PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie i konstrukcja wieloparametrycznych natężeniowych czujników światłowodowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Multiparametric fiber optic intensity sensors construction and modeling
Języki publikacji
PL
Abstrakty
PL
Czujniki światłowodowe, których zasada pracy w głównej mierze jest oparta na zmianach natężenia promieniowania optycznego, nazywa się światłowodowymi czujnikowymi natężeniowymi. Światłowodowy czujnik składa się z: źródła światła, relatywnie krótkiego toru światłowodowego połączonego z głowicą, odbiornika promieniowania optycznego, układów kondycjonowania sygnałów i układów detekcji. W czujniku wykorzystywane są podzespoły światłowodowe, optoelektroniczne, mikroelektroniczne i mikromechaniczne. Czujniki światłowodowe przeznaczone są zwykle do wyznaczania pojedynczego parametru badanego ośrodka. Opracowanie konstrukcji światłowodowych czujników natężeniowych, spełniających zdefiniowane funkcje rozpoznawania ośrodków ciekłych i ich klasyfikacji, przy zadanym poziomie dokładności, napotykało na trudności związane z multidyscyplinanym charakterem zadania. W celu rozwiązania powyższego zagadnienia autor opracował szereg modeli podzespołów światłowodowych, w tym głowic czujników. W przeprowadzonych badaniach autor zakładał, że opracowywane modele podzespołów mają umożliwić symulacje większości rzeczywistych warunków pracy. Analiza symulacji umożliwiła wykonanie konstrukcji światłowodowych głowic ośrodków ciekłych działających w oryginalnych, zaproponowanych przez autora, trybach wieloparametrycznych. Tryby te związane są ze zmianą parametrów badanego ośrodka poddawanego zewnętrznym kontrolowanym oddziaływaniom, np. prowadzącym do formowania kropli lub powstawania fazy gazowej. Do detekcji otrzymywanych sygnałów opracowano dedykowane układy optoelektroniczne. Klasyfikację sygnałów prowadzono na podstawie danych uzyskiwanych podczas wymuszonych cykli pomiarowych z wykorzystaniem sztucznych sieci neuronowych. Uzyskane wyniki wskazały, że analizy dynamicznie zmieniających się sygnałów optycznych stanowią bardzo dobrą bazę do klasyfikacji ośrodków ciekłych. Całość prac doprowadziła do opracowania dwu nowych metod badawczych. Pierwsza metoda bazuje na analizie zmiany kształtu kropli formującej się na końcu światłowodu. Druga metoda wykorzystuje przejście fazowe ciecz-gaz-ciecz w próbce o nanolitrowej objętości umieszczonej w kapilarze optycznej. Okazało się, że proponowane metody charakteryzują się wysokimi właściwościami użytkowymi. Dla proponowanych konstrukcji przewiduje się zastosowania w klasyfikacji cieczy oraz określaniu stanów fizjologicznych ssaków na podstawie parametrów wydzielin organicznych. Aktualnie prowadzone są badania nad mikrosystemowymi implementacjami metod przeznaczonymi do klasyfikacji biopaliw i jakości mleka oraz określania faz płodności i stanu mastitis gruczołów u ssaków.
EN
The fiber optic sensors that fundamental of working are changes of light intensity are named fiber optic intensity sensors. Fiber optic sensors consist of light source unit, relatively short fiber optic path that is connected with head, light receiver, signal processing and detection units. Fiber optic elements, opto electronic, micro electronic and micro mechanic devices are used in fiber optic sensor. The fiber optic sensors are commonly used to one parameter determination of the examined medium therefore the precise medium classification is not possible. The fiber optic sensor construction, that meet the defined function of detection and classifications of medium with accuracy set meet difficulty related with multidisciplinary character of task. The models of fiber optic elements were elaborated by author to overstep this difficulty. Author assumed in the presented work that the models of elements have to be sufficient for simulation of work in most working conditions. The analysis of simulations enables realization of fiber optic heads for sensing fluids that works in original, proposed by author multiparametric modes. Those modes are related with the parameters' changes of examined medium that is under controlled action, for example let to drop forming, or creation of gas phase. The dedicated opto electronic units were worked out for detection purpose. The signal classification was carried on with artificial neural network use that processed the data obtained dynamically during measurement cycle. The obtained effect shows that analysis of dynamically changed signals is very good basis for liquid classification. The entire work results in two new examination methods. The drop shape changing that form in the end of optical fiber is used in the first method. The phase crossing liquid-gas-liquid of examined sample of nano litter volume situated in optical capillary is utilized in the second method. The proposed methods have high usable properties. The application ranges of analyzed construction foresee is related with liquid classification and determination of physiologic states of organism on the set of secretion parameters. The micro system implementations of methods are now performed for the bio fuel and milk quality classification and the fertility phase and mastitis diagnosis of mammals.
Rocznik
Tom
Strony
3--198
Opis fizyczny
Bibliogr. 266 poz., tab., rys., wykr.
Twórcy
autor
  • Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej
Bibliografia
  • 1. Buzanowskii V.A., General Synthesis Principle for Data Acquisition Systems for Substance Physicochemical Composition and Properties, Measurement Techniques, vol. 51, 2008, s. 452-457.
  • 2. Wierzba P., Kosmowski B., Polarimetric sensors for weigh-in-motion of road vehicles, Opto-Elecronics Review, vol. 8, 2000, s. 181-188
  • 3. Culshaw B., Optical Fiber Sensors, Artech House, Inc., Norwood, 1989.
  • 4. Borecki M., Kruszewski J., Laser Diode Supply for Fiber Optic Sensors, Proceedings of SPIE, vol. 4239, 2000, s. 171-175.
  • 5. Borecki M., Kruszewski J., Smart Intensity Photonic Sensors, Photonics in Information Processing, Stare Jabłonki, 2000, s. 259-266.
  • 6. Pisarczyk P., Jurkiewicz R., Sadowski M., Systemy wbudowane - kompendium, część 1, Elektronika, vol. 4, 2003, s. 32-35.
  • 7. Pisarczyk P., Jurkiewicz R., Sadowski M., Systemy wbudowane - kompendium, część 2, Elektronika, vol. 5, 2003, s. 38-44.
  • 8. Saleh B.E.A., Teich M.C., Fundamentals of Photonics, John Wiley & Sons, New York, 1991.
  • 9. Kashima N., Passive Optical Components for Optical Fiber Transmission, Artech House Inc., Boston, London, 1995.
  • 10. Agrawal G.P., Nonlinear Fiber Optics, Academic Press, San Diego, London, Boston, 2001.
  • 11. Kruszewski J., Borecki M., Bebłowska M., Plastic Optical Fibers in Sensors - A review, Proceedings of SPIE, vol. 5576, 2004, s. 234-238.
  • 12. Fishwick P., Simulation Model Design and Execution: Building Digital Worlds, Prentice-Hall, Englewood Cliffs, 1995.
  • 13. Harrington J., Tumay K., Simulation Modeling Methods: An Interactive Guide to Results-Based Decision, McGraw-Hill, New York, 1998.
  • 14. Delaney W., Vaccari E., Dynamic Models and Discrete Event Simulation, Dekker, New York, 1989.
  • 15. Severance F., System Modeling and Simulation: An Introduction, John Wiley & Sons, New York, 2001.
  • 16. Bosch P., Klauw A., Modeling, Identification & Simulation of Dynamical Systems, CRC Press, 1994.
  • 17. Simpson T., Poplinski J., Koch P., Allen J., Metamodels for Computer-based Engineering Design: Survey and Recommendations, Engineering with Computers, vol. 17, 2001, s. 129-150.
  • 18. Arsham H., Input Parameters to Achieve Target Performance in Stochastic Systems: A Simulation-based Approach, Inverse Problems in Engineering, vol. 7, 1999, s. 363-384.
  • 19. Borecki M., Metody natężeniowe modelowania, analizy i syntezy systemów światłowodowych, OWPW, Warszawa, 2004.
  • 20. Conrady A.E., Kingslake R., Applied Optics and Optical Design, vol. 1, Dover, New York, 1960.
  • 21. Conrady A.E., Kingslake R., Applied Optics and Optical Design, vol. 2, Dover, New York, 1960.
  • 22. Arsham H., Goal Seeking Problem in Discrete Event Systems Simulation, Microelectronics and Reliability, vol. 37, 1997, s. 391-395.
  • 23. Woods R., Lawrence K., Modeling and Simulation of Dynamic Systems, Prentice Hall, 1997.
  • 24. Rubinstein R., Melamed B., Modern Simulation and Modeling, John Wiley & Sons, New York, 1998.
  • 25. Rubinstein R., Shapiro A., Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method, John Wiley & Sons, New York, 1993.
  • 26. Arfken G., Mathematical Methods for Physicists, Academic Press, Orlando, 1985.
  • 27. Cartwright J.H.E., Piro O., The Dynamics of Runge-Kutta Methods. Int. J. Bifurcations Chaos, vol. 2, 1992, s. 427-449.
  • 28. Mises R., Mathematical Theory of Probability and Statistics, Academic Press, New York, 1964,
  • 29. Kleijnen J., Groenendaal W., Simulation: A Statistical Perspective, Wiley, Chichester, 1992.
  • 30. Fishman G., Monte Carlo, Springer-Verlag, Berlin, New York, 1996.
  • 31. Mises R., Probability, Statistics, and Truth, Dover, New York, 1981.
  • 32. Madu Ch., Kuei Ch-H., Experimental Statistical Designs and Analysis In Simulation Modeling, Greenwood Publishing Group, New York, 1993.
  • 33. Law A., Kelton W., Simulation Modeling and Analysis, McGraw-Hill, New York, 2000.
  • 34. Whitt W., The Efficiency of one Long Run Versus Independent Replications in Steady-State simulation, Management Science, vol. 37, 1991, s. 645-666.
  • 35. Domański C., Testy statystyczne, PWE, Warszawa, 1997.
  • 36. Wieczorkowski R., Zieliński R., Komputerowe generatory liczb losowych, WNT, Warszawa, 1997.
  • 37. Blum L., Blum M., A Simple Unpredictable Pseudo-Random Number Generator, SIAM Journal on Computing, vol. 15, 1986, s. 364-383.
  • 38. Aiello W., Rajagopalan S., Venkatesan R., Design of Practical and Provably Good Random Number Generators, Journal of Algorithms, vol. 29, 1998, s. 358-389.
  • 39. Billingsley P., Ergodic Theory and Information, Wiley, New York, 1965.
  • 40. Nadkarni M.G., Basic Ergodic Theory, Book Agency, India: Hindustan, 1995.
  • 41. Durrett R., Stochastic Calculus: A Practical Introduction, CRC Press, FL: Boca Raton, 1996.
  • 42. Katok A., Hasselblatt B., An Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1996.
  • 43. Parry W., Topics in Ergodic Theory, Cambridge University Press, Cambridge, 1982.
  • 44. Brandt S., Analiza danych, Wydawnictwo Naukowe PWN, Warszawa, 1999.
  • 45. Gajek L., Kałuszka M., Wnioskowanie statystyczne. Modele i metody, WNT, Warszawa, 1996.
  • 46. Fishman G., Discrete-Event Simulation: Modeling, Programming and Analysis, Springer-Verlag, Berlin, 2001.
  • 47. Arsham H., Algorithms for Sensitivity Information in Discrete-Event Systems Simulation, Simulation Practice and Theory, vol. 6, 1998, s. 1-22.
  • 48. Senturia S.D., Microsystem design, Kluwer Academic Publ., Boston, 2001.
  • 49. Papoulis A., Systems and Transformations with Application in Optics, McGraw-Hill, New York, 1968.
  • 50. Hecht J., Understanding Fiber Optics, Prentice-Hall, Englewood Cliffs, 1998.
  • 51. Johnson B.K., Optics and Optical Instruments: An Introduction with Special Reference to Practical Applications, Dover, New York, 1967.
  • 52. Fowles G.R., Introduction to Modern Optics, Dover, New York, 1989.
  • 53. Drude P., The Theory of Optics, Dover, New York, 1959.
  • 54. Luneburg R.K., Mathematical Theory of Optics, University of California Press, Berkeley, 1964.
  • 55. Agrawal G.P., Fiber-Optic Communication Systems, John Wiley & Sons, New York, 1997.
  • 56. Borecki M., Kruszewski J., Bebłowska M., Interfejs optoelektroniczny wysokiej czułości i rozdzielczości dedykowany do komputerowych układów czujników, VI Konferencja Naukowa Czujniki Optoelektroniczne i Elektroniczne, Gliwice, 2000, s. 208-212.
  • 57. Petykiewicz J., Optyka falowa, WPW, Warszawa, 1980.
  • 58. Perlick V., Optics, Fermat's Principle, and Applications to General Relativity, Springer-Verlag, Berlin 2000.
  • 59. Lipson S.G., Lipson H., Tannhauser, D.S., Optical Physics, Cambridge University Press, New York 1995.
  • 60. Longhurst R.S., Geometrical and Physical Optics, Wiley, New York, 1967.
  • 61. Loudon R., The Quantum Theory of Light, Clarendon Press, Oxford, 1973.
  • 62. Morgan J., Introduction to Geometrical and Physical Optics, McGraw-Hill, New York, 1953.
  • 63. Mayer A., Jurgen R., Wstęp do optyki, WKŁ, Warszawa, 1979.
  • 64. Shen Y.R., The Principles of Nonlinear Optics, Wiley, New York, 1984.
  • 65. Zyss J., (ed.), Molecular Nonlinear Optics: Materials, Physics, and Devices, Academic Press, New York, 1994.
  • 66. Adams M.J., An Introduction to Optical Waveguides, John Wiley & Sons, Chichester, 1981.
  • 67. Agrawal G.P., Boyd R.W., (ed.), Contemporary Nonlinear Optics, Academic Press, Boston, 1992.
  • 68. Bloembergen N., Nonlinear Optics, World Scientific, River Edge, 1996.
  • 69. Bolton W., Patterns in Physics, McGraw-Hill, London, 1974.
  • 70. Hippel A.R., Dielektryki i fale, PWN, Warszawa, 1963.
  • 71. Tamir T., (ed.), Integrated Optics, Springer-Verlag, Berlin, New York, 1979.
  • 72. Unger H.G., Telekomunikacja optyczna, WKiŁ, Warszawa, 1979.
  • 73. Boyd R.W., Nonlinear Optics, Academic Press, Boston, 1992.
  • 74. Buchdahl H.A., An Introduction to Hamiltonian Optics, Dover, New York, 1993.
  • 75. Cornbleet S., Microwave and Geometrical Optics, Academic Press, San Diego, 1994.
  • 76. Kline M., Kay I., Electromagnetic Theory and Geometrical Optics, Interscience Publishers, New York, 1965.
  • 77. Walther A., The Ray and Wave Theory of Lenses, University Press, Cambridge, 1995.
  • 78. Hecht E., Optics - Reading, Addison-Wesley, Cambridge, 1998.
  • 79. Gerrard A., Burch J.M., Introduction to Matrix Methods in Optics, Dover, New York, 1975.
  • 80. Butcher P.N., Cotter D., The Elements of Nonlinear Optics, Cambridge University Press, Cambridge, 1990.
  • 81. Yeh P., Introduction to Photorefractive Nonlinear Optics, John Wiley & Sons, New York, 1993.
  • 82. Mills D.L., Nonlinear Optics: Basic Concepts, Springer-Verlag, Berlin, 1998.
  • 83. Bohren C.F., Huffman D.R., Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, 1983.
  • 84. Abhyankar K.D., Fymat A.L., Relations Between the Elements of the Phase Matrix for Scattering, J. Math. Phys., vol. 10, 1969, s. 1935-1938.
  • 85. Hulst H.C., Light Scattering by Small Particles, Dover, New York, 1981.
  • 86. Mishchenko M.I., Travis L.D., Lacis A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge, 2002.
  • 87. Tseng S.H., Greene J.H., Taflove A., Maitland D., Backman V., Walsh J., Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium, Opt. Lett., vol. 29, 2004, s. 1393-1395.
  • 88. Tseng S.H., Taflove A., Maitland D., Backman V., Walsh Jr J.T., Extracting Geometrical Information of Closely Packed Random Media From Multiply Scattered Light via a Cross-Correlation Analysis, IEEE Antennas and Wireless Propagation Lett., vol. 5, 2006, s. 91-94.
  • 89. Bicout D., Brosseau C., Martinez A.S., Schmitt J.M., Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter, Phys. Rev. E, vol. 49, 1994, s. 1767-1770.
  • 90. Campbell S.D., O'Connell A.K., Menon S., Su Q., Grobe R., Light scattering regimes along the optical axis in turbidmedia, Phys. Rev. E, vol. 74, 2006, s. 061909.
  • 91. Bélanger A., Beam propagation and the ABCD ray matrices, Opt. Lett., vol. 16, 1991, s. 196.
  • 92. Mach E., The Principles of Physical Optics: An Historical and Philosophical Treatment, Dover, New York, 1953.
  • 93. Jenkins F.A., White H.E., Fundamentals of Optics, McGraw-Hill, New York, 1976.
  • 94. Saghafi S., Sheppard C.J.R., Piper J.A., Characterising Elegant and Standard Hermite-Gaussian Beam Modes, Optics Communications, vol. 191, 2001, s. 173-179.
  • 95. Changbao M., Van Keuren E., A simple three dimensional wide-angle beam propagation method, Optics Express, vol. 14, 2006, s. 4668-4674.
  • 96. Sharma A., Agrawal A., New method for nonparaxial beam propagation, J. Opt. Soc. Am. A, vol. 21, 2004, s. 1082-1087.
  • 97. Djurdjevic D.Z., Benson T.M., et al., Fast and accurate analysis of 3-D curved optical waveguide couplers, J. Lightwave Techn., vol. 22, 2004, s. 2333-2340.
  • 98. Chui S.L., Lu Y.Y., Wide-angle full-vector beam propagation method based on altering direction implicit preconditioner, J. Opt. Soc. Am. A., vol. 21, 2004, s. 420-425.
  • 99. Buck J.A., Fundamentals of Optical Fibers, John Wiley & Sons, New York, 1995.
  • 100. Romaniuk R., Światłowody kapilarne, OWPW, Warszawa, 2010.
  • 101. Wojcik J., Rayss J., Dorosz D., Optical fiber from multicomponent glass core and silica cladding, Proceedings of SPIE, vol. 4239, 2000, s. 63-70.
  • 102. Mergo P., Wojcik J., Rayss J., Chemical technique production of silver layers as protective coatings of optical fibers, Proceedings of SPIE, vol. 5028, 2003, s. 186-19.
  • 103. Pustelny T., Tyszkiewicz C., Planar Differential Interferometry for the Magnetic Field Measurment, J. Phys. IV France, vol. 129, 2005, s. 169-172.
  • 104. Hlubina P., Szpulak M., Ciprian D., Trojková J., Statkiewicz G., Martynkien T., Urbańczyk W., Theoretical and experimental analysis of waveguiding in a two-mode birefringent holey fiber, Proceedings of SPIE, vol. 6588, 2007, s. 65880K.
  • 105. Pustelny T., Physical and technical aspects of optoelectronic sensors, WPS, Gliwice 2005.
  • 106. Wolfbeis O.S., Capillary waveguide sensors, Trends in Analytical Chemistry, vol. 15, 1996, s. 225-232.
  • 107. Romaniuk R., Dorosz J., Technology of soft-glass optical fiber capillaries, Proceedings of SPIE, vol. 6347, 2006, s. 634710.
  • 108. Smith S., Cui T.T.Z., Enhancing hollow fibre ultrafiltration using slug-flow a hydrodynamic study, Desalination, vol. 146, 2002, s. 69-74.
  • 109. Rabii C.D., Harrington, J.A., Mechanical properties of hollow glass waveguides, Opt. Eng., vol. 38, 1999, s. 1490-1499.
  • 110. Meneghini C., Caron S., Proulx A., Emond F., Paradis P., Pare C., Fougeres A., Ethanol concentration measurement by Raman spectroscopy in liquid-core microstructures optical fiber, Proceedings of SPIE, vol. 6619, 2007, s. 66191U.
  • 111. SpecTran, Optical Fiber Products, SpecTran Avon USA, 2002.
  • 112. Kujawski A., Szczepański P., Lasery. Podstawy fizyczne, OWPW, Warszawa, 1999.
  • 113. Sharma P., Katyal S.C., Influence of replacing Se in Ge10Se90 glassy alloy by 50% at. Te on optical parameters, Journal of Ovonic Research, vol. 2, 2006, s. 105-110.
  • 114. Louro P., Fantoni A., Fernandes M., Macarico A., Schwarz R., Vieira M., Optoelectronic characterization of a-SiC:H staced devices, Journal of Non-Crystalline Solids, vol. 338, 2004, s. 345-348.
  • 115. Lo S.Y, Fang K.S., Yeh R.H., Hong J.W., Optoelectronic characteristics of MEH-PPV polymer LEDs with thin, doped composition-graded a-SiC:H carrier injection layers, Solid-State Electronics, vol. 50, 2006, s. 1501-1505.
  • 116. Malinowski M., Lasery światłowodowe, OWPW, Warszawa, 2003.
  • 117. Paszkiewicz R., Tyszka-Zawadzka A., Szczepanski P., Effect of mode non-orthogonality on statistical properties of light generated by circular grating DBR laser, Optics Communications, vol. 270, 2007, s. 314-322.
  • 118. Hitachi, Hitachi Optodevice Data Book, Hitachi Technical Document Center, Tokyo, 1995.
  • 119. Rao H., Scarmozzino R., Osgood R.M. Jr., A bidirectional beam propagation method for multiple dielectric interfaces, IEEE Photonics Technology Letters, vol. 11, 1999, s. 830.
  • 120. Ilic I., Scarmozzino R., Osgood R.M. Jr., Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits, IEEE/OSA Journal of Lightwave Technology, vol. 14, 1996, s. 2813.
  • 121. Fischer R.F., Optical System Design, 2nd ed., McGraw-Hill, New York, 2008.
  • 122. Geary J.M., Introduction to Lens Design: With Practical Zemax Examples, Willmann-Bell Inc., Richmond, 2002.
  • 123. Fu M., Hu J-Q., Conditional Monte Carlo: Gradient Estimation and Optimization Applications, Kluwer Academic Publishers, Dordrecht, 1997.
  • 124. Bekefi G., Barrett A.H., Electromagnetic Vibrations, Waves, and Radiation, MIT Press, Cambridge, 1987.
  • 125. Xia M., Yang K., Zhang X., Rao J., Zheng Y., Tan D., Monte Carlo simulation of backscattering signal from bubbles under water, J. of Opt. A: Pure Appl. Opt., vol. 8, 2006, s. 350-354.
  • 126. Dagpunar J., Principles of Random Variate Generation, Clarendon, London, 1988.
  • 127. Sobol I., Levitan Y., A Pseudo-Random Number Generator for Personal Computers, Computers & Mathematics with Applications, vol. 37, 1999, s. 33-40.
  • 128. Maurer U., A Universal Statistical Test for Random Bit Generators, J. Cryptology, vol. 5, 1992, s. 89-105.
  • 129. Goodman J.W., Statistical Optics, John Wiley & Sons, New York, 1985.
  • 130. Chen E., Kelton W., Determining Simulation Run Length with the Runs Test, Simulation Modelling Practice and Theory, vol. 11, 2003, s. 237-250.
  • 131. Díaz-Emparanza I., Is a Small Monte Carlo Analysis a Good Analysis? Checking the Size Power and Consistency of a Simulation-Based Test, Statistical Papers, vol. 43, 2002, s. 567-577.
  • 132. Papadimitriou C.H., Złożoność obliczeniowa, WNT, Warszawa, 2002.
  • 133. Cleveland W., Visualizing Data, Hobart Press, New Jersey, 1993.
  • 134. L'Ecuyer P., Efficient and Portable Combined Random Number Generators, Comm. ACM, vol. 31, 1988, s. 742-774.
  • 135. Arsham H., Performance Extrapolation in Discrete-event Systems Simulation, Journal of Systems Science, vol. 27, 1996, s. 863-869.
  • 136. Baranowski K., Symulacja układów elektronicznych PSpice, Mikom, Warszawa, 1996.
  • 137. Horowitz P., The Art of Electronic, Cambridge University Press, New York, 1993.
  • 138. Petrushev P.P., Popov V.A., Rational Approximation of Real Functions, Cambridge University Press, New York, 1987.
  • 139. Orcad Inc., Orcad Pspice A/D Reference Mamial Version 9, Orcad USA, 1998.
  • 140. Borecki M., Kruszewski J., Zasilacz diody laserowej ze stabilizacją mocy i modulacją amplitudy promieniowania, VII Konferencja Światłowody i ich Zastosowania, Krasnobród, 1999, s. 420-424.
  • 141. Malinowski M., Piramidowicz R., Sarnecki J., Woliński W., Infrared-to-blue-wavelength upconversion in GCG:Pr3+ thin film grown liquid phase epitaxy, J. Phys. Condens. Matter, vol. 10, 1998, s. 1909-1916.
  • 142. Borecki M., Modelowanie sprzężenia włókna optycznego z półprzewodnikowym źródłem promieniowania, V Konferencja Czujniki Optoelektroniczne i Elektroniczne, Jurata 1998, s. 135-139.
  • 143. Strąkowski M.R., Pluciński J., Kosmowski B.B., Multilayered structures examination using polarization sensitive optical coherence tomography, Photonics Letters of Poland, vol. 1, 2009, s. 52-54.
  • 144. Arsham H., What-if Analysis in Computer Simulation Models: A Comparative Survey with Some Extensions, Mathematical and Computer Modelling, vol. 13, 1990, s. 101-106.
  • 145. Wendt R., Sigalas M.M., Brueck S.R.J., Li D., Shagam M., III-nitride LEDs with photonic crystal structures, Proceedings of SPIE, vol. 5739, 2005, s. 102-107.
  • 146. Wierzba P., Kosmowski B.B., Plucinski J., The influence of splicing misalignment on the performance of polarimetric sensors, Proceedings of SPIE, vol. 5124, 2003, s. 43-48.
  • 147. Becker M.E., Kosmowski B.B., Optical metrology for high fidelity LCD-TV, Proceedings of SPIE, vol. 6158, 2006, s. 61580G.
  • 148. Pełka R., S/PDIF i TOSlink - elektrycznie i optycznie, Audio Video, vol. 10, 2002, s. 71-73.
  • 149. Milsom P.K., A ray-optic, Monte Carlo, Description of a Gaussian Beam Waist - Applied to Reverse Saturable Absorption, Appl. Phys. B, vol. 70, 2000, s. 593-599.
  • 150. Borecki M., Clad radiation rating in optical polymer fibres, Proceedings of SPIE, vol. 6159, 2006, s. 615929.
  • 151. Borecki M., Skew radiation in optical fiber - the proposal of share measure, Proceedings of SPIE, vol. 5952, 2005, s. 59521A.
  • 152. Kritler D., Brokke C., Tourreau P., Gigabit Ethernet drives evolution of multimode fiber-optics specyfications, LFW, vol. 11, 2009, s. 58-61.
  • 153. Gilmore M., Fibre Optic Cabling: Theory, Design and Installation Practice, Newnes, Oxford, 1996.
  • 154. Marcou J., Plastic Optical Fibres, John Wiley and Sons, New York, 1997.
  • 155. Siuzdak J., Wstęp do współczesnej telekomunikacji światłowodowej, WKiŁ, Warszawa, 1997.
  • 156. Dorosz D., Pawluszewicz E., Dybczynski W., Dorosz J., The influence of the fibre curvature on the optical fibre transmission coefficient, Proceedings of SPIE, vol. 5948, 2005, s. 594827.
  • 157. Beck Th., Reng N., Weber H., Optical Fibres for Material Processing Lasery, Optics and Lasers in Engineering, vol. 34, 2000, s. 255-272.
  • 158. Dierck P., Curve and Surface Fitting with Splines, Oxford University Press, Oxford, 1993.
  • 159. Micula G., Micula, S., Handbook of Splines, Kluwer Academic Publishers, Dordrecht 1999.
  • 160. Borecki M., Light Behaviour in Polymer Optical Fibre Bend - a New Analysis Method, Optica Applicata, vol. XXXIII, 2003, s. 191-204.
  • 161. Piegl E., Fundamental Developments of Computer Aided Geometric Design, Academic Press, San Diego, 1993.
  • 162. Kuhn A., Blewett I.J., Hand D.P., Optical Bare Beam Delivery of High-Energy Laser Pulses: Beam Quality Preservation and Fibre End-Preparation, Optics and Easers in Engineering, vol. 34, 2000, s. 273-288.
  • 163. Chu-Yu H., Wei-Chih W., Wen-Jong W., Ledoux, W.R. Composite Optical Bend Loss Sensor for Pressure and Shear Measurement, IEEE Sensors Journal, vol. 7, 2007, s. 1554-1565.
  • 164. Tshughuryan H., Cubic generalized B-splines for interpolation and nonlinear filtering of images, Proceedings SPIE, vol. 3026, 1997, s. 233-240.
  • 165. Kushkuley A., Rosenberg S., Length Function on Parametric Family of Curves, Latvian Math. Ezhegodnik, vol. 27, 1983, s. 154-159.
  • 166. Borecki M., Kruszewski J., The Optical Signal Losses in Real Polymer Fibre Transmission Lines, Proceedings of SPIE, vol. 5576, 2004, s. 223-237.
  • 167. Kawasaki B., Hill K., Low Loss Access Coupler Multimode Optical Fibre Distribution Networks, Applied Optics, vol. 16, 1977, s. 1794-1795.
  • 168. Borecki M., Kruszewski J., Bebłowska M., System czujników światłowodowych do monitorowania poziomu wody, OWPW, Program Priorytetowy Inżynieria Fotoniczna, Warszawa, 1999, s. 4-12.
  • 169. Kruszewski J., Borecki M., Bebłowska M., Designing and Performance of the Asymmetrical Coupler of Plastic Optical Fibers, Proceedings of SPIE, vol. 5576, 2004, s. 228-233.
  • 170. Greywall D.S., Micromechanical Light Modulators, Pressure Gauges, and Thermometers Attached to Optical Fibers, J. Micromech. Microeng., vol. 7, 1997, s. 343-352.
  • 171.Wang S.H., Tay C.J., Collimating of Diverging Laser Liode Beam Using Graded-Index Optical Fiber, Optics and Lasers in Engineering, vol. 34, 2000, s. 121-127.
  • 172. Bellver-Cebreros C., Rodriguez-Danta M., Eikonal Equation, Alternative Expression of Fresnel's Equation and Mohr's Construction in Optical Anisotropic Media, Optics Communications, vol. 189, 2001, s. 193-209.
  • 173. Arsham H., Techniques for Monte Carlo Optimizing, Monte Carlo Methods and Applications, vol. 4, 1998, s. 181-230.
  • 174. Kenney J.F., Keeping E.S., Mathematics of Statistics, Van Nostrand, Princeton, 1962.
  • 175. Goodman J.W., Introduction to Fourier Optics, McGraw-Hill, San Francisco, 1968.
  • 176. Borecki M., Kruszewski J., The New Method of Analysis of Fibre Optics GRIN Devices, Proceedings of SPIE, vol. 5064, 2003, s. 241-244.
  • 177. Borecki M., Kruszewski J., Kopczyński K., Concepts of Fibre Optic Intensity Sensors for Liquid Level Measurement, Optica Applicata, vol. XXX, 2000, s. 141-150.
  • 178. Rayss J., Optical fiber coatings for chemical and biochemical sensing, Proceedings of SPIE, vol. 5855, 2005, s. 17-19.
  • 179. Lopez C., Doval A.F., Dorrio B.V., The Spatial Resolution Performance of a Fibre-Optic Reflectometric Technique for the Automatic Detection and Measurement of Surface Cracks, Meas. Sci. Technol., vol. 12, 2001, s. 932-942.
  • 180. Corres J.M., Matias I.R., Hernaez M., Bravo J., Arregui F.J., Optical Fiber Humidity Sensors Using Nanostructured Coatings of SiO2 Nanoparticles, IEEE Sensors Journal, vol. 8, 2008, s. 281-286.
  • 181. Borecki M., Kruszewski J., Bebłowska M., Automatic Fibre-Optic Sensor for Oil Detection, Opto-Electronics Review, vol. 7, 1999, s. 203-207.
  • 182. Kiciak P., Podstawy modelowania krzywych i powierzchni - zastosowania w grafice komputerowej, WNT, Warszawa, 2000.
  • 183. Borecki M., Intelligent Fibre Optic Sensor Head Working Condition Analysis, Proceedings of SPIE, vol. 5028, 2003, s. 147-149.
  • 184. Gopal V., Anantha Ramakrishna S., Sood A.K., Kumar N., Photon transport in thin disordered slabs, Pramana journal of physics, vol. 56, 2001, s. 767-778.
  • 185. Słapa M., Szmidt J., Szczęsny A., Śniecikowski P., Czarnecki W., Dudek M., Traczyk M., Werbowy A., Ultra-thin nanocrystalline diamond detectors, Diamond and Related Materials, vol. 14, 2005, s. 125-128.
  • 186. Borecki M., The fiber optic sensor with D type head synthesis, Proceedings of SPIE, vol. 5952, 2005, s. 595218.
  • 187. Rayss J., Sudolski G., Signal of the evanescent wave sensor as a function of its length and the refractive index of the surrounding medium, Proceedings of SPIE, vol. 4239, 2000, s. 118-126.
  • 188. Paladinio D., Pilla P., Cutolo A., Giordano M., Cusano A., Caucheteur C., Megret P., Effect of thickness and external refractive index in coated tilted fiber Bragg gratings, Proceedings of SPIE, vol. 6619, 2007, s. 66192X.
  • 189. Hirono T., Arimoto H., Okawa S., Yamada Y., Microfluidic image cytometry for measuring number and sizes of biological cells flowing through a microchannel using the micro-PIV technique, Meas. Sci. Technol., vol. 19, 2008, s. 025401.
  • 190. Dress P., Belz M., Klein K.F., Grattan K.T.V., Franke H., Water-core-waveguide for pollution measurements in the deep ultra-violet, Applied Optics, vol. 37, 1998, s. 4991-4997.
  • 191. Borecki M., Korwin-Pawlowski M., Bebłowska M., Light transmission characteristic of silica capillaries, Proceedings of SPIE, vol. 6347, 2006, s. 634715.
  • 192. Borecki M., Korwin-Pawlowski M., Bebłowska M., Capillaries as optical fibres in sensing device applications, Proceedings of the Symposium on Photonics Technologies for 7FP, Wrocław, 2006, s. 454-462.
  • 193. Paciorek K., Analiza właściwości kapilar optycznych przeznaczonych do badania mikrobjętościowych próbek cieczy, Praca Magisterska IMiO, PW, Warszawa, 2008.
  • 194. Borecki M., Korwin-Pawlowski M., Bebłowska M., Jakubowski A., Short capillary tubing as fiber optic sensor of viscosity of liquids, Proceedings of SPIE, vol. 6585, 2007, s. 65851G.
  • 195. Borecki M., Korwin-Pawlowski M., Bebłowska M., Reflectometric method for liquid examination with the use of optical capillaries and fibers, Proceedings of SPIE, vol. 6619, 2007, s. 66193M.
  • 196. Dorosz J., Dybczyński W., Measuring instrument for analyse of brightness distribution in the space, Proceedings of SPIE, vol. 5457, 2004, s. 253-261.
  • 197. Bjarklev A., Optical Fiber Amplifiers: Design and System Applications, Artech House, Boston, London, 1993.
  • 198. Borecki M., Kruszewski J., Analysis of Working Conditions of Multimode Fibre Amplifiers, Opto-Electronics Review, vol. 7, 1999, s. 197-202.
  • 199. Bertoni A., Reali G.C., A Model for the Optimization of Double-Clad Fiber Laser Operation, Appl. Phys. B, vol. 66, 1998, s. 547-554.
  • 200. Dorosz J., Doped Dy3+ ring core optical fiber, Proceedings of SPIE, vol. 5451, 2004, s. 414-425.
  • 201. Holton C., Meissnerb K., Herzb E., Kominskya D., Pickrell G., Colloidal Quantum Dots Entrained in Micro-structured Optical Fibers, Proceedings of SPIE, vol. 5335, 2004, s. 258-262.
  • 202. Bwendi M.G., Lee J., Sundar V., et al., Full color emission from II-VI semiconductor Quantum Dot-Polymer Composites, Adv. Materials, vol. 15, 2000, s. 12-15.
  • 203. Romaniuk R., Dorosz J., Atom guiding in single mode optical fiber capillary, Proceedings of SPIE, vol. 6347, 2006, s. 634713.
  • 204. Kruszewski J., Borecki M., Radiation Amplification Identification in Optical Fibre Amplifiers, Opto-Electronic Review, vol. 8, 2000, s. 147-151.
  • 205. Wrzosek P., Borecki M., Kruszewski J., Threshold effects in optical amplifiers: modeling and verification, Proceedings of SPIE, vol. 5952, 2005, s. 59521B.
  • 206. Borecki M., Wrzosek P., Bebłowska M., Kruszewski J., Optimal model look for active optical fibers in amplifier applications, Proceedings of SPIE, vol. 6159, 2006, s. 615927.
  • 207. Borecki M., Kruszewski J., Optical Active Fiber Parameters Identification, Proceedings of SPIE, vol. 5576, 2004, s. 107-110.
  • 208. Arsham H., Stochastic Optimization of Discrete Event Systems Simulation, Microelectronics and Reliability, vol. 36, 1996, s. 1357-1368.
  • 209. Borecki M., Kruszewski J., Amplification and noises in real active fiber - experimental and mathematical model, Proceedings of SPIE, vol. 5576, 2004, s. 11-115.
  • 210. Dabek-Zlotorzynska E., Chen H., Ding L., Recent Advances in Capillary Electrophoresis and Capillary Electrochromatography of Pollutants - A Review, Electrophoresis, vol. 24, 2003, s. 4128-4149.
  • 211. Wlodarski M., Kaliszewski M., Kwasny M., et al., Fluorescence excitation-emission matrices of selected biological materials, Proceedings of SPIE, vol. 6398, 2006, s. 639806.
  • 212. Song Q., Zhang G.X., Qiu Z.R., Review of drop analysis technology for liquid property study, Opto-Electronics Review, vol. 13, 2005, s. 1-8.
  • 213. Borecki M., Kruszewski J., Intelligent High Resolution Sensor for Detecting of Liquid Mediums, Optica Applicata, vol. XXXI, 2001, s. 691-699.
  • 214. King D., Lyons W.B., Flanagan C., Lewis E., Interpreting complex data from a three-sensor multipoint optical fibre ethanol concentration sensor system using artiftcial neural network pattern recognition, Meas. Sci. Technol. vol. 15, 2004, s. 1560-1567.
  • 215. Borecki M., Kruszewski J., Designing the Micro Opto Mechanical Vibration Sensor, Proceedings of SPIE, vol. 5576, 2004, s. 149-153.
  • 216. Peiner E., A Micromechanical Vibration Sensor Based on the Control of Power Transmitted Between Optical Fibres, Sensor and Actuators A, vol. 65, 1998, s. 23-29.
  • 217. Borecki M., Bebłowska M., Wrzosek P., The proposition of reflectometric fibre optic load sensor, Proceedings of SPIE, vol. 6347, 2006, s. 63471P.
  • 218. Dybko A., Wroblewski W., Analyte recognition and signal conversion in chemical sensor, Sensors, vol. 1, 2001, s. 29-37.
  • 219. Ebisui A., Taguchi Y., Nagasaka Y., Novel optical viscosity sensor based on laser-induced capillary wave, Proceedings of SPIE, vol. 6887, 2008, s. 68870G.
  • 220. Kopica M., Mierczyk Z., Kwasny M., et al. Development of methane detection system, Proceedings of SPIE, vol. 4887, 2002, s. 46-49.
  • 221. Pustelny T., Pustelny B.M., Optical fiber electric field intensity sensor, Proceedings of SPIE, vol. 4516, 2001, s. 208-213.
  • 222. McCulloch S., Burnell G., Boon T. et al., Long-term reliability requirements of fiber optic systems for remote sensing applications, Proceedings of SPIE, vol. 5465, 2004, s. 84-91.
  • 223. Borecki M., Kruszewski J., Wrzosek P., Dedykowane zasilacze diod laserowych na potrzeby światłowodowych czujników natężeniowych, VIII Konferencja Światłowody i ich Zastosowania, Białowieża, 2002, s. 37-40.
  • 224. Advantech Inc., Total Solution for PC-based Industrial Automation, Solution Guide, vol. 61, Advantech, 1996.
  • 225. Ogrodzki J., Komputerowa analiza układów elektronicznych, PWN, Warszawa, 1994.
  • 226. Novak L., Neuzil P., Pipper J., Zhang Y., Lee S., An integrated fluorescence detection system for lab-on-a-chip applications, Lab Chip, vol. 7, 2007, s. 27-29.
  • 227. Borecki M., Szmidt J., Wrzosek P., Bebłowska M., Optical fiber switch for sensor networks: design principles, Proceedings of SPIE, vol. 6347, 2006, s. 63471Q.
  • 228. Principe J.C., Euliano N.R., Lefebvre W.C., Neural and Adaptive Systems: Fundamentals Through Simulations, John Wiley & Sons, New York, 2000.
  • 229. Korbicz J., Sztuczne sieci neuronowe. Podstawy i zastosowania, Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1994.
  • 230. Gerla G., Effectiveness and Multivalued Logics, Journal of Symbolic Logic, vol. 71, 2006, s. 137-162.
  • 231. Huang Q., Liu J., Li H., A Modified Adaptative Stochastic Resonanse for Detecting Faint Signal in Sensors, Sensors, vol. 7, 2007, s. 157-165.
  • 232. Willett R.M., Nowak R., Multiscale Poisson Intensity and Density Estimation, IEEE Transactions on Information Theory, vol. 53, 2007, s. 3171-3187.
  • 233. Rutkowska D., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, PWN, Warszawa, Łódź, 1997.
  • 234. Saracoglu Ö.G., Artificial Neural Network Approach for Prediction of Absorption Measurements of Evanescent Field Fiber Sensor, Sensors, vol. 8, 2008, s. 1585-1594.
  • 235. Shumway R.H., Stoffer D.S., Time Series Analysis and Its Applications, Springer-Verlag, New York, 2000.
  • 236. Miskowicz M. Effectiveness of the Event-Based Sampling according to the Integral Criterion, Sensors, vol. 7, 2007, s. 16-37.
  • 237. Turdukulov U.D., Kraak Mj. Blok C.A., Designing a visual enviroment for exploration of time series of remote sensing data: In search for convective clouds, Computers & Graphics, vol. 31, 2007, s. 370-379.
  • 238. Giordano M., Russo M., Cusano A., Cutolo A., Mensitieri G., Nicolais L., Optical sensor based on ultrathin films of δ-form syndiotactic polystyrene for fast and high resolution detection of chloroform, Appl. Phys. Lett. vol. 85, 2004, s. 5349.
  • 239. Dorosz J., Dybczynski W., Rafałowski M.B., Fiber optic head for half-cylindrical illuminance measurement, Proceedings of SPIE, vol. 5064, 2003, s. 27-30.
  • 240. Rayss J., Sudolski G., Complex refractive index concept for the description of evanescent wave sensor, Opto-Electronic Review, vol. 2, 2000, s. 129-136.
  • 241. Kopczynski K., Kwasny M., Mierczyk Z., Zawadzki Z., Laser induced fluorescence system for detection of biological agents: European project FABIOLA, Proceedings of SPIE, vol. 5954, 2005, s. 595405.
  • 242. Wilson M.J., Wang R.K., A Path-Integral Model of Light Scattered by Turbid Media, J. Phys. B: At. Mol. Opt. Phys., vol. 34, 2001, s. 1453-1472.
  • 243. Harrison D., Fisch M., Measurement, Instrumentation and Sensors - Turbidity Measurement, IEEE Press, Piscataway NJ., 1999.
  • 244. Kruszewski J., Bebłowska M, Borecki M., Fibre Optic Nephelometr, Proceedings of SPIE, vol. 5064, 2003, s. 129-131.
  • 245. Kruszewski J., M. Bebłowska, M. Borecki, Światłowodowy czujnik do badania mętności cieczy, VII Konferencja naukowa Czujniki Optoelektroniczne i Elektryczne, Rzeszów, 2002, s. 49-52.
  • 246. Postolache O.A., Silva Girao P.M.B., Dias Pereira J.M., Ramos H.M.G., Multibeam Optical System and Neural Processing for Turbidity Measurement, IEEE Sensors, vol. 7, 2007, s. 677-684.
  • 247. Tabeling P., Introduction to Microfluidics, Oxford University Press, Oxford, 2006.
  • 248. Borecki M., Kruszewski J., Intelligent Fiber Optic Sensor for Solution Concentration Examination, Proceedings of SPIE, vol. 5124, 2003, s. 49-54.
  • 249. Borecki M., Intelligent Fiber Optic Sensor for Estimating the Concentration of a Mixture-Design and Working Principle, Sensors, vol. 7, 2007, s. 384-399.
  • 250. Goldsman D., Large-Sample Normality of the Batch-Means Variance Estimator, Operations Research Letters, vol. 30, 2002, s. 319-326.
  • 251. Whitt W., The efficiency of one Long Run Versus Independent Replications in Steady-State Simulation, Management Science, vol. 37, 1991, s. 645-666.
  • 252. Borecki M., Korwin-Pawlowski M., Beblowska M., Szmidt J., Jakubowski A., Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation, Sensors, vol. 10, 2010, s. 3771-3797.
  • 253. Borecki M., Korwin-Pawlowski M., Beblowska M., A proposition of multi-parameter photonic method for nano-liter samples examination of liguids with short sections of optical capillaries, Proceedings of SPIE, vol. 6937, 2007, str. 69371G.
  • 254. Borecki M., Korwin-Pawłowski, M, Bebłowska M., A method of examination of liquids by neural network analysis of reflectometric and transmission time domain data from optical capillaries and fibers, IEEE Sensors, vol. 8, 2008, s. 1208-1213.
  • 255. Gennes P.G., Wetting: statics and dynamics, Rev. of Modern Physics, vol. 57, 1985, s. 827-863.
  • 256. Wang W.C., Reinhall P.G., Yee S., Fluid Viscosity Measurement Using Forward Light Scattering, Meas. Sci. Technol., vol. 10, 1999, s. 316-322.
  • 257. Borecki M., Korwin-Pawlowski M., Beblowska M., A method of examination of liquids by neural network analysis of reflectometric time domain data from optical capillaries and fibers, Proceedings of SPIE, vol. 6619, 2007, s. 66193M.
  • 258. Rybak W., Badanie możliwości zastosowania optycznych włókien fotonicznych i kapilarnych w czujnikach światłowodowych, praca magisterska IMiO, PW, 2007.
  • 259. Fan H., Gao Y.X., Huang X.Y., Thermodynamics modeling for moving contact line in gas'liquid'solid system: Capillary rise problem revisited, Physics of fluids, vol. 13, 2001, s. 1-9.
  • 260. Borecki M., Korwin-Pawlowski M., Wrzosek P., Szmidt J., Capillaries as the components of photonic sensor micro-systems, Journal of MS&T, vol. 19, 2008, s. 065202.
  • 261. Verpoorte E., De Rooij N.F., Microfluidics meets MEMS, Proceedings of the IEEE, vol. 91, 2003, s. 930-953.
  • 262. Thorsen T., Maerkl S., Quake S., Microfluidic large-scale integration, Science, vol. 298, 2002, s. 580-584.
  • 263. Tropini C., Living la vida loc(a): A brief insight into the world of lab on a chip and microfluidics, The science creative quarterly, vol. 2, 2007, s. 621.
  • 264. Novak L., Neuzil P., Pipper J., Zhang Y., Lee S., An integrated fluorescence detection system for lab-on-a-chip applications, Lab Chip, vol. 7, 2007, s. 27-29.
  • 265. Eckersall P., Young F.J., Mc Comb C., Hogarth C.J., Safi S., Weber A., McDonald T., Nolan A.M., Fitzpatrick J.L., Acute phase proteins in serum and milk from dairy cows with clinical mastitis, Vet. Rec., vol. 148, 2001, s. 35-41.
  • 266. Borecki M., et. al., A method of testing the quality of milk using optical capillaries, Photonics Letters of Poland, vol. 1, 2009, s. 37-39.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.