kompozytów magnetoreologicznych. Przeprowadzono badania nad otrzymywaniem MRE, stosując różne elastomery jako osnowę, cząstki ferromagnetyczne o różnym kształcie i rozmiarach, a także promotor adhezji. Wykonano próbki MRE o izotropowym rozmieszczeniu cząstek i ukierunkowanym w polu magnetycznym, przy czym szczególną uwagę zwrócono na ukierunkowanie łańcuchów cząstek pod różnymi kątami. Przeprowadzono także badania wpływu cząstek na budowę elastomeru, stosując analizę termiczną, spektroskopię w podczerwieni i mikroanalizę ramanowską. Wykorzystując metodę elastooptyczną, cyfrową korelację obrazu i metodę elementów skończonych, określono stan naprężeń i odkształceń w osnowie między modelowymi dipolami. Scharakteryzowano dynamikę procesów relaksacyjnych zachodzących w osnowie elastomerowej pod wpływem oddziaływań między cząstkami w polu magnetycznym, wykorzystując nowatorską metodę XPCS opartą na promieniowaniu synchrotronowym. Zbadano mikrostrukturę wytwarzanych MRE, stosując mikroskopię świetlną i skaningową elektronową, a do ilościowej oceny stopnia anizotropii mikrostruktury zastosowano analizę obrazu. W celu określenia anizotropii magnetycznej i strukturalnej MRE przeprowadzono badania właściwości magnetycznych. Wykonano w szerokim zakresie charakterystykę właściwości mechanicznych opracowanych MRE. Wyznaczono bezwzględny i względny efekt magnetoreologiczny, analizując wpływ mikrostruktury kształtowanej na etapie wytwarzania MRE przez różne natężenie pola magnetycznego, zawartość, rozmiary i ukierunkowanie cząstek, zastosowanie promotorów adhezji i osnowy o różnej sztywności. Na podstawie badań stwierdzono, że przy tym samym udziale objętościowym cząstek, MRE o anizotropowej mikrostrukturze, kształtowanej na etapie wytwarzania w polu magnetycznym, charakteryzują się znacznie większym efektem magnetoreologicznym niż MRE o izotropowym rozmieszczeniu cząstek. Po raz pierwszy stwierdzono nieliniową zmianę właściwości reologicznych w funkcji udziału cząstek, co jest wynikiem anizotropii strukturalnej i magnetycznej, która ma najistotniejszy wpływ na zmianę właściwości MRE w polu magnetycznym, czyli efekt magnetoreologiczny. Ponadto stwierdzono, że efektem magnetoreologicznym można sterować przez zmianę kierunku ułożenia łańcuchów cząstek względem kierunku działania pola. Oznacza to, że do uzyskania odpowiednio dużego efektu magnetoreologicznego nie jest konieczne wprowadzenie dużej ilości cząstek, a należy wytworzyć odpowiednią mikrostrukturę, co można uzyskać przy znacznie mniejszym udziale objętościowym cząstek. Ma to korzystny wpływ na zmniejszenie masy konstrukcji urządzeń z zastosowaniem MRE. W wyniku badań własnych opracowano nowe elastomery magnetoreologiczne, o możliwościach aplikacyjnych, charakteryzujące się niezwykle dużym efektem magnetoreologicznym.
EN
The study is devoted to a new group of intelligent materials, such as magnetorheological elastomer composites (MREs), composed of ferromagnctic particles embedded in an elastomer matrix. They exhibit reversible changes of properties and shape under magnetic field, which makes them attractive for application as dampers, sensors or actuators. They are not fully described in literature; especially the effect of the component type and form on the composites properties is not fully known and understood. Therefore, within this work, studies of describing the role of microstructure in the property formation of magnetorheological composites were undertaken. Studies on fabrication of MREs were carried out using different elastomers as a matrix, ferromagnetic particles of various shapes and sizes, and coupling agents. Samples with isotropic and anisotropic particles arrangement were examined. Particles were oriented into chains under external magnetic field. Special attention was paid to fabrication of samples with different orientation of chains to the magnetic field direction. The influence of particles content on the elastomer properties was studied using thermal analysis, infrared and Raman spectroscopies. Distribution of stress and strain in the elastomer matrix between two macro dipoles was studied using photoelastic, digital image correlation and finite elements methods. Dynamics of relaxation in the elastomer matrix. influenced by the particles interactions with the magnetic field, was examined with a novel XPCS method based on synchrotron radiation. The MREs microstructure was studied using light and scanning electron microscopy. Quantitative description of the degree of anisotropy has been performed with computer image analysis. Structural and magnetic anisotropy of MREs was derived from the magnetic studies. Mechanical properties of MREs were also characterized in a broad range. Absolute and relative magnetorheological effects were calculated taking into account the microstructure, which was formed in the course of MREs fabrication, by changing the magnetic field strength, particles volume fraction, shape, arrangement and application of coupling agents. As a result of the studies, it has been found that MREs with an anisotropic microstructure exhibit, for the same particles content, much higher magnetorheological effect in comparison to the isotropic ones. For the first time, the non-linear change of the rheological properties versus particles fraction has been found. It is due to structural and magnetic anisotropy of MREs, which has the greatest influence on changes of the properties under magnetic field, i.e. magnetorheological effect. Moreover, it was found that the magnetorheological effect can be controlled by the particles alignment to the magnetic field lines. It means that it is possible to obtain high magnetorheological effect not by increasing the particles volume fraction, but by the formation of appropriate microstructure. It can be achieved for Iower particles volume fraction, which advantageously decreases weight of devices based on MREs. As a result of this work, new MREs, with application capabilities, characterized by extremely high magnetorheological effect, have been obtained.
Rocznik
Tom
Strony
3--171
Opis fizyczny
Bibliogr. 274 poz., tab., rys., wykr.
Twórcy
  • Wydział Inżynierii Materiałowej, Politechnika Warszawska
Bibliografia
  • [1] Encyclopedia of Smart Materials. vol. 1, pod red. Mela Schwartza, Wiley, Nowy Jork 2002
  • [2] Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002
  • [3] Garg D.P. Anderson G.L, Research in active composite materials and structures: an overview, Proc. SPIE 3992 (2000), 2-12
  • [4] Takagi T., Present State and Future of the Intelligent Materials and Systems in Japan. J. Intell. Mater. Syst. Struct. 10 (1999), 575
  • [5] Garg D.P., Zikry M.A., Anderson G.L., Current and potential future research activities in adaptive structures: an ARO perspective, Smart Mater. Struct. 10 (2001), 610-623
  • [6] Wojciechowski S., Materiały Inteligentne. Stan zagadnienia 2003, Inżynieria Materiałowa 2 (2004), 59-61
  • [7] www.matint.pl Kraków 2006
  • [8] Bellouard Y., Microrobotics, Microdevices Based on Shape-Memory Alloys, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 620-644
  • [9] Kaszuwara W., Stopy z pamięcią kształtu, Inżynieria Materiałowa 2 (2004), 65-67
  • [10] Kaszuwara W., Ceramiczne materiały piezoelektryczne, Inżynieria Materiałowa 2 (2004), 61-64
  • [11] Leonowicz M., Materiały magnetostrykcyjne, Inżynieria Materiałowa 2 (2004), 68-70
  • [12] Leonowicz M., Wykorzystanie cieczy reologicznych jako materiałów inteligentnych, Inżynieria Materiałowa 2 (2004), 70-72
  • [13] Boczkowska A., Inteligentne polimery i kompozyty polimerowe, Inżynieria Materiałowa 2 (2004), 72-76
  • [14] Pampuch R., Stoch L., Materiały inteligentne: zaawansowane materiały ceramiczne i szkła, Inżynieria Materiałowa 2 (2004), 76-80
  • [15] Morawiec H., Lelątko M., Gigla M., Lekston Z., Goryczka T., Stróż D., Stopy metali wykazujące pamięć kształtu i ich zastosowanie, Inżynieria Materiałowa 2 (2004), 87-94
  • [16] Boczkowska A., Wojciechowski S., Zastosowanie materiałów inteligentnych do nieniszczącej oceny (NDE), wyrobów i konstrukcji inżynierskich, Inżynieria Materiałowa 2 (2004), 81-87
  • [17] Holnicki-Szulc J., Pawłowski P., Przykłady zastosowań materiałów inteligentnych w monitorowaniu i adaptacji konstrukcji, Inżynieria Materiałowa 2 (2004), 94-100
  • [18] Tylikowski A., Inteligentne materiały w konstrukcjach inżynierskich, Inżynieria Materiałowa 2 (2004), 101-105
  • [19] O'Handley R.C., Allen S.M., Shape memory alloys, magnetically activated ferromagnetic shape-memory materials, Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 936-951
  • [20] Heczko O., Lanska N., Soderberg O., Ullakko K., J. Magn. Magn. Mater., (1996), 242-245
  • [21] Kholkin A., Jadidian B., Safari A., Ceramics, piezoelectric and electrostrictive, in: Encyclopedia of Smart Materials, vol. 1, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 139-148
  • [22] Jordan T.L., Ounaies Z., Characterization of piezoelectric ceramic materials, in: Encyclopedia of Smart Materials, vol. 1, pod red. Mela Schwartza. Wiley, Nowy Jork 2002, s. 162-173
  • [23] Qiu J., Tani J., Komayashi Y., Um T.Y, Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr,Ti)O3 powder and Pb(Zr,Ti)O3 sol mixture, Smart Mater. Struct., 12 (2003), 331
  • [24] Dapino M.J., Magnetostrictive materials, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 600-620
  • [25] Eda H., Nakamura N., Yamamoto Y., Development of giant magnetostriction electric generator prototype - Application of the reverse magnetostriction effect, J. Jpn. Soc. Precis. Eng. 63 (1997), 706
  • [26] Eda H., Ohmura E., Sasaki M., Kobayashi T., Ultra precise machine tool equipped with a giant magnetostriction actuator - Development of new materials, TbxDy1-x(FeyMn1-y)n and their application, Proc. Ann. CIRP 41 (1992), 421
  • [27] Eda H., Mori T., Zhou L., Kubota K., Shimizu J., Powder metallurgical giant magnetostrictive material and its applications in micro-actuator and micro-sensors, Proc. SPIE 3875 (1999), 114
  • [28] Winslow M.W., Induced fabrication of suspension, J. Appl. Phys. 20 (1949), 1137
  • [29] Klass D.L., Martinek T.W., Preparation of silica for use in fluid responsive composition, J. Appl. Phys. 38 (1967), 71
  • [30] Carlson J.D., Jolly M.R., MR fluid, foam and elastomer devices, Mechatronics 10 (2000), 555-569
  • [31] Vinogradov A., Piezoelectricity in polymers, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 780-825
  • [32] Harrison J.S., Ounaies Z., Polymers, piezoelectric, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 860-873
  • [33] Hayashi S., Kondo S., Kapadia P., Ushioda E., Room temperature shape memory polymers, Plast. Eng. 2 (1995), 29
  • [34] Dianatkhah K., Highways, in: Encyclopedia of Smart Materials, vol. 1, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 545-551
  • [35] Bar-Cohen Y., EAP as artificial Muscles - Progress and Challenges, Proceedings of SPIE 5385 (2004), 10-16
  • [36] Hanson D., White V., Converging the Capabilities of EAP Artificial Muscles and the Requirements of Bio-Inspired Robotics, Proceedings of SPIE 5385 (2004), 29-40
  • [37] Pei Q., Pelrine R., Rosenthal M., Stanford S., Prahlad H., Kornbluh R., Recent progress on elastomer artificial muscles and the application for biomimetic robots, Proceedings of SPIE 5385 (2004), 41-50
  • [38] Dai L., Intelligent Macromolecules for Smart Devices, Springer 2004, s. 41-72, 406-423
  • [39] Goulbourne N., Frecker M., Mockenstrum E., Electro Elastic Modeling of a Dielectric Elastomer Diaphragm for a Prosthetic Blood Pump, Proceedings of SPIE 5385 (2004), 122-133
  • [40] Joon Yoon K., Seokjun Shin, Hoon C. Park, Nam Seo Goo, Design and manufacture of a lightweight piezo-composite curved actuator, Smart Mater. Struct. 11 (2002), 163
  • [41] Bellouard Y., Microrobotics, microdevices based on shape-memory alloys, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza. Wiley, Nowy Jork 2002, s. 620-644
  • [42] Ashour O.A., Rogers C.A., Kordonsky W., Magnetorheological fluids: Materials, Characterization and Devices, J. Intell. Mater. Syst. Struc. 7 (1996), 123
  • [43] Hayashi S., Kondo S., Kapadia P., Ushioda E., Room temperature shape memory polymers, Plast. Eng. 2 (1995), 29
  • [44] Intelligent fibres, fabrics and clothing, pod red. Xiaoming Tao, CRC Press, Cambridge 2001
  • [45] Anderson G.L., Crowson A., Chandra J., Introduction to smart structures, in: Intelligent Structural Systems, pod red. H.S. Tzou and G.L. Anderson, Kluwer Academic Publisher 1992, s. 1-8
  • [46] Fukuda T., Kosaka T., Cure and Health Monitoring, in: Encyclopedia of Smart Materials, vol. 1, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 291-318
  • [47] Mrad N., Optical Fiber Sensor Technology: Introduction and Evaluation and Application, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 715-760
  • [48] Kurzydłowski K.J., Boczkowska A., Szmidt J., Konopka K., Spychalski W., Monitorowanie uszkodzeń w kompozytach metodami nieniszczącymi, Polimery 50 (4) (2005), 10-16
  • [49] Lawrence C.M., Nelson D.V., Bennett T.E., Spingarn J.R., An Embedded Fiber Optic Sensor Method for Determining Residual Stresses in Fiber-Reinforced Composite Materials, J. Intell. Mater. Syst. Struc. 9 (1998), 788-799
  • [50] Bartelds G., Aircraft Structural Health Monitoring, Prospects for Smart Solutions from a European Viewpoint, J. Intell. Mater. Syst. Struc. 9 (1998), 906-910
  • [51] Boczkowska A., Konopka K., Kukła D., Manaj W., Schmidt J,. Kurzydłowski K.J., Monitorowanie uszkodzeń strukturalnych i laserowe obróbki materiałów, Nowe metody oceny stopnia degradacji materiałów konstrukcyjnych, t. 2, Seminarium szkoleniowe, Zakopane 15-17 grudnia 2004, s. 133-144
  • [52] Domański A.W., Lesiak P., Milenko K., Budaszewski D., Chychlowski M., Ertman S., Tefelska M., Wolinski T.R., Jedrzejewski K., Lewandowski L., Jasiewicz W., Helsztyński J., Boczkowska A., Comparison of Bragg and polarimetric optical fiber sensors for stress monitoring in composite materials, Acta Physica Polonica A, 116 (3) (2009), 294-297
  • [53] Domański A.W., Lesiak P., Milenko K., Boczkowska A., Budaszewski D., Ertman S., Woliński T.R., Temperature-insensitive fiber optic deformation sensor embedded in composite material, Photon. Lett. of Poland 1 (3) (2009), 121-123
  • [54] Schoess J., Sensor Array Technology, Army, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 903-921
  • [55] Kiddy J.S., Chen P.C., Ross P., Ship Health Monitoring, in: Encyclopedia of Smart Materials, vol. 2, pod red. Mela Schwartza, Wiley, Nowy Jork 2002, s. 981-992
  • [56] Wojciechowski S., Boczkowska A., Intelligent materials 2004, Archives of Metallurgy and Materials 49 (4) (2004), 723-734
  • [57] Ginder J.M.. Rheology controlled by magnetic fields, in: Encyclopedia of Applied Physics, vol. 16, VCH Publisher Inc., New York 1996
  • [58] Genc S., Phule P.P., Rheological properties of magnetorheological fluids, Smart Mater. Struct. 11 (2002), 140-146
  • [59] Jolly M.R., Bender J.W., Carlson J.D., Properties and Applications of Commercial Magnetorheological Fluids, J. Intell. Mater. Syst. Struct., 10 (1999), 5-13
  • [60] Rabinow J., The Magnetic Fluid Clutch, AIEE Trans., 67 (1948), 1308-1315
  • [61] Rabinow J., Magnetic Fluid Clutch, National Bureau of Standards Technical News Bulletin 32 (4) (l948), 54-60
  • [62] Rabinow J., Magnetic Fluid Torque and Force Transmitting Device, U.S. Patent 2,575,360 (1951)
  • [63] Piao M., Lane A.M., Johnson D.T., Rheological and magnetic properties of a metal particle dispersion exposed to magnetic fields, J. Magn. Magn. Mater. 267 (2003), 366-372
  • [64] Ashour O.A., Rogers C.A., Kordonsky W., Magnetorheological Fluids: Materials, Characterization, and Devices, J. Intell. Mater. Struc. 7 (1996), 123-130
  • [65] Lim S.T, Cho M.S., Jang I.B., Choi H.J., Magnetorheological characterization of carbonyl iron based suspension stabilized by fumed silica, J. Magn. Magn. Mater. 282 (2004), 170-173
  • [66] Choi J.S., Park B.J., Cho M.S, Choi H.J., Preparation and magnetorheological characteristics of polymer coated carbonyl iron suspensions, J. Magn. Magn. Mater. 304 (2006), e374-e376
  • [67] Lee Y.S., Chae B.S., Lane A.M., Wiest J.M., Rheological behavior and microstructure of magnetic dispersions with varying nonmagnetic particle content, Colloids and Surfaces A: Physicochem. Eng. Aspects 224 (2003), 23-31
  • [68] Park B.J., Song K.H., Choi H.J., Magnetic carbonyl iron nanoparticle based magnetorheological suspension and its characteristics, Materials Letters 63 (2009), 1350-1352
  • [69] Carlson J.D., Catanzarite D.M., St. Clair K.A., Bullough W.A., editors, Proceedings of the 5th International Conference on ER Fluids, MR Fluids and Assoc. Tech. World Scientific, Singapore July 1995, 1996, 20-28
  • [70] Maganti G.B., Subramaniam V., Singh S.N., Yim W., Modeling and Semi-active Predictive Control of a Magnetorheological Fluid Shock Isolation System, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 596-606
  • [71] Lewandowski D., Właściwości tłumiące kompozytów magnetoreologicznych. Badania, modele, identyfikacja, rozprawa doktorska, Politechnika Wrocławska, Wrocław 2005
  • [72] Ciocanel C., Lipscomb G., Naganathan N.G., A Constitutive Equation for Magnetorheological Fluid Characterization, Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, edited by William D. Armstrong, Proceedings of SPIE 5761 (SPIE, Bellingham, WA, 2005), 521-529
  • [73] Bossis G., Lacis S., Meunier A., Volkova O., Magnetorheological fluids, J. Magn. Magn. Mater. 252 (2002), 224-228
  • [74] Goncalves F.D., Ahmadian M., A study on mr fluids subjected to high shear rates and high velocities, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 46-56
  • [75] Guan X., Li J., Ou J., Design and fabrication of a novel settled and laminated testing instrument for magnetorheological fluid, Smart Structures and Materials 2005: Industrial and Commercial Applications of Smart Structures Technologies, edited by Edward V. White, Proceedings of SPIE 5762 (SPIE, Bellingham. WA, 2005). 267-274
  • [76] Phule P.P., Magnetorheological fluids: Principles and applications, Smart Materials Bulletin (2001), 7-10
  • [77] Guan X., Li J., Ou J., Experiment study of large-scale magnetorheological fluid damper, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 588-595
  • [78] Ye S., Williams K.A., Torsional vibration control with an MR fluid brake, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 283-292
  • [79] Mao M., Choi Y.T., Wereley N.M., Effective design strategy for a magnetorheological damper using a nonlinear flow model, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 446-455
  • [80] Hong S.R., Wang G., Hu W., Wereley N.M., Niemczuk J., An automotive suspension strut using compressible magnetorheological fluids, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 238-246
  • [81] Vavreck A.N., Ho C.H., Characterization of a commercial magnetorheological brake/damper in oscillatory motion, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 256-267
  • [82] Sinan Karakas E., Gordaninejad F., Control of a quarter HMMWV suspension system using a magneto-rheological fluid damper, Smart Structures and Materials 2004: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5386 (SPIE, Bellingham, WA, 2004), 204-213
  • [83] Ahmadian M., Song X., Sandu C., Designing an Adaptive Semiactive Magneto Rheological Seat Suspension for Heavy Truck Applications, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 247-255
  • [84] Ławniczak A., Milecki A., Ciecze elektro- i magnetoreologiczne oraz ich zastosowania w technice, Wydawnictwo Politechniki Poznańskiej, Poznań 1999
  • [85] Batterbee D.C., Simsa N.D., Stanway R., Wolejsza Z., Design and performance optimisation of magnetorheological oleopneumatic landing gear, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 77-88
  • [86] Nosse D.T., Dapino M.J., Compact actuation through magnetorheological flow control and rectification of magnetostrictive vibrations, Smart Structures and Materials 2005: Smart Structures and Integrated Systems, edited by Alison B. Flatau, Proceedings of SPIE 5764 (SPIE, Bellingham, WA, 2005), 262-273
  • [87] Duan Y.F., Ni Y.Q., Ko J.M., Design guidelines for open-loop vibration control of stay cables using MR dampers, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mcchanical, and Aerospace Systems, edited by Masayoshi Tomizuka, Proceedings of SPIE 5765 (SPIE, Bellingham, WA, 2005), 678-689
  • [88] Yan S., Zhang H., Smart vibration control analysis of seismic response using MR dampers in the elevated highway bridge structures, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, edited by Masayoshi Tomizuka, Proceedings of SPIE 5765 (SPIE, Bellingham, WA, 2005), 1053-1060
  • [89] Wang X., Gordaninejad F., Hitchcock G., Bangrakulur K., Fuchs A., Elkins J., Evrensel C., Dogruer U., A new modular magneto-rheological fluid valve for large-scale seismic applications, Smart Structures and Materials 2004: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5386 (SPIE, Bellinghain, WA, 2004), 226-237
  • [90] Gwanghee Heo, Giu Lee, Woo Sang Lee, Donggi Lee, Designing a Smart Damping System to Mitigate Structure Vibration: Part 2. Experimental Approval of Unified Lyapunov Control Algorithm, Smart Structures and Materials 2005: Modeling, Signal Processing, and Control, edited by Ralph C. Smith, Proceedings of SPIE 5757 (SPIE, Bellingham, WA, 2005), 587-593
  • [91] Yoo J.-H., Sirohi J., John S., Chaudhuri A., Cadou C., Wereley N.M., Bidirectional Control of a Magnetorheological Piezo-Hydraulic Actuator, Smart Structures and Materials 2004: Smart Structures and Integrated Systems, edited by Alison B. Flatau, Proceedings of SPIE 5390 (SPIE, Bellingham, WA, 2004), 116-126
  • [92] www.matint.pl/materialy-magnetoreologiczne.php
  • [93] Jeong-Hoi Koo, Application of Magnetorheological fluid devices, AVDL 2002
  • [94] Herr H., Kornbluh R., New horizons for orthotic and prosthetic technology: artificial muscle for ambulation, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), edited by Yoseph Bar-Cohen, Proceedings of SPIE 5385 (SPIE, Bellingham, WA, 2004), 1-9
  • [95] Shukla A., Van Kuren M.B., Nonlinear dynamics of a magnetorheological-fluid-based active suspension system for a neonatal transport, Smart Structures and Materials 2004: Damping and Isolation, edited by Kon-Well Wang, Proceeding of SPIE 5386 (SPIE, Bellingham, WA, 2004), 83-92
  • [96] Holm C., Weis J.J., The structure of ferrofluids: A status report, Current Opinion in Colloid & Interface Science 10 (2005), 133-140
  • [97] Romero A.H., Mejia-Lopez J., Theoretical study on the configurational phase space of ferrofluids, LAW3M05, Proceedings of the Seventh Latin American Workshop on Magnetism, Physica B 384 (2006), 19
  • [98] Kazimierska-Drobny K., Konop J., Nowak B., Ferro-ciecze. Propagacja fal ultradźwiękowych w nasyconym ferro-cieczą miękkim magnetycznie materiale porowatym, Praca w ramach Kursu Eksperckiego Smart-Technology Expert School, IPPT- PAN, 2005, s. 1-15
  • [99] Kormann C., Laun H.M., Richter H.J., in: Bullough (ed.), Proceedings of the Fifth International Conference on ER and MR Fluids, World Scientific, Singapore (1996), 362
  • [100] Hong C.Y., Lin C.H., Chen C.H., Chiu Y.P., Yang S.Y., Horng H.E., Yang H.C., Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field, J. Magn. Magn. Mater. 226230 (2001), 1881-1883
  • [101] Zrinyi M., Szabo D., Kilian H.G., Kinetics of Shape Changes of Magnetic Field Sensitive Polymer Gels, Polymer Gels and Networks 6 (1999), 441-454
  • [102] Zrinyi M., From ferrofluids to ferrogels, ww.fias.unifrankfurt.de/~kantorovich/Zrinyi.pdf
  • [103] Szabo D., Czako-Nagy I., Zrinyi M., Vertes A., Magnetic and Mossbauer Studies of Magnetite-Loaded Polyvinyl Alcohol Hydrogels, Journal of Colloid and Interface Science 221 (2000), 166-172
  • [104] Ziynyi M., Barsi L., Buki A., Ferrogel: a new magneto-controlled elastic medium. Polymer Gels and Networks 5 (1997), 415-427
  • [105] Zrinyi M., Intelligent polymer gels controlled by magnetic fields, Colloid Polym. Sci. 278 (2000), 98-103
  • [106] Czaun M., Hevesib L., Takafujia M., Iharaa H., New alternative route for synthesis of magneto-responsive gels, www.lorentzcenter.nl/lc/web/2007/242/abstracts/Czaun.pdf
  • [107] Kavlicoglu B.M., Gordaninejad F., Wang X , Hitchcock G., Magneto-rheological fluid flow in channels with porous walls, Smart Structures and Materials 2005: Damping and Isolation, edited by Kon-Well Wang, Proceedings of SPIE 5760 (SPIE, Bellingham, WA, 2005), 434-445
  • [108] Bednarek S., Elastomery magnetoreologiczne - właściwości, technologia, zastosowania, Inżynieria Materiałowa 1 (2003), 39-44
  • [109] Bednarek S., Changes of thickness and self-excited oscillalions of the conducting porous magnetoelast nearby percolation threshold caused by current flow, Materials Science and Engineering B94 (2002), 89-94
  • [110] Zhou G.Y., Shear properties of magnetorheological elastomer, Smart Mater. Struct. 12 (2003), 139-146
  • [111] Farshad M., Benine A., Magnetoactive elastomer composites, Polymer Testing 23 (2004), 347-353
  • [112] Jolly M.R., Carlson J.D., Munoz B.C., Bullions T.A., The Magnetoviscoelastic Response of Elastomer Composite Consisting of Ferrous Particles Embedded in a Polymer Matrix, J. Intell. Mater. Syst. Struct. 7 (1996), 613-622
  • [113] Banks H.T., Pinter G.A., Porter L.K., Gaitens M.J., Yanyo L.C., Modeling of Nonlinear Hysteresis in Elastomer under Uniaxial Tension, J. Intell. Mater. Syst. Struct. 10 (1999)
  • [114] Liu B., Shaw M.T., Electrorheological Effects of ER Gels Containing Iron Particles, J. Intell. Mater. Syst. Struct. 12 (2001), 57-63
  • [115] Farshad M., Le Roux M., Compression properties of magnetostrictive polymer composite gels, Polymer Testing 24 (2005), 163-168
  • [116] Kankanala S.V., Triantafyllidis N., On finitely strained magnetorheological elastomers, J. Mech. Phys. Solids 52 (2004), 2869-2908
  • [117] Wang Y., Hu Y., Chen L., Gong X., Jiang W., Zhang P., Chen Z., Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers, Polymer Testing 25 (2006), 262-267
  • [118] Guan X., Dong X., Ou J., Magnetostrictive effect of magnetorheological elastomer, J. Magn. Magn. Mater. 320 (2008), 158-163
  • [119] Lokander M., Reitberger T., Stenberg B., Oxidation of natural rubber-based magnetorheological elastomers, Polymer Degradation and Stability 86 (2004), 467-471
  • [120] Stewart W.M., Ginder J.M., Elie L.D., Nicholls M.E., Method and apparatus for reducing brake shudder. US Patent 5,816,587 (1998)
  • [121] Watson J. R., Methods and apparatus for varying the stiffness of a suspension bushing, US Patent 5,609,353 (1997)
  • [122] Khoo M., Liu C., Micromagnetic silicone elastomer membrane actuator, Sensors and Actuators A, Physical 89 (2001), 259-266
  • [123] Elie et al., Method for allowing rapid evaluation of chassis elastomeric devices in motor vehicles US Patent 5,974,856 (1999)
  • [124] Gartner et al., Vibration damper, US Patent 6,050,555 (2000)
  • [125] Lerner et al., Adaptable vibration absorber employing a magnetorheological elastomer with variable gap length and methods and systems therefore, US Patent Application Publication, 2005/0040922A1 (2005)
  • [126] Hitchcock et al., Controllable magneto-rheological elastomer vibration isolator, US Patent Application Publication, 2005/0011710A1 (2005)
  • [127] Ginder J.M., Nichols M.E., Elie L.D. and Tardiff J.L., Magnetorheological elastomers: Properties and applications, SPIE Conference on Smart Materials Technologies 3675 (1999), 131-138
  • [128] Ginder J.M., Nichols M.E., Elie L.D. and Clark S.M, Controllable-stiffness components base on magnetorheological elastomers, Proceedings of SPIE Smart Structures and Integrated Systems 3985 (2000), 418-425
  • [129] Vicente J., Bossis G., Lacis S., Guyot M., Permability measurements in cobalt ferrite and carbonyl iron powders and suspensions, J. Magn. Magn. Mater. 251 (2002), 100-108
  • [130] An Y., Shaw M.T., Actuating properties of soft gels with ordered iron particles: basis for a shear actuator. Smart Mater. and Struct. 12 (2003), 157-163
  • [131] Farshad M., Le Roux M., A new active noise abatement barrier system, Polymer Testing 23 (2004), 855-860
  • [132] Kallio M., Aalto S., Lindroos T. et al., Preliminary test on a MRE device, AMAS Workshop on Smart Materials and Structures SMART'03, Jadwisin, 2-5.09.2003, conference proceedings s. 353-360
  • [133] Lokander M., Stenberg B., Improving the magnetorheological effect in isotropic magnetorheological rubber materials, Polymer Testing 22 (2003), 677-680
  • [134] Lokander M., Stenberg B., Performance of isotropic magnetorheological rubber materials. Polymer Testing 22 (2003), 245-251
  • [135] Dishovsky N., Ruskova K., Radulov I., “In situ” magnetic modification of polar elastomers, Materials Research Bulletin 36 (2001), 35-45
  • [136] Hansaka M., Preparation and Properties of Magnetic Vibration Damper, Proc. Inter-noise 93 (1993), 859-862
  • [137] Hansaka M., Mifune N., Damping properties of Magnetic Vibration Damper (MVD). Proc. Inter-noise 94 (1994), 693-696
  • [138] Wang D., Chen J-S., Sun L., Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method, Finite element: in Analysis and Design 39 (2003), 765-782
  • [139] Yina H.M., Suna, L.Z., Chen J.S., Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles, Journal of the Mechanics and Physics of Solids 54 (2006), 975-1003
  • [140] Scheerbaum N., Hinz D., Gutfleisch O., Muller K.H., Schultz L., Textured polymer bonded composites with Ni-Mn-Ga magnetic shape memory particles, Acta Materialia 55 (2007), 2707-2713
  • [141] Scheerbaum N., Hinz D., Gutfleisch O., Compression-induced texture change in Ni-Mn-Ga-polymer composites observed by synchrotron radiation, J. Appl. Phys. 101 (2007), 09C501
  • [142] Feuchtwanger J., Griffin K., Huang J.K., Bono D., O'Handley R.C., Allen S.M., J. Magn. Mat. 2038 (2004), 272-276
  • [143] Feuchtwanger J., Richard M.L., Tang Y.J., Berkowitz A.E., O'Handley R.C., Allen S.M., J. Appl. Phys. 97 (2005), 10M319
  • [144] Bednarek S., The coupling of magnetostriction and magnetoresistance in elastic ferromagnetic composites with conducting matrix, Materials Science and Enginccring B63 (1999), 228-233
  • [145] Ułański J., Krzyszewski M., Polymers, electrical and electronic properties, in: Encyclopedia of Applied Physics, vol. 14, VCH Publisher Inc., New York 1996
  • [146] Roth S., Survey of industrial applications of conducting polymers, Acta Physica Polonica 87 (1995), 4-5
  • [147] Coquelle E., Bossis G., Mullins effect in elastomers filled with particles aligned by a magnetic field. International Journal of Solids and Structures 43 (2006), 7659-7672
  • [148] Chen L., Gong X.L., Li W.H., Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers, Smart Mater. Struct. 16 (2007), 2645-2650
  • [149] Boczkowska A., Awietjan S.F, Wróblewski R., Microstructure - property relationships of urethane magnetorheological elastomers, Smart Mater. Struct. 16 (2007), 1924-1930
  • [150] Boczkowska A., Awietjan S.F., The influence of mictrostructural anisotropy on the magnetorheological effect in elastomer-based composites with iron particles, Composites 8 (4) (2008), 327
  • [151] Varga Z., Filipcsei G., Zrinyi M., Smart composites with controlled anisotropy, Polymer 46 (2005), 7779-7787
  • [152] Gong X.L., Zhang X.Z., Zhang P.Q., Fabrication and characterization of isotropic magnetorheological elastomers, Polymer Testing 24 (2005), 669-676
  • [153] Hua Y., Wang Y.L., Gong X.L., Gong X.Q., Zhang X.Z., Jiang W.O., Zhang P.Q., Chen Z.Y., New magnetorheological elastomers based on polyurethane/Si-rubber hybryd, Polymer Testing 24 (2005), 324-329
  • [154] Wang Y., Hu Y., Deng H., Gong X., Zhang P., Jiang W., Chen Z., Magnetorheological Elastomers Based on Isobutylene-Isoprene Rubber, Polymer Engineering And Science DOI 10.1002(2006), 204-208
  • [155] Gasperowicz A., Kaleta J., Zając P., Ziętek G., Badanie i modelowanie izotropowych elastomerów magnetoreologicznych, Prace Naukowe Politechniki Wrocławskiej, Mechanika (2007), 25-30
  • [156] Wang Y., Hu Y., Chen L., Gong X., Jiang W., Zhang P., Chen Z., Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers, Polymer Testing 25 (2006), 262-267
  • [157] Truesdell C., Toupin R., The classical field theories, in: Flugge S. (ed.), Handbuch der Physik, vol. III/I, Springer, Berlin 1960
  • [158] Tiersten H.F., Coupled magnetomechanical equations for magnetically saturated insulators, J. Math. Phys. 5 (1964), 1298-1318
  • [159] Maugin G.A., Eringen A.C., Deformable magnetically saturated media I. Field equations. J. Math. Phys. 13 (1972), 143-155
  • [160] Pao Y.-H., Yeh C.-S., A linear theory soft ferromagnetic elastic bodies, Int. J. Eng. Sci. 11 (1973), 415-436
  • [161] Pao Y.-H., Electromagnetic forces in deformable continua, in: Nemat-Nasser S., (ed.), Mechanics Today, vol. 4. Pergamon Press, New York 1978, s. 209-306
  • [162] Tiersten, H.F., Variational principle for saturated magnetoelastic insulators, J. Math. Phys. 6 (1965), 779-787
  • [163] Brown W.F., Magnetoelastic Interactions, Springer, New York 1966
  • [164] Borcea L., Bruno O., On the magneto-elastic properties of elastomer-ferromagnet composites. J. Mech. Phys. Solids 49 (2001), 2877-2919
  • [165] Dorfmann A., Brigadnov I.A., Mathematical modeling of magneto-sensitive elastomers, International Journal of Solids and Structures 40 (2003), 4659-4674
  • [166] Dorfmann A., Brigadnov I.A., Constitutive modeling of magneto-sensitive Cauchy-elastic solids, Computational Materials Science 29 (2004), 270-282
  • [167] Dorfmann A., Ogden R.W., Saccomandi G., Universal relations for non-linear magnetoelastic solids, International Journal of Non-Linear Mechanics 39 (2004), 1699-1708
  • [168] Yin H.M., Sun L.Z., Chen J.S., Micromechanics-based hyperelastic constitutive modeling of magnetostrictive particle-filled elastomers, Mechanics of Materials 34 (2002), 505-516
  • [169] Schramm G., Reologia. Podstawy i zastosowania, Ośrodek Wydawnictw Naukowych, Poznań 1998
  • [170] Goupta R.K., Polymer and Composite Rheology, CRC Press, 2000
  • [171] Wilczyński K., Reologia w przetwórstwie tworzyw sztucznych, WNT, Warszawa 2001
  • [172] Rheology - theory and applications course, TA Instruments, USA 2004
  • [173] Kelar K., Ciesielska D., Fizykochemia polimerów. Wybrane zagadnienia, Wydawnictwo Politechniki Poznańskiej, Poznań 1997
  • [174] Li W.H., Du H., Chen G., Yeo S.H., Viscoelastic properties of MR fluids under oscillatory shear, Smart Structures and Materials 2001: Damping and Isolation. Inman D.J. (ed.), Proceedings of SPIE 4331 (2001), 333-342
  • [175] Feny J.D., Viscoelastic properties of polymers, Wiley, 1980.
  • [176] Demchuk S.A., Kuzmin V.A., Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation, Journal of Engineering Physics and Thermophysics 75 (2) (2002), 396-400
  • [177] Yalcintas M., Dai H., Vibration suppression capabilities of magnetorheological materials based adaptive structures, Smart Mater. Struct. 13 (2004), 1-11
  • [178] Zhou G.Y., Jiang Z.J., Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field, Smart Mater. Struct. 13 (2004), 309-316
  • [179] Dorfmann A., Ogden R.W., Magnetoelastic modeling of elastomers, European Journal of Mechanics A/ Solids 22 (2003), 497-507
  • [180] Böse H., Röder R., Magnetoreological elastomers with high variability of their mechanical properties, 11th Conference on Electrorheological Fluids and Magnetorheological Suspensions, Journal of Physics: Conference Series 149 (2009), 1-6
  • [181] Jolly M.R., Carlson J.D., Munoz B.C., A model of the behaviour of magnetorheological materials, Smart Mater. Struct. 5 (1996), 607-614
  • [182] Ginder J.M., Clark S.M., Schlotter W.F., Nichols M.E., Magnetostrictive phenomena in magnetorheological elastomers, Int. J. Modern Phys. B, 16 (17, 18) (2002), 2412-2418.
  • [183] Ray S., Shanmugharaj M., Bhowmick K., A new parameter for interpretation of polymer-filler and filler-filler interactions in rubber vulcanizates, J. Mater. Sci. Letters 21 (2002), 1097-1100
  • [184] Ginder J.M.. Schlotter W.F., Nichols M.E., Magnetorheological elastomers in tunable vibration absorbers, Smart Structures and Materials 2001: Damping and Isolation, Inman D.J, (ed.), Proceedings of SPIE 4331 (2001), 103-110
  • [185] Zhou G.Y., Shear properties of magnetorheological elastomer, Smart Mater. Struct. 12 (2003), 139-146
  • [186] Zhou G.Y, Li J.R., Dynamic behavior of a magnetorheological elastomer under uniaxial deformation: I. Experiment, Smart Mater. Struct. 12 (2003), 859-872
  • [187] Shiga T., Okada A., Kurauchi T., Magnetroviscoelastic behavior of composite gels, J. Applied Polymer Science 5 (1995), 787-792
  • [188] Bellan C., Bossis G., Field dependence of viscoelastic properties of MR elastomers, Int. J. Modern Phys. B, 16 (17, 18) (2002), 2447-2453
  • [189] Bose H., Viscoelastic properties of silicon based magnetorheological elastomers. Int. J. Modern Phys. B, 21 (28, 29) (2007), 4790-4797
  • [190] Gong X.L., Chen L., Li J.F., Study of utilizable magnetorheological elastomers, Int. J. Modern Phys. B, 21 (28, 29) (2007), 4875-4882
  • [191] Chen L., Gong X.L., Li W.H., Effect on carbon black on the mechanical performance of magnetorheological elastomers, Polymer Testing 27 (2008), 340-345
  • [192] Zhang X.Z., Gong X.L., Zhang P.Q, Li W.H., Existence of Bound-Rubber in Magnetorheological Elastomers and Its Influence on Material Properties, Chin. J. Chem. Phys. 20 (2) (2007), 173-179
  • [193] Fan Y.C., Gong X.L., Jiang W.Q., Zhang W., Wei B., Effect of maleic anhydride on damping property of magnetorheological elastomers, Smart Mat. Struct. in revision
  • [194] Jiang W.G., Yao J.J., Gong X.L., Chen L., Enhancement in Magnetorheological Effect of Magnetorheological Elastomers by Surface Modification of Iron Particles. Chin. J. Chem. Phys. 21 (2008), 87-92
  • [195] Li J., Gong X., Zhu H., Jiang W., Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers, Polymer Testing 28 (2009), 331-337
  • [196] Ginder J.M., Rheology controlled by magnetic fields, in: Encyclopedia of Applied Physics, vol. 16, VCH Publisher Inc., New York 1996
  • [197] Rosensweig R.R., Ferrohydrodynamics, Cambridge University Press, Cambridge 1985
  • [198] Shen Y., Golnaraghi M.F., Heppler G.R., Esperimental Research and Modeling of Magnetorheological Elastomers, J. Intell. Mater. Syst. Struct. 15 (2004), 27-35
  • [199] Jolly M.R., Carlson J.D., Munoz B.C., A model of the behaviour of magnetorheological materials, Smart Mater. Struct. 5 (1996), 607-614
  • [200] Drozdov A.D., Dorfmann A., A micro-mechanical model for the response of filled elastomers at finite strains, International Journal of Plasticity 19 (2003), 1037-1067
  • [201] Dorfmann A., Ogden R.W., A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber, International Journal of Solids and Structures 40 (2003), 2699-2714
  • [202] Zhang X., Li W., Gong X.L., An effective permeability model to predict field-dependent modulus of magnetorheological elastomers, Communications in Nonlinear Science and Numerical Simulation 13 (2008), 1910-1916
  • [203] Dorfmann A., Ogden R.W., Nonlinear magnetoelastic deformations of elastomers, Acta Mechanica (2003)
  • [204] Boczkowska A., Babski K., Osiński J., Żach P., Modelowanie charakterystyki przy ściskaniu oraz właściwości użytkowe hiperelastycznych materiałów poliuretanowych stosowanych w budowie maszyn, Polimery 53 (7-8) (2008), 40-46
  • [205] Pritz T., Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials, Journal of Sound and Vibration 195 (1) (1996), 103-115
  • [206] Pritz T., Five-parameter fractional derivative model for polymeric damping materials, Journal of Sound and Vibration 265 (2003), 935-952
  • [207] Davis L.C., Model of magnetorheological elastomers, J. Appl. Phys. 85 (6) (1999), 3348-3351
  • [208] Guth E., Theory of Filler Reinforcement, J. Appl. Phys. 16 (1945), 20
  • [209] Yurkov G.Yu., Gubin S.P., Pankratov D.A., Koksharov Yu.A., Kozinkin A.V. Spichkin Yu.I., Nedoseikina T.I., Pirog I.V., Vlasenko V.G. Iron(III) Oxide Nanoparticles in a Polyethylene Matrix. Inorganic Materials 38 (2) (2002), 137-145
  • [210] Sun T.L., Gong X.L., Jiang W.Q., Li J.F., Xu Z.B., Li W.H., Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber, Polymer Testing 27 (2008), 520-526
  • [211] Zając P., Kaleta J., Lewandowski D. and Gasperowicz A., Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing, Smart Mater. Struct. 19 (4) (2010), 045014
  • [212] Filipcsei G., Csetneki I., Szilagyi A., Zirnyi M., Magnetic Field-Responsive Smart Polymer Composites, Advanced Polymer Science 206 (2007), 137-186
  • [213] Varaga Z., Filipcsei G., Zrinyi M., Smart composites with controlled anisotropy, Polymer 46 (2005), 7779-7787
  • [214] Bednarek S., Thermomagnetoelastic and thermoelastic properties of a ferromagnetic composite within an elastomer matrix, Materials Science and Engineering 855 (1998), 201-209
  • [215] Bednarek S., The giant magnetoresistance in a ferromagnetic suspension, Materials Science and Engineering B54 (1998), 196-201
  • [216] Kallio M., The elastic and damping properties of magnetorheological elastomers, VTT Publications 565, ESPOO 2005
  • [217] de Buyl F., Silicone scalants and structural adhesives, International Journal of Adhesion & Adhesives 21 (2001), 411-422.
  • [218] Kercza Ju., Fiziczeskaja Chimija Poliuretanów, Naukowa Dumka, Kijów 1979
  • [219] Olczyk W., Poliuretany, WNT, Warszawa 1968, 208-256
  • [220] Wirpsza Z., Poliuretany - chemia, technologia, zastosowanie, WNT, Warszawa 1991
  • [221] Gruin I., Ryszkowska J., Boczkowska A., Markiewicz B., Zależność właściwości makroskopowych od budowy lanych elastomerów nitrylomocznikowouretanowych, Polimery 39 (1994), 226
  • [222] Gruin I., Boczkowska A., Ryszkowska J., Elastomery nitrylomocznikowouretanowe modyfikowane pochodną amidową, Polimery 41 (1996), 350
  • [223] Gruin I., Advances in Urethane Science and Technology, wyd. K.C. Frish, D. Klempner, Technomic Publ. 11 (1992), 217
  • [224] Cooper S.L., Tobolsky A.V.. Properties of linear elastomeric polyurethanes, J. of Appl. Polym. Sci. 10 (1966), 1837
  • [225] Foks J., Janik H., Microscopic studies of segmented urethanes with different hard segment content, Polymer Engineering and Science 20 (1989), 113
  • [226] Miller J.A., Wang C.B., Speckhard T.A., Org. Coat. Appl. Polym. Sci. 47 (1982), 124
  • [227] Foks J., Janik H., Russo R., Winiecki S., Interdependence of structure and properties in segmented polyurethanes, J. of Appl. Polym. Sci. 1982, 27, 645
  • [228] Wilkes C.E., Yusek C.S., Investigation of domain structure in urethan elastomers by X-Ray and thermal methods, J. Macromol. Sci. - Phys. B7 (1) (1973), 157
  • [229] Boczkowska A., Ryszkowska J., Morphology and properties of urea-urethane nanocomposites obtained from crystalline prepolymers with different chemical structure, Solid State Phenomena 94 (2003), 329-334
  • [230] Gruin I., Materiały polimerowe, PWN, Warszawa 2003
  • [231] Voralux HF 505, product information, Dow Chemical Company
  • [232] Alfaster T 620, specyfikacja techniczna, Alfa Systems, Brzeg Dolny
  • [233] URETHANE ISOCYANATES, prospekt firmy Dow Chemical Company
  • [234] Vorastar HB 6013 isocyanate, specyfikacja techniczna, Dow Chemical Company
  • [235] Kazicyna L.A., Kupletska N.B., Metody spektroskopowe wyznaczania struktury związków ogranicznych, PWN, Warszawa 1976, s. 243-247, 271-297
  • [236] Nair B.R., Gregoriou V.G., Hammond P.T., FT-IR studies of side chain liquid crystalline thermoplastic elastomers, Polymer 41 (2000), 2961-2970
  • [237] Boczkowska A., Awietjan S., Elastomery uretanowe aktywowane polem magnetycznym, Polimery 54 (1) (2009), 26-30
  • [238] Lockette P.R., Kadlowec J., Koo J.H., Particle mixtures in magnetorheological elastomers (MREs), Smart Structures and Materials 2006, Proceedings of SPIE 6170
  • [239] Namduri H., Nasrazatani S., Quantitative analysis of iron oxides using Fourier transfom infrared spectrophotometry, Corrosion Science 50 (2008), 2493-2497
  • [240] Nasrazatani S., Raman A., Application of IR spectra to study the rust system, Corrosion Science, 34 (8) (1993), 1335-1365
  • [241] Corneil R.M., Schwertmann U., The iron oxides, Weinheim, New York 1996
  • [242] Szymczyk W., Boczkowska A., Niezgoda T., Zubko K., Experimental Validation of Numerical Methods of MRE Simulations, Solid State Phenomena, 154 (2009), 113-120
  • [243] Zubko K., Boczkowska A., Niezgoda T., Szymczyk W., Badanie modelowe oddziaływań w makropróbce elastomeru magnetoreologicznego w polu magnetycznym, Inżynieria Materiałowa 4 (2009), 256-260
  • [244] Boczkowska A., Czechowski L., Jaroniek M., Niezgoda T., Analysis of magnetic field effect on ferromagnetic spheres embedded in elastomer pattern, Journal of Theoretical and Applied Mechanics 48 (3) (2010), 659-676
  • [245] Niezgoda T., Szymczyk W., Boczkowska A., Numerical investigation of a coupling problem in magnetorheological elastomer FEM simulations, Journal of KONES 15 (4) (2008), 385-391
  • [246] Miedzińska D., Niezgoda T., Boczkowska A., Various approaches to magnetorheological elastomers structures FE modeling, Journal of KONES 17 (1) (2010), 255-260
  • [247] Coquelle E., Properietes elastiques et viscoelastiques de materiaux composities adaptatifs. Du traitement de surface des charges au comportement magnetorheologique. PHD thesis, Universite de Nice Sophia-Antipolis, 2005
  • [248] Clarke R., Schlottler W.F., Cionca C., Paruchuri S.S., Cunningham J.B., Dufresne E.M., Dierker S.B., Arms D.A., Ginder J.M., Nichols M.E., Dynamics of Nanomagnetic MR Elastomers (2000), pobrano z http://www.aps.anl.gov/
  • [249] Grübel G., Zontone F., Correlation spectroscopy with coherent X-rays., Journal of Alloys and Compounds 362 (2004), 3-11
  • [250] Dierker S.B., Pindak R., Fleming R.M., Robinson I.K., Berman L., X-Ray Photon, Correlation Spectroscopy Study of Brownian Motion of Gold Colloids in Glycerol, Phys. Rev. Lett. 75 (3) (1995), 449-452
  • [251] Wagner J., Autenrieth T., Robert A., Hartl W., Grubel G., Structure and dynamics of complex liquids with magnetic dipole-dipole interactions by means of static and dynamic X-ray scattering, J. Magn. Magn. Mater. 289 (2005), 54-57
  • [252] Heeley E.L., Gough T., Bras W., Gleeson A.J., Coates P.D., Ryan A.J., Polymer processing: Using synchrotron radiation to follow structure development in commercial and novel polymer materials, Nuclear Instruments and Methods in Physics Research B 238 (2005), 21-27
  • [253] Schlotter W., Paruchuri S., Erncarnacion P., Dufresne E., Dierker S.B., Clarke R., Ginder J.M., Nichols M.E., Speckle Analysis of Relaxation Dynamics in Magnetorheological Elastomers, pobrano z http://www.aps.anl.gov/
  • [254] Schlotter W.F., Cionca C., Paruchuri S.S., Cunningham J.B., Dufresne E., Dierker S.B., Arms D., Clarke R., Ginder J.M., Nichols E., The Dynamics of Magnetorheological Elastomers Studied by Synchrotron Radiation Speckle Analysis. International Journal of Modern Physics B 16 (17, 18) (2002), 2426-2432
  • [255] Grigoriew H., Wiegart L., Boczkowska A., Dynamic Correlation in Magnetic Composite under Magnetic Field Studied by XPCS, XIV International Conferences on Small-Angle Scattering SAS-2009, 13-18 September, Oxford, U K., conference proceedings p. 186-87
  • [256] Grigoriew H., Wiegert L., Boczkowska A., Mirkowska M., XPCS study of Dynamics correlation in polyurethane gel-carbonyl iron composite under magnetic field, Journal of Physics: Conference Series 2010, w druku
  • [257] Boczkowska A., Awietjan S.F., Urethane magnetorheological elastomers mictostructure and properties, III ECCOMAS Thematic Conference “Smart Structures and Materials”, 9-11 July 2007 Gdańsk, Poland, conference proceedings p. 06
  • [258] Boczkowska A., Awietjan S., Elastomery uretanowe aktywowane polem magnetycznym, Materiały Polimerowe POMERANIA-PLAST 23-25.05.2007, Szczecin-Kołobrzeg, materiały konferencyjne p. 53-54
  • [259] Zubko K., Boczkowska A., Niezgoda T., Kurzydłowski K.J., Modelling of Magnetic Field Effect on Magnetorheological Elastomers Mictostructure, III ECCOMAS Thematic Conference “Smart Structures and Materials”, 9-11 July 2007 Gdańsk, Poland, conference proceedings p. 43
  • [260] Miedzińska D., Łazowski J., Boczkowska A., Introduction to n-body simulation of magnetorheological elastomer (MRE) microstructure forming process, Journal of KONES 17 (1) (2010), 249-254
  • [261] Boczkowska A., Awietjan S.F., Effect of the processing conditions on the mechanical properties of urethane magnetorheological elastomers, Materials Science Forum 587-588 (2008), 630-634
  • [262] Boczkowska A., Awietjan S.F., Urethane Magnetorheological Elastomers - Manufacturing. Microstructure and Properties, Solid State Phenomena, 154 (2009), 107-112
  • [263] Boczkowska A., Awietjan S., Wejrzanowski T., Kurzydłowski K.J., Image analysis of the microstructure of magnetorheological elastomers, Journal of Materials Science, 44 (2009), 3135-3140
  • [264] Boczkowska A., Awietjan S.F., Smart composites of urethane elastomers with carbonyl iron, Journal of Materials Science, 44 (2009), 4104-4111
  • [265] Composites - ASM Handbook, t. 21. ASM International Materials Park, USA 2001
  • [266] Matthews F.L., Rawlings R.D., Composite Materials: Engineering and Science, Chapman & Hall, Londyn 1994
  • [267] Boczkowska A., Kapuściński J., Lindemann Z., Witemberg-Perzyk D., Wojciechowski S., Kompozyty, wyd. II zm., Oficyna Wydawnicza PW, Warszawa 2003
  • [268] Boczkowska A., Awietjan S.F., Effect of the microstructure on rheological properties of the urethane magnetorheological elastomers, MESOMECHANICS 2008, Multiscaling and Mesomechanics in Relation to Sustainability, Safety and Economy of Materials and Structures: Advanced and Smart, Jan.28-Feb.1, 2008, Egypt, conference proceedings M29 s. 1-8
  • [269] Boczkowska A., Awietjan S.F., Effect of the Particles Content on the Properties of the Magnetorheological Elastomers, Seventh International Conference on Composite Science and Technology, 20-22 January 2009, Dubaj, United Arab Emirates, 2009, CD conference proceedings
  • [270] Boczkowska A., Awietjan S.F., Tuning Active Magnetorheological Elastomers for Damping Applications, Materials Science Forum 636-637 (2010), 766-771
  • [271] Boczkowska A., Awietjan S.F., Mechanical properties of magnetorheological elastomers, IV ECCOMAS Thematic Conference SMART'09, Smart Structures and Materials, 13-15 July 2009, Porto, Portugal, CD conference proceedings
  • [272] Von Lockette P.R., Lofland S.E., Koo J.-H., Kadlowec J., Dermond M., Dynamic characterization of bimodal particle mixtures in silicone rubber magnetorheological materials, Polymer Testing 27 (2008), 931-935
  • [273] Boczkowska A., Awietjan S.F., Influence of the microstructure on the properties of magnetorheological elastomers, Technical Transactions, Mechanics 106 (3) (2009), 31-36
  • [274] Materiały promocyjne firmy Audi, http://www.r8.audi.pl/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0043-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.