PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie związków organicznych w wytwarzaniu antyściernych i antykorozyjnych warstw powierzchniowych metodą PAMOCVD

Identyfikatory
Warianty tytułu
EN
Application of organic compounds in production of antiabrasive and anticorrosive surface layers by the PAMOCVD method
Języki publikacji
PL
Abstrakty
PL
Zwiększenie wymagań stawianych materiałom w zakresie m.in.: właściwości mechanicznych, odporności na zużycie przez tarcie, oddziaływania podwyższonej temperatury, oddziaływania korozyjno-erozyjnego itp., wpłynęło w znacznym stopniu na konieczność ulepszania istniejących i opracowywania nowych materiałów, odznaczających się wysokimi właściwościami eksploatacyjnymi. Techniki inżynierii powierzchni stwarzają szerokie możliwości wytwarzania wyrobów o żądanych właściwościach na bazie istniejących materiałów, przystosowując je do wymagań eksploatacyjnych, co stanowi ich istotną zaletę z ekonomicznego punktu widzenia. Metoda PAMOCVD jest połączeniem metod MOCVD i PACVD. Celem tej metody jest obniżenie temperatury procesu i otrzymywanie twardych, antyściernych i antykorozyjnych powłok na materiałach narzędziowych i konstrukcyjnych. Aktywacja elektryczna środowiska gazowego umożliwia w niskotemperaturowej plazmie wytwarzanie aktywnych cząstek odpowiedzialnych za tworzenie się powłoki. Należy podkreślić, że obok dotychczasowych materiałów podłożowych wykonanych z różnych gatunków stali, powłoki takie są wytwarzane w niskich temperaturach, również na takich materiałach jak tworzywa sztuczne lub ceramika, co jest jednym z perspektywicznych kierunków rozwoju inżynierii powierzchni. Na podstawie doniesień literaturowych oraz rozpoznawczych procesów wytwarzania powłok zaproponowano następującą tezę pracy: Antykorozyjne oraz antyścierne powłoki można wytwarzać metodą PAMOCVD, optymalizując warunki prowadzenia procesu oraz stosując dodatkowe obróbki w warunkach wyładowania jarzeniowego. W celu weryfikacji postawionej tezy zbadano możliwość otrzymania oraz strukturę i właściwości następujących powłok: - kompozytowej typu Al2O3 + NiAl + Ni3Al i AlN + NiAl + Ni3Al, wytworzonej na podłożu niklowym oraz Al2O3 + TiAl + Ti3Al, wytworzonej na stopie tytanu przy udziale związku metaloorganicznego glinu (CH3)3Al - trimetyloglinu; - CrN wytworzonej na materiale modelowym, którym jest żelazo Armco, przy udziale związków metaloorganicznych chromu acetyloacetonianu chromu - (CH3COCH2O)3Cr oraz 2-etyloheksanianu chromu - Cr(OOCCH(C2H5)C4H9)3; - ZrO, wytworzonej na materiale modelowym, którym jest żelazo Armco, przy udziale związku metaloorganicznego cyrkonu Zr(OC4H9)4 - tetrabutyloksycyrkonu; - Ti(N,C,O) wytworzonej na stopie magnezu przy udziale związku organicznego tytanu Ti(i-OC3H7)4 - tetraizopropoksytytanu; - BN wytworzonej na materiale modelowym, którym jest żelazo Armco, przy udziale kompleksu boranowo-pirydynowego - C5H5NBH3. Synteza trudno topliwych, antyściernych i antykorozyjnych azotków i tlenków aluminium, czy też cyrkonu, przebiega dwuetapowo. W pierwszym etapie procesu wytwarzane są powłoki metaliczne. Nieizotermiczna plazma oraz wodór obecny w atmosferze gazowej sprzyja rozerwaniu wiązań węglowych w prekursorach metaloorganicznych, a powstające rodniki węglowodorowe są usuwane w postaci lekkich produktów gazowych ze środowiska reakcji. Tym należy tłumaczyć małą zawartość węgla w powstających powłokach. Aktywne cząstki, głównie jony metali, docierają w pobliże obrabianego detalu i tam ulegają zjawisku chemisorpcji. Etap drugi, polegający na wygrzewaniu powstającej powłoki metalicznej w celu przekształcenia jej w pożądaną fazę azotkową bądź tlenkową nie byłby skuteczny, gdyby nie aktywacja elektryczna środowiska gazowego. W tym właśnie etapie następuje zmiana składu chemicznego wytworzonej powłoki w drodze reakcji chemicznych w fazie stałej, które przebiegają w niższych temperaturach i z większymi prędkościami, niż przy jedynie termicznej aktywacji procesu. Odpowiedzialne za to są cząstki aktywne (jony, atomy, cząstki wzbudzone) o wyższej energii niż wynikałoby to z równowagowego rozkładu energii dla danej temperatury. Dzieje się tak dlatego, że pod działaniem pola elektrycznego nośniki ładunku, zwłaszcza elektrony, mogą uzyskać dużo większą energię od średniej energii cząstek gazu i w zderzeniach z nim przekazać część tej energii. Wynika stąd, że na tworzenie się warstw powierzchniowych w metodzie PAMOCVD można wpływać: - po pierwsze - przez ukierunkowanie reakcji chemicznych w atmosferze gazowej przez zmianę jej składu chemicznego, szybkości przepływu, parametrów prądowo-napięciowych oraz przez odpowiednie przygotowanie warstwy wierzchniej obrabianego detalu w celu kontroli zjawiska chemisorpcji; - po drugie - przez ukierunkowanie reakcji chemicznych w fazie stałej, które zmieniają skład fazowy i chemiczny wytworzonych uprzednio powłok, także kontrolowanych przez wymienione czynniki.
EN
Growing requirements that must be met by materials in terms of, among others, their mechanical properties, resistance to wear by friction, impact of higher temperatures, corrosion/erosion interaction etc., have had a considerable influence on the necessity of improvement of existing materials and development of new materials that would be characterized by high operating properties. Surface engineering technologies create wide possibilities of making products of the requested properties on the basis of existing materials by adapting them to the specific operating properties, which is their substantial merit from the economic point of view. The PAMOCVD method is a combination of MOCVD and PACVD methods in order to decrease process temperature and produce hard antiabrasive and anticorrosive layers on tool and constructional materials. Electrical activation of the gas environment enables low-temperature plasma to create active particles responsible for coating production. It should be stressed that apart from the to-date substrate materials made of various grades of steel, these coatings are produced in low temperatures also on such materials as plastics or ceramics, which is one of prospective directions of surface engineering development. On the basis of literature investigations and recognizable processes of coating production, the following hypothesis was proposed. Anticorrosive and antiabrasive coatings may be produced with the PAMOCVD method with process conditions optimization and with the use of additional treatment in glow discharge conditions. In order to verify the hypothesis, the possibility of producing the following coatings as well as their structure and properties have been examined: - Composite coatings of Al2O3 + NiAl + Ni3Al and AlN + NiAl + Ni3Al type produced on nickel and Al2O3 + TiAl + Ti3Al substrate produced on titanium alloy with the use of organometallic aluminium compound (CH3)3Al - trimethylaluminium. - CrN coating produced on model material like Armco iron with the use of organometallic compounds of chromium: chromium acetylacetonate - (CH3COCH2O)3Cr and chromium 2-ethylhexanoate - Cr(OOCCH(C2H5)C4H9)3. - ZrO2 coating produced on model material like Armco iron with the use of organometallic compound of zirconium Zr(OC4H9)4 - zirconium tetra-tertiary butoxide. - Ti(N,C,O) coating produced on magnesium alloy with the use of organic compound of titanium Ti (i-OC3H7)4 - titanium tetraisopropoxide. - BN coating produced on model material like Armco iron with the use of pyridine-borane complex - C5H5NBH3. Synthesis of infusible, antiabrasive and anticorrosive nitrides and aluminium oxides or zirconium occurs in two stages. In the first stage of the process, metallic coatings are produced. Non-isothermal plasma and hydrogen present in the gas atmosphere facilitate cleavage of carbon bonds in organometallic precursors and the arising hydrocarbon radicals are removed from the reaction environment in the form of light gas products. This explains Iow content of carbon in produced coatings. Active particles, mainly metal ions, get close to the processed detail where they undergo the phenomenon of chemical adsorption. The second stage, consisting in heating of the created metallic coating in order to convert it into the desired nitride or oxide phase, would not be effective if it were not for the electric activation of the gas environment. At this stage, a change of the chemical compound of the created coating by means of chemical reactions in the solid phase takes place. The chemical reactions occur at lower temperatures and faster than in case of process thermal activation only. These are active particles (ions, atoms, induced particles) of higher energy than it would result in balanced energy distribution for a given temperature that is responsible for this phenomenon. It happens so because charge carriers, especially electrons may get much higher energy under the influence of electric field than average energy of gas particles and transmit some energy in collision with it. It appears from the above that obtaining surface layers by the PAMOCVD method may be influenced by: - first of all, by orientation of chemical reactions in the gas atmosphere through a change of its chemical composition, flow speed, current-voltage parameters and through an appropriate preparation of the surface layers of the processed detail in terms of chemisorption phenomenon control, - second of all, by orientation of chemical reactions in the solid phase that change phase and chemical composition of previously produced coatings, also controlled by the above-mentioned factors.
Rocznik
Tom
Strony
3--131
Opis fizyczny
Bibliogr. 283 poz., tab., rys., wykr.
Twórcy
  • Wydział Inżynierii Materiałowej, Politechnika Warszawska
Bibliografia
  • 1. K.L. Choy: Chemical Vapor Deposition, Progress in Materials Science 48 (2003), s. 57.
  • 2. J.S. de Lodyguine: Illuminant for incandecent lamps, US patent 575002 (1893).
  • 3. A. Bielański: Chemia ogólna i nieorganiczna, PWN, Warszawa 1977.
  • 4. K.L. Choy: Handbook of nanostructured materials and nanotechnology, vol. 1: Synthesis and Processing, ed. H.S. Nalwa, Academic Press, San Diego (2000), s. 533.
  • 5. S. Xie, W. Li, Z. Pan, B. Chang, L. Sun: Carbon nanotubes arrays, Materials Science Engineering A 286 (2000), s. 11.
  • 6. H. Dai, N. Franklin, N. Han: Exploiting the properties of carbon nanotubes for nanolithography, J. Appl. Phys. Lett. 73 (1998), s. 1508.
  • 7. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho et al: Nanotube molecular wires as chemical sensors, Science 287 (2000), s. 622.
  • 8. G. Nagy, M. Levy, R. Scarmozzino, R.M. Osgood, H. Dai, R.E. Smalley et al: Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors, Appl. Phys. Lett. 73 (1998), s. 529.
  • 9. J. Kong, H.T. Soh, A. Cassell, C.F. Quate, H. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395 (1998), s. 878.
  • 10. T. Hirai, M. Sasaki: In situ processing of inorganic composites by chemical vapor deposition, Ceramics International 17 (1991), s. 275.
  • 11. P. Hartmann, R. Haubner, B. Lux: Characteristics of apulsed DC-glow discharge CVD reactor for deposition of thick diamond films, Int. J. Refract. Met. Hard Mater. 16 (1998), s. 207.
  • 12. G. Meaden, P.G. Partridge, E.D. Nicholson, J.A. Nicholson, A. Wisbey, M.N.R. Ashfold: Diamond metal fibre composites, Diamond and Related Materials 6 (1997), s. 898.
  • 13. H. Westberg, M. Boman, S. Johansson, J.A. Schweitz: Free standing silicon microstructures fabricated by laser chemical processing, J. Appl. Phys. 73 (1993), s. 7864.
  • 14. M. Heschel, M. Muellenborn, S. Bouwstra: Fabrication and characterization of truly 3D-diffuzer/nozzle microstructures, Journal of Microelectromechanicals Systems 6 (1997), s. 41.
  • 15. O. Lehmann, M. Stuke: Laser-CVD 3D. Rapid prototyping of laser driven moveable micro-objects, J. de Physique IV 5 (1995), s. 452.
  • 16. D. Jean, C. Dury, R. Johnson, S. Bondi, W. Lackey: Carbon fiber growth kinetics and thermodynamics using temperature controlled LCVD, Carbon 40 (2002), s. 1435.
  • 17. T. Burakowski, T. Wierzchoń: Surface Engineering of Metals - principles, equipment, Technologies, CRC Press, Boca Raton, London, New York (1999).
  • 18. P. Kula: Inżynieria warstwy wierzchniej, Wydawnictwo Politechniki Łódzkiej, Łódź (2000).
  • 19. M.G. Hocking, V. Vasantasree, P.S. Sidky: Metallic and ceramic coatings: production, high temperature properties and applications, Longman, Essex, John Wiley & Sons, New York (1989).
  • 20. H.O. Pierson: Handbook of chemical vapor deposition, Park Ridge, Noyes (1992).
  • 21. M.L. Hitchman, ed. K. F. Jensen: CVD principles and applications, Academic Press, San Diego (1993).
  • 22. R. Ismat, ed. D.A. Shah: Handbook of thin film process technology, Institute of Physics Publishing, Bristol (1977), B 1.0-5.
  • 23. C.E. Morosanu: Thin films by chemical vapor deposition, Elsevier, Amsterdam (1990).
  • 24. A. Sherman: Chemical vapor deposition for microelectronics, Noyes, Park Ridge (1987).
  • 25. R.C. Rossi, ed. K.K. Schuergraf: Handbook of thin film deposition processes and techniques, Noyes, Park Ridge (1988).
  • 26. J.M. Blocher: Structure/property/process relationships in chemical vapor deposition CVD, J. Vac. Sci. Technol. 11 (1974), s. 680.
  • 27. D.W. Hess, D.B. Graves, eds: M.L. Hitchman, K.F. Jensen: CVD principles and applications, Academic Press, San Diego (1993) s. 387.
  • 28. A. Sanjurio, B.J. Wood, K.H. Lau, G.T. Tong, D.K. Choi et al: Silicon coatings on copper by chemical vapour deposition in fluidized bed reactors, Surface and Coatings Technology 49 (1991), s. 103.
  • 29. H.M. Liaw, J.W. Rose, ed. B.J. Baliga: Epitaxial silicon deposition, Academic Press, Orlando (1986), s. 1.
  • 30. F.S. Galasso: Chemical vapour deposited materials, Chemical Rubber Company, Boca Raton (1991).
  • 31. Y. Isobe, H. Shirakawa P. Son, M. Miyake: Chemically vapour deposited Mo/Re double layer coating on graphite at elevated temperatures, J. Less. Common Metals 152 (1989), s. 251.
  • 32. Du Jihong, Li Zhengxiang, Liu Gaojian, Zhou Hui, Huang Chungliang: Surface characterization of CVD tungsten coating on molybdenum substrate, Surface and Coatings Technology 198 (2005), s. 169.
  • 33. A. Kwatera, A. Sawka, D. Kwatera: Amorphous Si3N4 layers synthesized on cemented carbide tools using an atmospheric pressure CVD metod, Surface and Coatings Technology 88 (1996), s. 12.
  • 34. A. Kwatera, A. Sawka: Preparation of amorphous composities of silicon nitride and carbon layers on silica glass by chemical vapor deposition metod, Journal of Non-Crystalline Solids 265 (2000), s. 120
  • 35. R.D. Dupuis, eds: D. A. Glocker, S.I. Shah: Handbook of thin film process technology, B 1 1:1, Institute of Physics, Bristol 1995.
  • 36. Y. Horikoshi, K. Nozawa, T.G. Anderson: Studies of GaN layers grown on sapphire using an RF source, J. of Crystal Growth 175-176 (1997), s. 117.
  • 37. H. Abe, M. Kanemaru, T. Egawa, Y. Tabetani, T. Kato, T. Matsumoto: RHEED study of atomic steps on ZnSe surface growing on vicinal GaAs substrates, J. of Crystal Growth 214-215 (2000), s. 595.
  • 38. P.L. Anderson, A. Erbil, C.R. Nelson, G.S. Tompa, K. Moy: A high-speed rotating disc metalorganic chemical vapour deposition system for the growth of (Hg,Cd)Te and related alloys, J. Crystal Growth 135 (1994), s. 383.
  • 39. L. Sugiura, K. Shigenaka, F. Nakata, K. Hirahara: Misfit dislocation microstructure and kinetics of HgCdTe/CdZnTe dunder tensile and compressive tests, J. of Crystal Growth 145 (1994), s. 547.
  • 40. K.I. Ogata, T. Kera, T. Kawaguchi, S. Fujita: Characterization of p-type ZnSe grown by MO-VPE excitonic emission lifetime measurements, J. of Crystal Growth 170 (1997), s. 507.
  • 41. K. Ohtsuka, T. Yoshida, T. Oizumi, A. Murai, T. Kurabayashi: Low temperature deposition of Si and SiO, thin film layers in an ultrahigh vacuum system, J. of Crystal Growth 209 (2000), s. 331.
  • 42. G.S. Tompa, P.A. Zawadzki, K. Moy, M. Mckee, A.G. Thompson, A.I. Gurary et al: Design and operating characteristic of a metalorganic vapour phase epitaxy production scale vertical high speed rotating disc reactor, J. of Crystal Growth 145 (1994), s. 655.
  • 43. A.C. Jones, J. Alud, S.A. Rushworth, G.W. Critchow: Growth of aluminum films by low temperature chemical vapour deposition using tritertiarybutylaluminum, J. of Crystal Growth 135 (1994), s. 285.
  • 44. A. Erbil, W. Braun, B.S. Zwak, B.J. Wilkens, L.A. Boatner, J.D. Budai: Oxide ferroelectric materials grown by metalorganic chemical vapour deposition, J. of Crystal Growth 124 (1992), s. 684.
  • 45. K. Tominaga, Y. Sakashita, H. Nakashima, M. Ada: Preparation and electrical properties of ferroelectric (Pb, La), (Zr, Ti)O3 thin films by metalorganic chemical vapour deposition, J. of Crystal Growth 145 (1994), s. 219.
  • 46. C.Y. Liu, B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa: Temperature dependence of structural and optical properties of ZnO films grown on Si substrates by MOCVD, J. of Crystal Growth 290 (2006), s. 314.
  • 47. T. Sugimoto, M. Yoshida, K. Yamaguchi, Y. Hamada, K. Sugawara, Y. Shirohara et al: Fabrication and characterization of Bi-Sr-Ca-CuO MOCVD thin films, J. of Crystal Growth 107 (1991), s. 692.
  • 48. C. Sant, P. Gibart, P. Genou, C. Verie: Metalorganic chemical vapour deposition of YBa2Cu3O7-x using a special equipment for solid precursors, J. of Crystal Growth 124 (1992), s. 690.
  • 49. A. Michalski: Fizykochemiczne podstawy otrzymywania powłok z fazy gazowej, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2000.
  • 50. K. Zdunek: IPD-Plasma impulsowa w inżynierii powierzchni, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2004.
  • 51. M. Scheib, B. Schroder, H.Y. Oechsner: Deposition of nanocrystalline silicon films (nc-Si:H), from a pure ECWR-SiH4 plasma, J. Non-Cryst. Solids 200 (1996), s. 895.
  • 52. A. Dehbi-Alaoui: Diamond like carbon films grown in a new configuration for filament enhanced plasma assisted CVD, Vacuum 46 (1995), s. 1305.
  • 53. Y. Sun, T. Bell: Plasma surface engineering of low alloy steel, Materials Science and Engineering A 140 (1991), s. 419.
  • 54. E.W. McDavid, V. Cermak, A. Dalgarno, E.E. Ferguson, L. Friedman: Ion molecule reactions, Wiley, New York (1970).
  • 55. Y. Catherine: Plasma processing, eds: G.S. Mathad, G.C. Schwartz, G. Smolinsky: Electrical Society, Pennington (1985), s. 317.
  • 56. M. Jurzecka, S. Kluska, S. Jonas, H. Czternastek, K. Zakrzewska: RF PE CVD deposition of amorphous a-SixNy:H layers for application in solar cells, Vacuum 82 (2008), s. 1128.
  • 57. D.L. Smith, A.S. Alimonda, C.C. Chen, S.E. Ready, B. Wacker: Mechanism of SiNxHy deposition from NH3-SiH4 plasma, J. Electrochem. Soc. 137 (1990), s. 614.
  • 58. J.N. Chiang, D.W. Hess: Mechanistic consideration in the plasma deposition of silicon nitride films, J. Electrochem. Soc. 137 (1990), s. 2222.
  • 59. W.R. Knolle, J. W. Osenbach: The structure of plasma deposited silicon nitride films determined by infrared spectroscopy J. Appl. Phys. 58 (1985), s. 1248.
  • 60. R.E. Livengood, M.A. Petrich, D.W. Hess, J.A. Reimer: Structure and optical properties of plasma deposited fluorinated silicon nitride films, J. Appl. Phys. 63 (1988), s. 2651.
  • 61. W.A.P. Claassen, W.G.J.N. Valkenburg, M.F.C. Willemsen, W.M.V.D. Wijgert: Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stresses of plasma silicon nitride layers, J. Electrochem. Soc. 132 (1985), s. 893.
  • 62. K.E. Spear, J.P Dismukes: Synthetic diamond: emerging CVD science and technology, Wiley, Chichester (1994).
  • 63. Y. Matsui, H. Yabe, T. Sugimoto, Y. Hirose: The structure of acetylene flames for diamond synthesis, Diamond Relat. Mat. 1 (1991), s. 19.
  • 64. S.I. Shah, M.H. Waite: Effect of oxygen on the nucleation and growth of diamond thin films, Appl. Phys. Lett. 61 (1992), s. 3113.
  • 65. S.I. Shah, M.H. Waite: Handbook of thin film process technology, eds: D.A. Glocker, S.I. Shah X1.8. Institute of Physics, Bristol (1995).
  • 66. A. Erdemir, C. Bindal, G.R. Fenske, C. Zuiker, A. Krauss, D.M. Gruen: Friction and wear properties of smooth diamond films grown in fullerene + argon plasmas, Diamond and Related. Materials 5 (1997), s. 923.
  • 67. D.M. Bhusari, J.R. Yang, T.Y. Wang, S.T. Lin, K.H. Chen, L.C. Chen: Highly transparent nano-crystalline diamond films grown by microwave CVD, Solid State Comm. 107 (1998), s. 301.
  • 68. A. Erdemir, M. Halter, G.R. Fenske, A. Krauss, D.M. Gruen, S.M Pimenov: Durability and tribological performance of smooth diamond films produced by Ar-C60 microwave plasmas and by laser polishing, Surface and Coatings Technology 94-95 (1997), s. 537.
  • 69. W.E. Wang, K.J. Liao, R.Q. Zhang: Plasma associated diamond nucleation on AlN in hot filament chemical vapour deposition, Mater. Lett. 44 (2000), s. 336.
  • 70. J.M. Huh, D.Y. Yoon: Enhanced nucleation of diamond on polycrystalline Ni by d.c. glow discharge in hot filament CVD, Diamond Rel. Mat. 9 (2000), s. 1475.
  • 71. L.S. Piano, D.A. Stevenson, J.R. Carruthers, eds: A.J. Purdues, B.M. Meyerson, J.C. Angus, K.E. Spear, R.F. Davis, M.N. Yoder: Diamond Materials, vol. 91-8. Electrochemical Society, Pennington (1991), s. 290.
  • 72. K.J. Park, E.Y. Chin: Effect of diamond-like carbon thin film deposition on the resistance of polycarbonate to radiation-induced degradation, Polym. Degrad. Stab. 68 (1) (2000), s. 93.
  • 73. K.R. Lee, K.E. Eun, K.M. Kim, K.C. Choi: Application of diamond like carbon films for antiabrasion and low friction properties of VCR head drums, Surface and Coatings Technology 76-77 (1995), s. 786.
  • 74. S. Mitura, E. Mitura, A. Mitura: Manufacture of amorphous carbon layers by r.f. dense plasma CVD, Diamond and Related Materials 4 (1995), s. 302.
  • 75. M. Clapa, S. Mitura, P. Niedzielski, A. Karczemska, J. Hassard: Colour carbon coatings, Diamond and Related Materials 10 (2001), s. 1121.
  • 76. P. Couvrat, M. Denis, M. Langer, S. Mitura, P. Niedzielski, J. Marciniak: The corrosion test of amorphous carbon coatings deposited by r.f. dense plasma onto steel with different chromium contents, Diamond and Related Materials 4 (1995), s. 1251.
  • 77. K. Bakowicz-Mitura, G. Bartosz, S. Mitura: Influence od diamond particles on human gene expresion, Surafce and Coatings Technology 201 (2007), s. 6131.
  • 78. D. Bociąga, K. Mitura: Biomedical efeect of tissue contact with metallic material used for body piercing modified by DLC coatings, Diamond and Related Materials 17 (2008), s. 1410.
  • 79. K. Mitura, P. Niedzielski, G. Bartosz, J. Moll, B. Walkowiak, Z. Pawłowska, P. Louda, M. Kieć-Świerczyńska, S. Mitura: Interactions between carbon coatings and tissue, Surface and Coatings Technology 201 (2006), s. 2117.
  • 80. T. Sugino, K. Tanioka, S. Kawasaki, J. Shirafuji: Electron emission from nanocrystalline boron nitride films synthesized by plasma-assisted chemical vapour deposition, Diamond Rel. Mat. 7 (1998), s. 632.
  • 81. A. Werbowy, J. Szmidt, A. Sokołowska, A. Olszyna: Heterojunctions of amorphous wide band gap nitrides and silicon, Diamond and Related Materials 7 (1998), s. 397.
  • 82. A. Olszyna, J. Siwieć, R. Dwilinski, M. Kamińska, J. Hrabowska, A. Sokołowska: Photoluminescence properties of nanocrystalline AlN films grown by pulse plasma assisted CVD, Mater. Sci. Eng. B 50 (1997), s. 170.
  • 83. S. Veprek, M. Haussmann, S. Reiprich, L. Shizhi, J. Dian: Novel thermodynamically stable and oxidation resistant superhard coating materials, Surf. Coat. Technol. 87-88 (1996), s. 394.
  • 84. K. Kyzioł, S. Jonas, K. Tkacz-Śmiech, K. Marszałek: A role of parameters in RF PA CVD technology of a-C:N:H layers, Vacuum 82 (2008), s. 998.
  • 85. H. Weyten, G. Fransen, R. Kemps, A. Buekenhoudt, J. Cornelis: Synthesis of YBa2Cu3O7-x superconducting thin films on LaAlO3 by means of PAMOCVD, Physica C 270 (1996), s. 207.
  • 86. D.C. Lim, G.C. Chen, S.B. Lee, J.H. Boo: Structure and properties of BON and multilayered TiN/BON thin films prepared by PAMOCVD method, Surface and Coatings Technology 163-164 (2003), s. 318.
  • 87. D.C. Lim, G.C. Chen, J.H. Boo: Comparison of optical and electrical properties of BON and Ti-BON thin films prepared by PAMOCVD method, Surface and Coatings Technology 171 (2003), s. 101.
  • 88. D.C. Lim, B.C. Kang, J.S. Moon, O.M. Moon, J.H. Park, H.G. Jee, S.B. Lee, Y.H. Kim, J.Y. Lee, J.H. Boo: Enhanced hardness in a two-layer a-BON/nc-SiC coating prepared by plasma-assisted CVD and thermal CVD, Surface and Coatings Technology 193 (2005), s. 162.
  • 89. J.H. Park, C.K. Yung, D.C Lim, J.H. Boo: A comparative study on the structure and hardness enhancement of a-BON/nc-TiN films prepared by high and low frequency r.f. PAMOCVD, Tribology International 40 (2007), s. 345.
  • 90. K.T. Rie, J. Whole: Plasma-CVD of TiCN and ZrCN films on light metals, Surface and Coatings Technology 112 (1999), s. 226.
  • 91. W. Luithardt, C. Benndorf: Deposition of Fe-C:H coatings from a ferrocene precursor in a plasma activated r.f. process, Diamond and Related Materials 4 (1995), s. 346.
  • 92. W. Luithardt, C. Benndorf: Single source deposition of Me-C:H films using metal-organic precursor, Diamond and Related Materials 6 (1997), s. 533.
  • 93. K.T. Rie, A. Gebauer, J. Woehle: Plasma assisted CVD for low temperature coatings to improve the wear and corrosion resistance, Surface Coatings Technol. 86/87 (1996), s. 498.
  • 94. K.T. Rie, A. Gebauer, C. Prohl: Deposition of boron containing coatings using MO-PACVD processes to protect aluminum casting tools, Journal de Physique IV 5 (1995), s. 50.
  • 95. K.O. Legg, M. Graham, P. Chang, F. Rastagar, A. Gonzales, B. Sartwell: The replacement of electroplating, Surface and Coatings Technology 81 (1996), s. 99.
  • 96. A. Dasgupta, P. Kuppusami, F. Lawrence, V.S. Raghunathan, P.A. Premkumar, K.S. Nagaraja: Plasma assisted metal-organic chemical vapour deposition of hard chromium nitride thin film using chromium III acetyloacetonate as the precursor, Materials Science and Engineering A 374 (2004), s. 362.
  • 97. A. Dasgupta, P.A. Premkumar, F. Lawrence, L. Houben, P. Kuppusami, M. Luysberg, K.S. Nagaraja, V.S. Raghunathan: Microstructure of thin chromium nitride coating synthesized using plasma assisted MOCVD technique, Surface and Coatings Technology 201 (2006), s. 1401.
  • 98. P.A. Premkumar, P. Kuppusami, A. Dasgupta, C. Mallika, K.S. Nagaraja, V.S. Raghunathan: Plasma assisted chemical vapour deposition of Cr coatings using chromium III acetyloacetonate vapour source, Materials Letters 61 (2007), s. 50.
  • 99. F. Jansen: Handbook of thin film process technology, eds: D. A. Glocker, S.I. Shah: IOP, Bristol (1995).
  • 100. J. Hopwood: Handbook of nanophase materials, ed. A.N. Goldstein, Marcel Dekker, New York (1997).
  • 101. G. Lucovsky, D.V. Tsu: Thin film processes, eds: J.L. Vossen, W. Kern: I.I. Academic Press, Boston (1991), s. 565.
  • 102. R. Reif, W. Kern: Thin film processes, eds: J.L. Vossen, W. Kern: I.I. Academic Press, Boston (1991), p. 525.
  • 103. B. Major: Ablacja i osadzanie laserem impulsowym, Wyd. Akapit, Kraków 2002.
  • 104. Y. Takahashi, K. Yamashita, S. Motojima, K. Sugiyama: Low temperature deposition of a refractory aluminum compound by the thermal decomposition of aluminum dialkylamides, Surface Science 86 (1979), s. 238.
  • 105. M.L. Green, R.A. Levy, R.G. Nuzzo: Aluminum films prepared by metal-organic low pressure chemical vapour deposition, Thin Solid Films 114 (1984), s. 367.
  • 106. L.V. Koplitz, D.K. Shuh, Y.-J. Chen, S. Williams, J.L Zink: Laser driven chemical vapour deposition of platinum at atmospheric pressure and room temperature from CpPt(CH3)3, Appl. Phys. Lett. 53 (1988), s. 1705.
  • 107. O. Valet, P. Dopelt, P.K. Bauman, M. Schumacher, E. Balnois, F. Bonett, H. Guillon: Study of platinum thin films deposited by MOCVD as electrodes for oxide applications, Microelectronic Engineering 64 (2002), s. 457.
  • 108. Y. Chen, H.D. Keasz, H. Thridandam, R.F. Hicks: Low temperature organometallic chemical vapour deposition of platinum, Appl. Phys. Lett. 53 (1988), s. 1591.
  • 109. J. Arndt, L. Klippe, R. Stolle, G. Wahl: Deposition of platinium from bis(acetylacetonato)Platinum (II), J. Phys. IV, 5 (1995), s. 119.
  • 110. D. Tonneau, R. Pierrisnard, H. Dallaporta, W. Marine: Growth kinetics of copper films from photoassisted CVD of copper acetylacetonate, J. Phys. IV, 5 (1995), s. 629.
  • 111. H.J. Jin, M. Shiratani, T. Kawasaki, T. Fukuzawa, T. Kinoshita, Y. Watanabe, H. Kawsaki, M. Toyofuku: Plasma-enhanced metalorganic chemical vapor deposition of high purity copper thin films using plasma reactor with the H atom source, J. Vac. Sci. Technol. A 17 (3) (1999), s. 726.
  • 112. J. Lin, Ch. Lee: Enhancement of Cu nucleation in Cu-MOCVD by Pd sputtering pretreatment, Solid-State Electronics 45 (2001), s. 2083.
  • 113. J.L. Mermet, M.-J. Mouche, F. Pires, E. Richard, J. Torres, J. Palleau, F. Braud: CVD copper deposition from Cu(I), (HFAC)TMVS studied through a modeling experimental design, J. Phys. IV, 5 (1995), s. 517.
  • 114. F. Maury, M. Amjoud: Study of the properties of in situ Pt-doped SnO2 thin films prepared by metal-organic chemical vapour deposition, Ann. Chim. Sci. Mater. 27 (2002), s. 61.
  • 115. I.K. Igumenow: MOCVD of noble metals, J. Phys. IV, 5 (1995), s. 489.
  • 116. S. Mukhopadhyay, K. Shalini, R. Lakshmi, A. Devi, S.A. Shivashankar: Metalorganic chemical vapor deposition of Cu films from bis(t-butl-3-oxo-butanoato)copper (II): thermodynamic investigation and experimental verification, Surface and Coatings Technology 150 (2002), s. 205.
  • 117. H. Itsuki, H. Uchida, M. Satou, K. Ogi: Properties of a new organo silver compound for MOCVD, Nuclear Instruments and Methods in Physics Research B 121 (1997), s. 116.
  • 118. M. Becht, J. Gallus, M. Hunziker, F. Atamny, K.H. Dahmen: Nickel thin films grown by MOCVD using Ni(dmg)2 as precursor, J. Phys. IV, 5 (1995), s. 465.
  • 119. L. Brissonneau, C. Vahlas: Precursors and operating conditions for the metal-organic chemical vapor deposition of nickel films, Ann. Chim. Sci. Mater. 25 (2000), s. 81.
  • 120. R. Feurer, M. Larhrafi, R. Morancho, R. Calsou: Use of binuclear organometallic compounds in chemical vapour deposition, Thin Solid Films 167 (1988), s. 195.
  • 121. P.A. Lane, P.J. Wright: The use of 1,2,3,4,5-pentamethylcyclopentadiene as an in situ growth modifier chemical for the chemical vapour deposition of iron from iron pentacarbonyl, Journal of Crystal Growth 204 (1999), s. 298.
  • 122. J. Haigh, G. Burkhardt, K. Blake: Thermal decomposition of tungsten hexacarbonyl in hydrogen, the production of thin tungsten-rich layers and their modification by plasma treatment, Journal of Crystal Growth 155 (1995), s. 266.
  • 123. D.R. Biswas, C. Ghosh, R.L. Layman: Vapor Phase Deposition of Aluminum Film on Quartz Substrate, J. Electrochem. Soc. 130(1), (1983), s. 234.
  • 124. H. Matsuhashi, Ch.-H. Lee, T. Nishimura, K. Masu, K. Tsubouchi: Superiority of DMAH to DMEAA for Al CVD technology, Materials Science in Semiconductor Processing 2 (1999), s. 303.
  • 125. J.-H. Yun, B.-Y. Kim, S.-W. Rhee: Metal-organic chemical vapour deposition of aluminum from dimethylamine alane, Thin Solid Films 312 (1998), s. 259.
  • 126. Y.K. Koo, D.S. Park, B.S. Seo, H.J. Yang, H.J. Shin, J.H. Kin, W.H. Lee, P.J. Reucroft, J.G. Lee: Studies of cobalt thin film deposited by sputtering and MOCVD, Materials Chemistry and Physics 80 (2003), s. 560.
  • 127. Y. Hua, L. Hang, L. Cheng, W. Yang: Structural and morphological characterization of iridium coatings grown by MOCVD, Materials Science and Engineering B 121 (2005), s. 156.
  • 128. X. Yan, Q. Hang, X. Fan: New MOCVD precursor for iridium thin films deposition, Materials Letters 61 (2007), s. 216.
  • 129. M. Pulver, W. Nemetz, G. Wahl: CVD of ZrO2, Al2O3 and Y2O3 from metalorganic compounds in different reactors, Surface and Coatings Technology 125 (2000), s. 400.
  • 130. S.K. Pradhan, P.J. Reucroft, Y. Ko: Crystallinity of Al2O3 films deposited by metalorganic chemical vapor deposition, Surface and Coatings Technology 176 (2004), s. 382.
  • 131. J.D. Bressan, G.A. Battiston, R. Gerbasi, D.P. Daros, L.M. Glapa: Wear on tool steel AISI M2, D6 and 52100 coated with Al2O3 by the MOCVD process, Journal of Materials Processing Technology 179 (2006), s. 81.
  • 132. A.C. Jones, D.J. Houlton, S.A. Rushworth, G.W. Critchlow: A new route to the deposition of Al2O3 by MOCVD, J. Phys. IV, 5 (1995), s. 557.
  • 133. M.P. Singh, S.A. Shivashankar: Low-pressure MOCVD of Al2O3 using aluminum acetyloacetonate as precursor: nucleation and growth, Surface and Coatings Technology 161 (2002), s. 135.
  • 134. Brevet, P.M. Peterle, L. Imhoff, M.C. Marco de Lucas, S. Bourgeois: Initial stages of TiO2 thin films MOCVD growth studied by in situ surface analysis, Journal of Crystal Growth 275 (2005), s. 1263.
  • 135. G. Giavaresi, L. Ambrosio, G.A. Battiston, U. Caselatto, R. Gerbasi, M. Finia, N.N. Aldini, L. Martini, L. Rimondini, R. Giardano: Histomorphometric, ultrastructural, and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study, Biomaterials 25 (2004), s. 5583.
  • 136. B. Ballarin, E. Brescin, G.A. Rizzi, R. Gerbasi, M. Porchia, S. Daolio: Deposition of MoO3 films from a volatile molybdenum compounds, J. Phys. IV, 5 (1995), s. 509.
  • 137. F. Bastianini, G.A. Battiston, R. Gerbasi, M. Porchia, S. Daolio: Chemical vapor deposition of ZrO2 thin films using Zr(NEt)4 as precursor, J. Phys. IV, 5 (1995), s. 525.
  • 138. C. Brahin, A. Ringuede, M. Cassir, M. Putkonen, L. Niinisto: Electrical properties of thin yttria stabilized zirconia overlayers produced by atomic layer deposition for solid oxide fuel cell applications, Applied Surface Science 253 (2007), s. 3962.
  • 139. D. Barreca, G. Bruno, A. Gasparotto, M. Losurdo, E. Tondello: Nanostructure and optical properties of CeO2 thin films obtained by plasma enhanced chemical vapour deposition, Materials Science and Engineering C 23 (2003), s. 1013.
  • 140. R.L. Nigro, G. Malandrino, I.L. Fragala: Structural and morphological characterization of heteroepitaxial CeO2 films grow on YSZ (100), and TiO2 (001), by metal-organic chemical vapour deposition, Materials Science and Engineering B 102 (2003), s. 323.
  • 141. K. Takahashi, M. Nakayama, S. Yokoyama, T. Kimura, E. Tokumitsu, H. Funakubo: Preparation of hafnium oxide films from oxygen-free Hf[N(C2H5)2]4 precursor and their properties, Applied Surface Science 216 (2003), s. 296.
  • 142. K.I. Kumagai, H. Hang, K. Ishibasi, Deposition of metal oxide thin films (HfO2 and RuO2), by oxygen radical - assisted MOCVD, Vacuum 74 (2004), s. 461.
  • 143. H.W. Kim, N.H. Kim: Annealing effect on the properties of Ga2O3 thin films grown on sapphire by the metal organic chemical vapor deposition, Applied Surface Science 230 (2004), s. 301.
  • 144. H.W. Kim, N.H. Kim, C. Lee: An MOCVD route to In2O3 one-dimensional materials with novel morphologies, Applied Physis A. 81 (2005), s. 1135.
  • 145. M.P. Singh, S.A. Shivashankar: Structural and optical properties of polycrystalline thin films of rare earth oxides grown of fused quartz by low pressure MOCVD, J. of Crystal Growth 276 (2005), s. 148.
  • 146. O. Yohei, O. Soichiro, S. Tadashi: Recent Developments on MOCVD of Ferroelectric Thin Films, Journal of Electroceramics 13 (2004), s. 15.
  • 147. T.Y. Tabenskaya, V.P. Ovsyannikow, E.A. Mazurenko: Low temperature plasma enhanced CVD synthesis piezoactive ZnO films, J. Phys. IV, 5 (1995), s. 711.
  • 148. G. Du, J. Wang, X. Wang, X. Jiang, S. Yang, Y. Ma, W. Yan, D. Gao, X. Liu, H. Cao, J. Xu, R.P.H. Chang: Influence of annealing on ZnO thin film grown by plasma-assisted MOCVD, Vacuum 69 (2003), s. 473.
  • 149. J.D. Ye, S.L. Gu, S.M. Zhu, F. Qin, L.Q. Hu, L. Ren, R. Zhang, Y. Shi, Y.D. Zheng: Substrate temperature dependence of properties of ZnO thin films deposited by LP-MOCVD, Applied Physics A 78 (2004), s. 761.
  • 150. C.W. Lin, T.Y. Cheng, E. Chang, J.Y. Juang: Growth of zinc oxide thin films on Y2O3/Si substrates by chemical vapour deposition, J. of Crystal Growth 275 (2005), s. 2481.
  • 151. Y.M. Seung, S.L. Koeng: Improvement of electrical and optical properties of ZnO thin films prepared by MOCVD using UV light irradiation and in situ H2 post-treatment, Solar Energy Materials and Solar Cells, 86 (2005), s. 105.
  • 152. M. Pan, W.E. Fenwick, M. Strassburg, N. Li, H. Kang, M.H. Kane, A. Asghar, S. Gupta, R. Varatharajan, J. Nausse, N.E. Zein, P. Fabiano, T. Steiner, I. Ferguson: Metal-organic chemical vapour deposistion of ZnO, J. of Crystal Growth 287 (2006), s. 688.
  • 153. S. Raghavan, J.M. Redwing: In situ stress measurements during the MOCVD growth of AlN buffer layers on (1,1,1), Si substrates, J. of Crystal Growth 261 (2004), s. 294.
  • 154. J. Wohle, A. Gebauer, K.T. Rie: Comparison of radio frequency and pulsed dc plasma CVD of Ti-C-N-H and Zr-C-N-H layers at low temperature, Surface and Coatings Technology 142-144 (2001), s. 661.
  • 155. J. Wohle, C. Pohl, K.T. Rie, A. Gebauer, S.K. Kim: Deposition of TiCN and ZrCN layers on light metals by PACVD method using radio frequency and pulsed DC plasma, Surface and Coatings Technology 131 (2000), s. 127.
  • 156. W.J. Lee, S.J. Kim, W.H. Lee, Y.J. Lee, Y.S. Lee, S.K. Rha, C.O. Park: Texture and sheet resistance of Al alloy thin films on Ti and TiN thin films, Journal of Materials Science: Materials in Electronic 15 (2004), s. 9.
  • 157. K.S. Pradhan, P.J. Reucroft: A study of growth and morphological features of TiOxNy thin films prepared by MOCVD, J. of Crystal Growth 250 (2003), s. 588.
  • 158. A. Jain, S. Raghavan, J.M. Redwing: Evolution of surface morphology and film stress during MOCVD growth of InN on sapphire substrates, J. of Crystal Growth 269 (2004), s. 128.
  • 159. W. Wang, T. Nabatame, Y. Shimogaki: Interface structure of HfNx/SiO2 stack grown by MOCVD using TDEAHf precursor, Surface Science 588 (2005), s. 108.
  • 160. O.J. Bchir, S.W. Johnson, A.C. Czadra, T.J. Anderson, C.G. Ortiz, B.C. Brooks, D.H. Powell, E. McElwee-White: MOCVD of tungsten nitride (WNx), thin films from the imido complex Cl4(CH3CN)W(NiPr), J. of Crystal Growth 249 (2003), s. 262.
  • 161. P. Premchander, P. Manoravi, M. Joseph, K. Baskar: Optical study of GaN epilayer grown by metalorganic chemical vapour deposition and pulsed laser deposition, J. of Crystal Growth 273 (2005), s. 363.
  • 162. C.E.C. Dam, A. P. Grzegorczyk, P.R. Hageman, P.K. Larsen: Method for HVPE growth of thick crack-free GaN layers, J. of Crystal Growth 290 (2006), s. 473.
  • 163. S. Abisset, F. Maury: Low-temperature MOCVD of V-C-N coatings using bis(arene)vanadium as precursors, Surface and Coatings Technology 108-109 (1998), s. 200.
  • 164. L. Poirier, F. Teysandier: Vanadium oxi-carbide coatings deposited by OMCVD in an isothermal reactor, J. Phys. IV, 5 (1995), s. 473.
  • 165. X. Tang, R. Haubner, B. Lux, A. Zechmann, E. Hengee: Preparation of ßSiC coatings using 1,2-dimethyldisilane as precursor, J. Phys. IV, Coll C5 5 (1995), s. 777.
  • 166. J.S. Hyun, J.H. Park, J.S. Moon, S.H. Kim, Y.J. Choi, N.E. Lee, J.H. Boo: Study on the applications of SiC thin films to MEMS techniques through a fabrication process of cantilevers, Progress in Solid State Chemistry 33 (2005), s. 309.
  • 167. K. Nakamura, T. Sasaki: Preparation of SiBN films deposited by MOCVD, J. of Solid State Chemistry 177 (2004), s. 542.
  • 168. A.Al. Bayaz, A. Giani, M.Al. Khalfioui, A. Foucaran, F. Pascal-Delannoy, A. Boyer: Growth parameters effect on the thermoelectric characteristic of Bi2Se3 thin films grown by MOCVD system using ditertiarybutylselenide as a precursor, J. of Crystal Growth 258 (2003), s. 135.
  • 169. H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka, H. Sonomura: Thin CdS films prepared by metalorganic chemical vapor deposition, Solar Energy Materials & Solar Cells 75 (2003), s. 219.
  • 170. A.G. Thompson: MOCVD Technology for Semiconductors, Materials Lett. 30 (1997).
  • 171. S. Nakamura, S. Pearton, G. Fasol: The Blue Laser Diode, The Complete Story, Springer 2000.
  • 172. S.W. Rhee, J.H. Yun, B.Y. Kim: Metal-organic chemical vapor deposition of aluminum from dimethylethylamine alane, Thin Solid Films 312 (1998), s. 259.
  • 173. K.A. Littau, R. Mosely, S. Zhou, H. Zhang, T. Guo: CVD Al for advanced interconnect applications, Microelectronic Engineering 33 (1997), s. 101.
  • 174. M. Avinum, W.D. Kaplan, M. Eizenberg, T. Guo, R. Mosely: Factors which determine the orientation of CVD Al films grown on TiN, Solid-State Electronics 43 (1999), s. 1011.
  • 175. K. Tanaka, H. Yanashima, T. Yako, K. Kamio, K. Sugai, S. Kishida: Aluminum chemical vapor deposition reaction of dimethylaluminum hydride on TiN studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, Applied Surface Science 171 (2001), s. 71.
  • 176. W. Juda, A. Kwatera, A. Sawka: Narzędzia skrawające do obróbki stopów o stałym składzie chemicznym, Inżynieria Materiałowa 151 (3), (2006), s. 414.
  • 177. W. Koh, S.J. Ku, Y. Kim: Chemical vapour deposition of Al2O3 films using highly volatile sungle sources, Thin Solid Films 304 (1997), s. 222.
  • 178. T. Fransen, V.A.C. Haanapel, H.D. Van Corbach, P.J. Gellings: Properties of alumina films prepared by low-pressure metal-organic chemical vapour deposition, Surface and Coatings Technology 72 (1995), s. 13.
  • 179. M.C. Ntsama-Etoundi, J. Desmaison, P. Tristant, C. Tixier: Remote microwave plasma enhanced chemical vapour deposition of alumina on metallic substrates, Surface and Coatings Technology 120-121 (1999), s. 233.
  • 180. K.T. Rie, A. Gebauer, J. Whole: Studies on synthesis of aluminum containing layer systems on steel and cermet substrates by PACVD, Surface and Coatings Technology 98 (1998), s. 1324.
  • 181. K. Tsubouchi, K. Masu: Precursor design and selective aluminum CVD, Vacuum 46 (1995), s. 1249.
  • 182. Y. Tanaka, Y. Hasebe, T. Indushima, A. Sandhu, S. Hoya: Comparison of AlN thin films grown on sapphire and cubic-SiC substrates by LP-MOCVD, Journal of Crystal Growth 209 (2000), s. 410.
  • 183. K. Yasui, S. Hoshino, T. Akahane: Epitaxial growth of AlN films on Si substrates by ECR plasma assisted MOCVD under controlled plasma conditions in afterglow region, Applied Surface Science 159-160 (2000), s. 462.
  • 184. www.sigmaaldrich.com
  • 185. J.R. Sobiecki, M. Ossowski, R. Sitek, T. Wierzchoń: Surface layers produced by the PACVD method with the use of trimethylaluminum, Inżynieria Materiałowa 140 (3), (2004), s. 659.
  • 186. J.R. Sobiecki, R. Sitek. M. Tacikowski, T. Wierzchoń: Composite layers produced on nickel substrate by the PACVD method with the participation of trimethylaluminum, Inżynieria Materiałowa, w druku.
  • 187. Y. Du, Y.A. Chang, B. Huang et al: Diffusion coefficients of some solutes in fcc and liquid Al critical evaluation and correlation, Materials Science and Engineering A 363 (2003), s. 140.
  • 188. Polska Norma PN-83/H-04302 (1983).
  • 189. Międzynarodowa Norma ASTM G 77-93
  • 190. T. Wierzchoń, H. Garbacz, M. Ossowski: Structure and properties of Ti-Al intermetallic layers produced on titanium alloys by duplex treatment, Mat. Sci. Forum 475-479 (2005), s. 3883.
  • 191. J.R. Sobiecki, R. Sitek, T. Wierzchoń: Wytwarzanie warstw powierzchniowych na podłożu niklowym metodą MOPACVD w obecności trimetyloglinu, Materiały i Technologie, Roczniki Naukowe Pomorskiego Oddziału Polskiego Towarzystwa Materiałoznawczego 2 (2004), s. 176.
  • 192. M.J. Hampden-Smith, T.T. Kodas: Chemical vapour deposition of metals. Part 1. An overview of CVD processes, Chemical Vapour Deposition 1 (1995), s. 8.
  • 193. J.R. Sobiecki, P. Mańkowski, T. Wierzchoń: Increased wear and corrosion resistance of Ti(NCO), layers by annealing in a nitrogen plasma atmosphere, Vacuum 68 (2003), s. 105.
  • 194. A. Crosseley, C.J. Sofield, S. Sugden, R. Clampit, C. Bradley: In situ low-temperature cleaning of silicon surface with hydrogen atoms, Vacuum 46 (1995), s. 667.
  • 195. F. Maury, E. Gueroudji, C. Vahlas: Selection of metalorganic precursors for MOCVD of metallurgical coatings: application to Cr-based coatings, Surface and Coatings Technology 86-87 (1996), s. 316.
  • 196. C. Gautier, J. Machet: Study of the growth mechanism of chromium nitrided films deposited by vacuum ARC evaporation, Thin Solid Films 295 (1997), s. 43.
  • 197. G. Bertrand, C. Savall, C. Meunier: Properties of reactively RF magnetron sputtered chromium nitride coatings, Surface and Coatings Technology 96 (1997), s. 323.
  • 198. P. Engel, G. Schwartz, G.K. Wolf: Corrosion and mechanical studies of chromium nitride films prepared by ion beam assisted deposition, Surface and Coatings Technology 98 (1998), s. 1002.
  • 199. A.W. Batchelor, Y. Fu, X. Zhu, E. Tang et al: Development and characterization of CrN films by ion beam enhanced deposition for improved wear resistance, Wear 217 (1998), s. 159.
  • 200. T. Wierzchoń, I. Ulbin-Pokorska, K. Sikorski: Corrosion resistance of chromium nitride and oxynitride layers under glow discharge conditions, Surface and Coatings Technology 130 (2000), s. 274.
  • 201. K.O. Legg, M. Graham, P. Chang, F. Rastagar, A. Gonzales, B. Sartwell: The replacement of electroplating, Surface and Coatings Technology 81 (1996), s. 99.
  • 202. S. Podsiadło: Azotki, WNT, Warszawa 1991.
  • 203. J.R. Sobiecki, T. Wierzchoń, P. Mańkowski: Wytwarzanie warstw powierzchniowych metodą PACVD z zastosowaniem acetyloacetonianu chromu, Zeszyty Naukowe Politechniki Świętokrzyskiej, Mechanika 75 (2001), s. 231.
  • 204. O. Ruff, F. Ebert, E. Stephen: Contributions to the ceramics of highly refractory materials: II System zirconia-lime, Z. Anorg. Allg. Chem. 180 (1929), s. 215.
  • 205. R.C. Garvie, P.S. Nicholson: Structure and termodynamical properties of partially stabilized zirconia in the CaO-ZrO2 system, J. Amer. Ceram. Soc. 55 (1972), s. 152.
  • 206. R.H. Hannink, R.C. Garvie, R.T. Pascoe: Ceramic steel?, Nature 258 (1975), s. 703.
  • 207. E.P. Butler: Transformation toughned zirconia ceramics, Mat. Sci. Tech. 1 (1985), s. 417.
  • 208. H.G. Scott: Phase relationship in zirconia-yttria systems, J. Mater. Sci. 10 (1975), s. 1527.
  • 209. P.H. Rieth, J.S. Reed, A.W. Naumann: Fabrication and flexural strength of ultrafine grained yttria-stabilised zirconia, Bull. Am. Ceram. Soc. 55 (1976), s. 717.
  • 210. T.K. Gupta, J.K. Bechtold, R.C. Kuznickie, L.H. Cadoff, B.R. Rossing: Stabilization of tetragonal phase in polycrystalline zirconia, J. Mater. Sci. 13 (1978), s. 1464.
  • 211. F.F. Lange: Transformation toughenining, part 3 - Experimental observations in ZrO2-Y2O3 system, J. Mater. Sci. 17 (1982), s. 240.
  • 212. G.S.A.M. Theunissen, J.S. Bouma, A.J.A. Winnbust, A.J. Burggraaf: Mechanical properties of ultra-fine grained zirconia ceramics, J. Mater. Sci. 27 (1992), s. 4429.
  • 213. R. Rajendral, V.S. Raja, R. Sivakumar, R.S. Srinivasa: Reduction of interconnected porosity in zirconia-based thermal barrier coating, Surface and Coatings Technology 73 (1995), s. 198.
  • 214. H. Tomaszewski, J. Heamers, J. Denul, N. De Roo, R. De Gryse: Yttria-stabilized zirconia thin films grown by reactive r.f. magnetron sputtering, Thin Solid Films 287 (1996), s. 104.
  • 215. G. Bertrand, R. Mevrel: Zirconia coatings realized by microwave plasma-enhanced chemical vapor deposition, Thin Solid Films 292 (1997), s. 241.
  • 216. E. Martinez, J. Esteve, G. Garcia, A. Figueres, J. Llibre: YSZ protective coatings elaborated by MOCVD on nickel-based alloys, Surface and Coatings Technology 100-101 (1998), s. 164.
  • 217. G. Garcia, A. Figueras, R.I. Merino, V.M. Orera, J. Llibre: Structural and optical properties of yttria-stabilized zirconia films grown by MOCVD, Thin Solid Films 370 (2000), s. 173.
  • 218. A. Reyes-Rojas, H. Esparza-Ponce, S.D. De la Torre, E. Torres-Moye: Compressive strain dependent bending strength property of Al2O3-ZrO2 (1,5% mol Y2O3), composites, Materials Chemistry and Physics 114 (2009), s. 756.
  • 219. J.W. Fairbanks and R. J. Hecht: The durability and performance of coatings in gas turbine and diesel engines, Mater. Sci. Eng. 88 (1987), s. 321.
  • 220. W. Napadłek, T. Niezgoda, T. Majewski, A. Derewońko, T. Babul: Pokrycia ceramiczne na bazie ZrO2 jako bariera cieplna na denku tłoka silnika wysokoprężnego, Inżynieria Materiałowa 119 (6), (2000), s. 361.
  • 221. H. Wang: Plasma sprayed ceramic coatings, in: J.B. Wachtman, R.A. Haber, Ceramic Films and Coatings, Noyes, Park Ridge, 1992, s. 131.
  • 222. A.H. Heuer: Science and Technology of Zirconia, in: J. Hobbs (ed.), Advances in Ceramics, Vol. 3, The American Ceramic Society, 1981.
  • 223. P.J. Martin and R.P. Netterfield: Handbook of Ion Beam Processing Technology in: J.J. Cuomo, S.M. Rossnagel and H.R. Kaufman (eds), Noyes, Princeton (1989), s. 374.
  • 224. M. Harris, H.A. Macleod, S. Ogura, E. Pelletier, B. Vidal: The relationship between optical homogeneity and film structure, Thin Solid Films 57 (1979), s. 173.
  • 225. P. Christel, A. Meunier, J.-M. Dorlot et al: Biomechanical compatibility and design of ceramic implants for orthopaedic surgery. Bioceramics: material characteristics versus in vivo behavior, Ann. NY Acad. Sci. 523 (1988), s. 234.
  • 226. ISO TC 150/SC 1. Implants for surgery-ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). ISO/DIS 13356, 1995.
  • 227. www.wikipedia.pl
  • 228. Magnesium and magnesium alloys, ASM Speciality Handbook, ASM International 1999.
  • 229. L. Cizek, M. Greger, L. Pawlica, L.A. Dobrzański, T. Tański: Study of selected properties of magnesium alloy AZ91 after heat treatment and forming, Journal of Materials Processing Technology 157-158 (2004), s. 466.
  • 230. B.L. Mordike, T. Ebert: Magnesium: properties - applications - potential, Materials Science and Engineering A 302 (2001), s. 37.
  • 231. J.E. Gray, B. Luan: Protective coating on magnesium and its alloys - a critical review, Journal of Alloys and Compound 336 (2002), s. 88.
  • 232. H. Hoche, H. Scheerer, D. Probst, E. Broszeit, C. Berger: Development of plasma surface treatment for magnesium alloys to ensure sufficient wear and corrosion resistance, Surface and Coatings Technology 174-175 (2003), s. 1018.
  • 233. M. Koppers, K. Weber, V. Denke, J. Fuhrmann: Einfluss der Chemischen Umgebung auf Morphologie und Struktur von Magnesiumhydroxid auf Magnesiumoberflaschen Mat.-Wiss. U. Werkstofftech. 32(1) (2001), s. 88.
  • 234. Materials Thermo-chemistry, 6 Edition Revised Pergamon Press (1993).
  • 235. W.P. Innes: Electroplating and Electroless Plating on Magnesium and Magnesium Alloys, Modern Electroplating, Wiley-Interscience, New York (1974), s. 601,
  • 236. A.K. Sharma, M.R. Suresh, H. Bhojraj, H. Narayanamurth, R.P. Sahu: Electroless nickel plating on magnesium alloy, Metal Finishing 96 (1998), s. 10.
  • 237. P.L. Hagans, C.M. Haas: Chromate conversion coatings, in: ASM Handbook, Surface Engineering, Vol. 5, ASM International, 1994, s. 405.
  • 238. D. Hawke, D.L. Albright: A Phosphate-Permanganate Conversion Coating for Magnesium, Metal Finishing 93 (1995), s. 34.
  • 239. J.D. Santi: Magnesium piston coated with a fuel ignition products adhesive, US Patent US5014605 (1991).
  • 240. J.I. Skar, M. Walter, D. Albright: Non-chromate conversion coatings for magnesium die-castings, in: Proceedings of Society of Automotive Engineers (1997), s. 7.
  • 241. Y. Zhang, C. Yan, F. Wang, H. Lou, C. Cao: Study on the environmentally friendly anodizing of AZ91D magnesium alloy, Surface and Coatings Technology 161 (2002), s. 36.
  • 242. C.S. Wu, Z. Zhang, F.H. Cao, L.J. Zhang, J.Q. Zhang, C.N. Cao: Study of the anodizing of AZ31 magnesium alloys in alkaline borate solution, Applied Surface Science 253 (2007), s. 3893.
  • 243. R. Feurer, M. Larhrafi, R. Morancho, R. Calsou: Use of binuclear compounds in chemical vapour deposition, Thin Solid Films 167 (1988), s. 195.
  • 244. K.T. Rie, J. Whole: Plasma-CVD of TiCN and ZrCN films on light metals, Surface and Coating Technology 112 (1999), s. 226-229.
  • 245. F.J.P. Dabosi, R. Morancho, D. Pouteau: Process for producing protective film on magnesium containing substrates by chemical vapor deposition of two or more layers, US Patent US4980203 (1990).
  • 246. N. Yamauchi, K. Demizu, N. Ueda, N.K. Cuong, T. Sone, Y. Hirose: Friction and wear of DLC films on magnesium alloy, Surface and Coatings Technology 193 (2005), s. 277.
  • 247. H. Altun, S. Sen: The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys, Surface and Coatings Technology 197 (2005), s. 193.
  • 248. H. Hoche, C. Blawert, E. Broszeit, C. Berger: Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91, Surface and Coatings Technology 193 (2005), s. 223.
  • 249. G. Reiners, M. Griepentrog: Hard coatings of magnesium alloys by sputter deposition using a pulsed d.c. bias voltage, Surface and Coatings Technology 76-77 (1995), s. 809.
  • 250. J. Senf, G. Berg, C. Friedrich, E. Broszeit, C. Berger: Wear behaviour and wear protection of magnesium alloys using PVD coatings, in: International Conference: Magnesium Alloys and their Application (1998), s. 457.
  • 251. X.B. Tian, C.B. Wei, S.Q. Yang, R.K.Y. Fu, P.K. Chu: Corrosion resistance improvement of magnesium alloy using nitrogen plasma ion implantation, Surface and Coatings Technology 198 (2005), s. 454.
  • 252. U. Kutschera, R. Galun: Wear behaviour of laser surface treated magnesium alloys, in: Magnesium Technology 2000, The Minerals, Metals and Materials Society (2000), s. 330.
  • 253. H. Hiraga, T. Inoue, A. Matsunawa, H. Shimura: Effect of laser irradiation conditions on bonding strength in laser plasma hybrid spraying, Surface and Coatings Technology 138 (2001), s. 284.
  • 254. H. Hoche, H. Scheerer, D. Probst, E. Broszeit, C. Berger: Plasma anodization as an enviromental harmless method for the corrosion protection of magnesium alloys, Surface and Coatings Technology 174-175 (2003), s. 1002.
  • 255. Plating and Surface Finishing, American Electroplaters Society, 85 (1998), s. 16.
  • 256. J.R. Sobiecki: Rozprawa doktorska, Politechnika Warszawska 1996.
  • 257. P. Mańkowski: Rozprawa doktorska, Politechnika Warszawska 2003.
  • 258. J.R. Sobiecki: Surface treatment of magnesium alloys, Inżynieria Materiałowa 157-158 (2007), s. 740.
  • 259. J.R. Sobiecki, T. Wierzchoń: Chemical Vapour Deposition - new perspective possibilities, Advances in Materials Science 7 No 2 (12) (2007), s. 308.
  • 260. J.L. Murray, H.A. Wriedt: Bull of Alloy, Phase Diagrams, 8, 2 (1987), s. 148.
  • 261. M. Mozetic: Discharge cleaning with hydrogen plasma, Vacuum 61 (2001), s. 367.
  • 262. Y. Hirohata, N. Tsuchiya, T. Hino: Effect of mixing of hydrogen into nitrogen plasma, Applied Surface Science 169-170 (2001), s. 612.
  • 263. J.M. Priest, M.J. Baldwin, M.P. Fewell: The action of hydrogen in low-pressure rf plasma nitriding, Surface and Coatings Technology 145 (2001), s. 152.
  • 264. J. Walkowicz: On the mechanism of diode plasma nitriding in N2-H2 mixtures under DC pulsed substrate biasing, Surface and Coatings Technology 174-175 (2003), s. 1211.
  • 265. S. Kumar, M.J. Baldwin, P. Fewell, S.C. Haydon, K.T. Short, G.A. Collins: The effect of hydrogen on the growth of the nitrided layerin r.f. plasma nitrided austenitic stainless steel, Surface and Coatings Technology 123 (2000), s. 29.
  • 266. J.R. Sobiecki, P. Mańkowski, T. Wierzchoń: Effect of plasma enhanced treatments on the microstructure and properties of titanium oxycarbonitride produced by PACVD method, Inżynieria Materiałowa 140 (3) (2004), s. 662.
  • 267. T. Wierzchoń, J.R. Sobiecki, P. Mańkowski, J. Trojanowski: Composite layers produced by combining nitriding and PACVD processes, Proc. 3 International Conference on Surface Engineering October 10-13 (2002), Chengdu, s. 333.
  • 268. A. Sokołowska, M. Sokołowski, K. Wesołowski. Własności materiałów półprzewodnikowych, PWN, Warszawa 1972.
  • 269. R. Pampuch: Materiały ceramiczne - zarys nauki o materiałach nieorganiczno-niemetalicznych, PWN, Warszawa 1988.
  • 270. G.W. Samsonow: Nitridy, Wyd. Naukowaja Dumka, Kijów 1969.
  • 271. A. Górski, Z. Gontarz: Jednopierwiastkowe struktury chemiczne, WNT, Warszawa 1998.
  • 272. A.W. Moore: Characterization of pyrolitic boron nitride for semiconductors materials processing, J. Cryst. Growth 106 (1990), s. 6.
  • 273. O. Gafri, A. Grill, D. Itzhak et al: Boron nitride coatings of steel and graphite produced with a low r.f. plasma, Thin Solid Films 72 (1980), s. 523.
  • 274. M. Sokołowski: Deposition of wurzite type boron nitride layers by reactive pulsed plasma crystallization, J. Crystal Growth 46 (1979), s. 136.
  • 275. M. Sokołowski, A. Sokołowska, A. Rusek, Z. Romanowski, M. Gajewska: Properties and growth of ß-BN (borazon), layers from a pulsed plasma under reduced pressure, J. Crystal Growth 52 (1981), s. 165.
  • 276. M. Sokołowski, A. Sokołowska, A. Michalski, Z. Romanowski, A. Rusek. M. Wronikowski: The deposition of thin films of materials with high melting points on substrates at room temperature using the pulse plasma method, Thin Solid Films 80 (1981), s. 249.
  • 277. A. Olszyna: Praca habilitacyjna, Wyd. Politechniki Warszawskiej 1997 r.
  • 278. A. Michalski, A. Olszyna: Electron-assisted hot-filament chemical vapour deposition of e-BN layers, Surface and Coatings Technology 60 (1993), s. 468.
  • 279. J. Szmidt, A. Werbowy, A. Michalski, A. Olszyna, A. Sokołowska, S. Mitura: In situ doping of a c-BN layers, Diamond and Related Materials 4 (1995), s. 1131.
  • 280. C. Schaffnit, L. Thomas, F. Rossi, R. Hugon, Y. Pauleau: Plasma diagnostic of r.f. PACVD of boron nitride using a BCl3-N2-H2-Ar gas mixture, Surface and Coatings Technology 98 (1998), s. 1262.
  • 281. G.S. Devi, S. Roy, V.J. Rao: Boron nitride thin films on Si (100), by metal organic chemical vapour deposition, Solid State Commun. 87 (1), (1993), s. 67.
  • 282. V. J. Rao, A.R. Phani, S. Roy: Growth of boron nitride thin films by metal organic chemical vapour deposition, Thin Solid Films 258 (1995), s. 21.
  • 283. J. Hahn, M. Friedrich, R. Pintaske, M. Schaller, N. Kahl, D.R.T. Zahn, F. Richter: Cubic boron nitride films by d.c. and r.f. magnetron sputtering: layer characterization and process diagnostic, Diamond and Related Materials 5 (1996), s. 1103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.