PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transmisja światłowodowa wykorzystująca polaryzację światła

Autorzy
Identyfikatory
Warianty tytułu
EN
Polarization fiber optics transmission
Języki publikacji
PL
Abstrakty
PL
W niniejszej publikacji przedstawiono badanie wpływu liniowych zjawisk polaryzacyjnych na jakość pracy wybranych systemów telekomunikacji światłowodowej, wykorzystujących transmisję sygnałów optycznych w wielu stanach polaryzacji światła. W ramach pracy zreferowano, jak zaprojektowano, wykonano i przebadano statystyczny symulator dyspersji polaryzacyjnej i tłumienia zależnego od polaryzacji oraz deterministyczny symulator tłumienia zależnego od polaryzacji. Opisano przebadany wpływ zjawisk polaryzacyjnych na jakość pracy dwukanałowego systemu ze zwielokrotnieniem polaryzacyjnym. Przedstawiono zasadę działania i właściwości opracowanego systemu ze zwielokrotnieniem polaryzacyjnym, w którym wykorzystuje się trzy kanały polaryzacyjne. W ramach pracy opisano opracowany i przebadany nowy sposób odbioru sygnałów optycznych w systemie z kluczowaniem polaryzacji. Wykorzystano w nim skrętność i krzywiznę krzywej przestrzennej, na której są zlokalizowane stany polaryzacji odbieranych sygnałów optycznych. Zreferowano przebadanie wpływu zjawisk polaryzacyjnych na działanie opracowanej metody.
EN
Low cost polarization mode dispersion and polarization dependent loss emulators were designed and validated. The designed emulators were applied to mimic the polarization effects of real optical fiber links. Impact of the polarization effects on Polarization Division Multiplexing and single channel transmission system was evaluated. A method of multiplexing and demultiplexing three polarization optical channels in order to triple the capacity in the optical fiber links was proposed and experimentally implemented. There followed a proposed solution to the problem of recovering and tracking the signal configuration at the receiver side for digital optical transmission systems employing the polarization shift keying technique. The tracking algorithm for optical signal configuration was based on analysis of torsion and curvature of three dimensional curve segments. Impact of polarization effects on the presented method was investigated.
Rocznik
Tom
Strony
3--144
Opis fizyczny
Bibliogr. 195 poz., tab., rys., wykr.
Twórcy
autor
  • Instytut Telekomunikacji, Politechnika Warszawska
Bibliografia
  • [1] Agrawal G.A., Nonlinear fiber optics, Academic Press, San Diego 2001.
  • [2] Agrawal G.A., Fiber-optic communication systems, John Wiley & Sons, New York 2002.
  • [3] Akbulut M., Xu L., Weiner A.W., Miller P.J., Wideband all order PMD compensation via pulse shaping, Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2005, paper PDP7, Anaheim, USA, 2005.
  • [4] Antonelli C., Mecozzi A., Theoretical characterization and system impact of the hinge model of PMD, Journal of Lightwave Technology, Vol. 24, No 11, pp. 4064-4074, 2006.
  • [5] Benedetto S., Poggiolini P., Theory of polarization shift keying modulation, IEEE Transactions on Communications, Vol. 40, No 4, pp. 708-721, 1992.
  • [6] Benedetto S., Poggiolini P., Multilevel polarization shift keying: optimum receiver structure and performance evaluation, IEEE Transactions on Communications, Vol. 42, No 2, 3, 4, pp. 1174-1186, 1994.
  • [7] Benedetto S., Gaudino R., Poggiolini P., Direct detection of optical digital transmission based on polarization shift keying modulation, IEEE Journal on Selected Areas in Communications, Vol. 13, No 3, pp. 531-542, 1995.
  • [8] Benedetto S., Gaudino R., Poggiolini P., Polarization recovery in optical polarization shift-keying systems, IEEE Transactions on Communications, Vol. 45, No 10, pp. 1269-1279, 1997.
  • [9] Bessa dos Santos A., Weid J.P., PDL effects in PMD emulators made out with HiBi fibers: Building PMD/PDL emulators, IEEE Photonics Technology Letters, Vol. 16, No 2, pp. 452-454, 2004.
  • [10] Betti S., Curti F., de Marchis G., Iannone E., Multilevel coherent optical system based on Stokes parameters modulation, Journal of Lightwave Technology, Vol. 8, No 7, pp. 1127-1136, 1990.
  • [11] Biondini G., Kath W.L., Menyuk C.R., Importance sampling for polarization-mode dispersion, IEEE Photonics Technology Letters, Vol. 14, No 2, pp. 310-312, 2002.
  • [12] Biondini G., Kath W.L., Polarization-mode dispersion emulation with Maxwellian lengths and importance sampling, IEEE Photonics Technology Letters, Vol. 16, No 3, pp. 789-791, 2004.
  • [13] Biondini G., Kath W.L., Menyuk C.R., Importance sampling for polarization-mode dispersion: techniques and applications, Journal of Lightwave Technology, Vol. 22, No 4, pp. 1201-1215, 2004.
  • [14] Blaikie R.J., Taylor D.P., Gough P.T., Multilevel differential polarization shift keying, IEEE Transactions on Communications, Vol. 45, No 1, pp. 95-102, 1997.
  • [15] Bohn P.P., Das S.K., Return loss requirements for optical duplex transmission, Journal of Lightwave Technology, Vol. 5, No 2, pp. 243-254, 1987.
  • [16] van den Borne D., Hecker-Denschlag N.E., Khoe G.D., de Waardt H., PMD and nonlinearity-induced penalties on polarization-multiplexed transmission, IEEE Photonics Technology Letters, Vol. 16, No 9, pp. 2174-2176, 2004.
  • [17] van den Borne D., Jansen S.L., Calabrò S., Hecker-Denschlag N.E., Khoe G.D., de Waardt H., Reduction of nonlinear penalties through polarization interleaving in 2x10 Gb/s polarization-multiplexed transmission, IEEE Photonics Technology Letters, Vol. 17, No 6, pp. 1337-1339, 2005.
  • [20] Breyer F., Lee S.C.J., Randel S., 1.25 Gbit/s transmission over up to 100m standard 1 mm step-index polymer optical fibre using FFE or DFE equalisation schemes, Proceedings of European Conference on Optical Communication 2007, paper Th.9.6.6, Berlin, Germany, 2007.
  • [21] Breyer F., Lee S.C.J., Randel S., Comparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up 300 m polymer optical fiber, Proceedings of Optical Fiber Communication Conference 2008, paper OWB5, pp. 1-3, San Diego, USA, 2008.
  • [22] Brodsky M., Boroditsky M., Magill P., Frigo N.J., Tur M., Persistence of spectral variations in DGD statistics, Optics Express, Vol. 13, No 11, pp. 4090-4095, 2005.
  • [23] Carena A., Curri V, Gaudino R., Poggiolini P., Benedetto S., A time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fiber, IEEE Journal on Selected Areas in Communications, Vol. 15, No 4, pp. 751-765, 1997.
  • [24] Chipman R.A., Polarimetry, W: Handbook of optics, M. Bass, ed., Mc Graw-Hill, New York 1995.
  • [25] Chraplyvy A.R., Gnauck A.H., Tkach R.W., Zyskind J.L., Sulhoff J.W., Lucero A.J., Sun Y., Jopson R.M., Forghieri F., Derosier R.M., Wolf C., McCormick A.R., 1-Tb/s transmission experiment, IEEE Photonics Technology Letters, Vol. 8, No 9, pp. 1264-1266, 1996.
  • [26] Ciaramella E., PMD-induced impairments in polarization-interleaved WDM systems, IEEE Photonics Technology Letters, Vol. 15, No 2, pp. 227-229, 2003.
  • [27] Collet E., Polarization light. Fundamentals and applications, Marcel Dekker, New York 1993.
  • [28] Collet E., Polarized light in fiber optics, The PolaWave Group, Lincroft, 2003.
  • [29] Corsi F., Galtarossa A., Palmieri L., Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique, Journal of Lightwave Technology, Vol. 16, No 10, pp. 1832-1843, 1998.
  • [30] Craig R.M., Visualizing the limitations of four-state measurement of PDL and results of a six-state alternative, Symposium on Optical Fiber Measurements (SOFM 2002), Boulder, CO, NIST Publication 988, pp. 121-124, 2002.
  • [31] Crenshaw H.C., Ciampaglio C.N., McHenry M., Analysis of the three-dimensional trajectories of organisms: estimates of velocity, curvature and torsion from positional information, Journal of Experimental Biology, Vol. 203, No 6, pp. 961-982, 2000.
  • [32] Curti F., Daino B., de Marchis G., Matera F., Statistical treatment of the evolution of the principal states of polarization in single-mode fibers, Journal of Lightwave Technology, Vol. 8, No 8, pp. 1162-1166, 1990.
  • [33] Dal Forno A.O., Paradisi A., Viana F.S., Passy R., von der Weid J.P., Statistical analysis of DGD in PMD emulators with random mode-coupling lengths, Microwave and Optoelectronics Conference 1999, Vol. 2, pp. 458-461, Rio de Janeiro, Brasilia, 1999.
  • [34] Damask J.N., Simer G.J., Rochford K.B., Myers P.R., Demonstration of a programmable PMD source, IEEE Photonics Technology Letters, Vol. 15, No 2, pp. 296-298, 2003.
  • [35] Damask J.N., Myers P.R., Boschi A., Simer G.J., Demonstration of a coherent PMD source, IEEE Photonics Technology Letters, Vol. 15, No 11, pp. 1612-1614, 2003.
  • [36] Damask J.N., Polarization optics in telecommunications, Springer Verlag, Berlin 2004.
  • [37] Derickson D., Fiber optic test and measurement, Printice Hall PTR, New Jersey 1998.
  • [38] Dietrich E., Enning B., Gross R., Knupke H., Heterodyne transmission of a 560 Mbit/s optical signal by means of polarisation shift keying, Electronics Letters, Vol. 23, No 8, pp. 421-422, 1987.
  • [39] Djupsjöbacka A., On differential group-delay statistics for polarization-mode dispersion emulators, Journal of Lightwave Technology, Vol. 19, No 2, pp. 285-290, 2001.
  • [40] Drabikowski M., Słownik fizyczny, Optyka i akustyka, Wydawnictwa Naukowo-Techniczne, Warszawa 1991.
  • [41] Duthel T., Fludger C.R.S., Geyer J., Schulien C., Impact of polarisation dependent loss on coherent POLMUX-NRZ-DQPSK, Optical Fiber Communication/National Optical Engineers Conference 2008, pp. 1-3, San Diego, USA, 2008.
  • [42] El Amari A., Gisin N., Perny B., Zbinden H., Zimmer C.W., Statistical prediction and experimental verification of concatenations of fiber optic components with polarization dependent loss, Journal of Lightwave Technology, Vol. 16, No 3, pp. 332-339, 1998.
  • [43] Evangelides S.G., Mollenauer L.F., Gordon J.P., Bergano N.S., Polarization multiplexing with solitons, Journal of Lightwave Technology, Vol. 10, No 1, pp. 28-35, 1992.
  • [44] Foschini G.J., Poole C.D., Statistical theory of polarization dispersion in single mode fibers, Journal of Lightwave Technology, Vol. 9, No 11, pp. 1439-1456, 1991.
  • [45] Fu X., O'Sullivan M., Goodwin J., Equivalent first-order lumped-elements model for networks with both PMD and PDL, IEEE Photonics Technology Letters, Vol. 16, No 3, pp. 939-941, 2004.
  • [46] Fukada Y., Probability density function of polarization dependent loss (PDL) in optical transmission system composed of passive devices and connecting fibers, Journal of Lightwave Technology, Vol. 20, No 6, pp. 953-964, 2002.
  • [47] Furukawa H., Wada N., Takezawa N., Nashimoto K., Miyazaki T., 640 (2 x 32λ x 10) Gbit/s polarization-multiplexed, wide-colored optical packet switching achieved by polarization-independent high-speed PLZT switch, Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2008, paper OtuL7, San Diego, USA, 2008.
  • [48] Galtarossa A., Palmieri L., Relationship between pulse broadening due to polarisation mode dispersion and differential group delay in long singlemode fibres, Electronics Letters, Vol. 34, No 5, pp. 492-493, 1998.
  • [49] Galtarossa A., Palmieri L., Reflectometric measurement of PMD properties in long-single-mode fibers, Optical Fiber Technology, Vol. 9, No 3, pp. 119-142, 2003.
  • [50] Galtarossa A., Palmieri L., Theoretical analysis of reflectometric measurements in optical fiber links affected by polarization-dependent loss, Journal of Lightwave Technology, Vol. 21, No 5, pp. 1233-1241,2003.
  • [51] Gisin N., Statistics of polarization dependent losses, Optics Communications, Vol. 114, No 5, pp. 399-405, 1995.
  • [52] Gisin N., Huttner B., Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers, Optics Communications, Vol. 142, No 1-3, pp. 119-125, 1997.
  • [53] Gordon J.P., Kogelnik H., PMD fundamentals: Polarization mode dispersion in optical fibers, PNAS, Vol. 97, No 9, pp. 4541-4550, 2000.
  • [54] Hadjifaradji S., Yang S., Chen L., Bao X., PMD-PDL emulator designs for low interchannel correlation, IEEE Photonics Technology Letters, Vol. 18, No 22, pp. 2362-2364, 2006.
  • [55] Han Y., Li G., Experimental demonstration of direct-detection quaternary differential polarization-phase shift keying with electrical multilevel decision, Electronics Letters, Vol. 42, No 2, pp. 109-111, 2006.
  • [56] Hardy W.C., QoS Measurement and evaluation of telecommunications quality of service, John Wiley & Sons, New York 2001.
  • [57] Hauer M.C., Yu Q., Lyons E.R., Lin C.H., Au A.A., Lee H.P., Willner A.E., Electrically controllable all-fiber PMD emulator using a compact array of thin-film microheaters, Journal of Lightwave Technology, Vol. 22, No 4, pp. 1059-1065, 2004.
  • [58] Hayee M.I., Cardakli M.C., Sahin A.B., Willner A.E., Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme, IEEE Photonics Technology Letters, Vol. 13, No 8, pp. 881-883, 2001.
  • [59] Heffner B.L., Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis, IEEE Photonics Technology Letters, Vol. 4, No 9, pp. 1066-1069, 1992.
  • [60] Hill P.M., Olshansky R., Burns W.K., Optical polarization division multiplexing at 4 Gb/s, IEEE Photonics Technology Letters, Vol. 4, No 5, pp. 500-502, 1992.
  • [61] Hinz S., Sandel D., Wüst F., Noé R., PMD tolerance of polarization division multiplex transmission using return-to-zero coding, Optics Express, Vol. 9, No 3, pp. 136-140, 2001.
  • [62] Hodzic A., Konrad B., Petermann K., Improvement of system performance in N/spl times/40-Gb/s WDM transmission using alternate polarizations, IEEE Photonics Technology Letters, Vol. 15, No 1, pp. 153-155, 2003.
  • [63] Huang R., Alhassen F., Tseng D., Boyraz O., Acoustooptic coherent mode coupling in polarization-maintaining fiber and its application as a variable-polarization-dependent loss element, IEEE Photonics Technology Letters, Vol. 19, No 9, pp. 665-667, 2007.
  • [64] Huard S., Polarization of light, John Wiley & Sons, Chichester 1997.
  • [65] Huttner B., Gisin B., Gisin N., Distributed PMD measurement with a polarization-OTDR in optical fibers, Journal of Lightwave Technology, Vol. 17, No 10, pp. 1843-1848, 1999.
  • [66] Ito T., Fujita S., de Gabory E.L.T., Shioiri S., Fukuchi K., Precise analysis of transmission impairments of Pol-Mux 110 Gb/s RZ-DQPSK with Automatic Pol-Dmux using Straight 2,000 km SMF Line, Proceedings of European Conference on Optical Communication 2008, paper We.1.E.5, Brussels, Belgium, 2008.
  • [67] Iwatsuki K., Suzuki K., Nishi S., Saruwatari M., 80 Gb/s Optical soliton transmission over 80 km with time/polarization division multiplexing, IEEE Photonics Technology Letters, Vol. 5, No 2, pp. 245-247, 1993.
  • [68] Ji H.C., Lee J.H., Chung Y.C., Effect of polarization dependent loss on polarization-shift-keying transmission system, Proceedings of SPIE, Optical Components and Transmissions Systems, Vol. 4906, pp. 313-318, 2002.
  • [69] Ji H.C., Youn C.J., Chung Y.C., Novel variable PDL emulator based on LiNbO3 modulator. Optoelectronics and Communications Conference, paper P4-1, Shanghai, China, 2003.
  • [70] Ji H.C., Lee J.H., Kim H., Park P.K.J., Chung Y.C., Effect of PDL-induced coherent crosstalk on polarization-division-multiplexed direct detection systems, Optics Express, Vol. 17, No 3, pp. 1169-1177, 2009.
  • [71] Jung H.G., Lee S.H., Ji H.C., Kim B.Y., Shin S.Y., Tunable polarization-dependent loss element based on acoustooptic mode coupling in a polarization-maintaining fiber, IEEE Photonics Technology Letters, Vol. 16, No 6, pp. 1510-1512, 2004.
  • [72] Kamalakis T., Varoutas D., Sphicopoulos T., Statistical study of in-band crosstalk noise using the multicanonical Monte Carlo method, IEEE Photonics Technology Letters, Vol. 16, No 10, pp. 2242-2244, 2004.
  • [73] Kaminow I.P., Polarization in optical fibers, IEEE Journal of Quantum Electronics, Vol. QE-17, No 1, pp.15-21, 1981.
  • [74] Kaminow I.P., Li T., Optical fiber telecommunications IVB systems and impairments, Academic Press, San Diego 2002.
  • [75] Karlsson M., Sunnerud H., Effects of nonlinearities on PMD-induced system impairments, Journal of Lightwave Technology, Vol. 24, No 11, pp. 4127-4137, 2006.
  • [76] Khosravani R., Lima L.T., Jr., Ebrahimi P., Ibragimov E., Willner A.E., Menyuk C.R., Time and frequency domain characteristics of polarization-mode dispersion emulators, IEEE Photonics Technology Letters, Vol. 13, No 2, pp. 127-129, 2001.
  • [77] Kogelnik H., Nelson L.E., Gordon J.P., Emulation and inversion of polarization-mode-dispersion, Journal of Lightwave Technology, Vol. 21, No 2, pp. 482-495, 2003.
  • [78] Kogelnik H., Winzer P.J., Nelson L.E., Jopson R.M., Boroditsky M., Brodsky M., First-order PMD outage for the Hinge model, IEEE Photonics Technology Letters, Vol. 17, No 6, pp. 1208-1210, 2005.
  • [79] Langer T., Belyaev A.G., Seidel H.P., Analysis and design of discrete normals and curvatures, in MPI-I-2005-4-003 Research Report, Max Planck Institut für Informatik, Saarbrucken, Germany, 2005.
  • [80] Lee S.C.J., Breyer F., Randel S., 10.7 Gbit/s transmission over 220 m polymer optical fiber using maximum likelihood sequence estimation, Proceedings of Optical Fiber Communication Conference 2007, OMR2, pp. 1-3, Anaheim, USA, 2007.
  • [81] Leminger O., Leppla R., Statistic modelling of a high-order PMD emulator, Proceedings of European Conference on Optical Communication 2001, Vol. 3, pp. 344-345, Amsterdam, Holland, 2001.
  • [82] Lima A.O., Lima I.T., Zweck J., Menyuk C.R., Efficient computation of PMD-induced penalties using multicanonical Monte Carlo simulations, Proceedings of European Conference on Optical Communication 2003, 2003, pp. 538-539, Rimini, Italy, 2003.
  • [83] Lima A.O., Lima I.T., Menyuk C.R., Error estimation in multicanonical Monte Carlo simulations with applications to polarization-mode-dispersion emulators, Journal of Lightwave Technology, Vol. 23, No 11, pp. 3781-3789, 2005.
  • [84] Lima I.T., Khosravani R., Ebrahimi P., Ibragimov E., Willner A.E., Menyuk C.R., Polarization mode dispersion emulator, Proceedings of Optical Fiber Communication Conference 2000, pp. ThB4-1 - ThB4-2, Baltimore, USA, 2000.
  • [85] Lima I.T., Khosravani R., Ebrahimi P., Comparison of polarization mode dispersion emulators, Journal of Lightwave Technology, Vol. 19, No 12, pp. 1872-1881, 2001.
  • [86] Limal I.T., Jr., Lima A.O., Biondini G., Menyuk C.R., Kath W.L., A comparative study of single-section polarization-mode dispersion compensators, Journal of Lightwave Technology, Vol. 22, No 4, pp. 1023-1032, 2004.
  • [87] Lin C.H., Li Q., Lee H.P., Periodic microbending-induced core-to-cladding mode coupling in polarization-maintaining fibers, Optics Letters, Vol. 28, No 12, pp. 998-1000, 2003.
  • [88] Liu X., Xu C., Wei X., Performance analysis of time-polarization multiplexed 40-Gb/s RZ-DPSK DWDM transmission, IEEE Photonics Technology Letters, Vol. 16, No 1, pp. 302-304, 2004.
  • [89] Liu X., Chandrasekhar S., Direct detection of 107-Gb/s polarization-multiplexed DQPSK with electronic polarization demultiplexing, Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2008, paper OtuG4, San Diego, USA, 2008.
  • [90] Lizé Y.K., Palmer L., Godbout N., Lacroix S., Kashyap R., Scalable polarization-mode dispersion emulator with proper first- and second-order statistics, IEEE Photonics Technology Letters, Vol. 17, No 11, pp. 2451-2453, 2005.
  • [91] Lu P., Chen L., Bao X., Statistical distribution of polarization-dependent loss in the presence of polarization-mode dispersion in single-mode fibers, IEEE Photonics Technology Letters, Vol. 13, No 5, pp. 451-453, 2001.
  • [92] Lu P., Chen L., Bao X., System outage probability due to the combined effect of PMD and PDL, Journal of Lightwave Technology, Vol. 20, No 10, pp. 1805-1808, 2002.
  • [93] Lu T., Yevick D.O., Yan L., Zhang B., Willner A.E., An experimental approach to multicanonical sampling, IEEE Photonics Technology Letters, Vol. 16, No 8, pp. 1978-1980, 2004.
  • [94] Lu T., Yevick D.O., Hamilton B., Dumas D., Reimer M., An experimental realization of biased multicanonical sampling, IEEE Photonics Technology Letters, Vol. 17, No 12, pp. 2583-2585, 2005.
  • [95] Marcuse D., Menyuk C.R., Wai P.K.A., Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence, Journal of Lightwave Technology, Vol. 15, No 9, pp. 1735-1746, 1997.
  • [96] Martensson J., Li J., Berntson A., Djupsjöbacka A., Forzati M., Suppression of intra-channel four-wave mixing by phase modulation at one quarter of bit rate, Electronics Letters, Vol. 38, No 23, pp. 1463-1465, 2002.
  • [97] Mayers R.A., Encyclopedia of physical science and technology, Vol. 12, Academic Press, San Diego 1992.
  • [98] Menyuk C.R., Wang D., Pilipetskii A.N., Repolarization of polarization-scrambled optical signals due to polarization dependent loss, IEEE Photonics Technology Letters, Vol. 9, No 9, pp. 1247-1249, 1997.
  • [99] Meyer-Arendt J.R., Wstęp do optyki, Państwowe Wydawnictwo Naukowe, Warszawa 1977.
  • [100] Muga N.J., Pinto A.N., The development of a PMD emulator, Proceedings Conference on Telecommunications, ConfTele, Tomar, Portugal, 2005.
  • [101] Nelson L.E., Kogelnik H., Coherent crosstalk impairments in polarization multiplexed transmission due to polarization mode dispersion, Optics Express, Vol. 7, No 10, pp. 350-361, 2000.
  • [102] Nelson L.E., Nielsen T.N., Kogelnik H., Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission, IEEE Photonics Technology Letters, Vol. 13, No 7, pp. 738-740, 2001.
  • [103] Nicholson G., Temple D.J., Polarization fluctuation measurements on installed single-mode optical fiber cables, Journal of Lightwave Technology, Vol. 7, No 8, pp. 1197-1200, 1989.
  • [104] Noé R., Sandel D., Wüst R, Polarization mode dispersion tolerance of bandwidth-efficient multilevel modulation schemes, Proceedings of Optical Fiber Communication Conference 2000, Vol. 2, pp. 198-200, Baltimore, USA, 2000.
  • [105] Noé R., Hinz S., Sandel D., Wüst F., Crosstalk detection schemes for polarization division multiplex transmission, Journal of Lightwave Technology, Vol. 19, No 10, pp. 1469-1475, 2001.
  • [106] Noutsios PC., In-service measurements of polarization fluctuations on field-installed OC-192 DWDM systems, Proceedings of International Symposium on Signals, Systems and Electronics 2007, pp. 323-326, Montreal, Canada, 2007.
  • [107] Oodan A.P., Ward K.E., Quality of service in telecommunications, IEE, London 1997.
  • [108] Orlandini A., Vincetti L., Comparison of the Jones matrix analytical models applied to optical system affected by high-order PMD, Journal of Lightwave Technology, Vol. 21, No 6, pp. 1456-1464, 2003.
  • [109] Palmer L., Dods S.D., Farrell P.M., Broad-band concatenated-section PMD emulator design for low interchannel correlation, IEEE Photonics Technology Letters, Vol. 17, No 5, 1019-1021, 2005.
  • [110] Palmer L., Dods S.D., Farrell P.M., Design and optimization of polarization mode dispersion emulators for low background autocorrelation, Proceedings of Optical Fiber Communication Conference 2005, Vol. 4, page 3, Anaheim, USA, 2005.
  • [111] Pardo O.B., Renaudier J., Charlet G., Tran P., Mardoyan H., Salsi M., Bigo S., Impact of nonlinear impairments on the tolerance to PMD of 100 Gb/s PDM-QPSK data processed in a coherent receiver, Proceedings of European Conference on Optical Communication 2008, paper We.3.E.1, Brussels, Belgium, 2008.
  • [112] Park K.J., Youn C.J., Lee J.H., Chung Y.C., PMD-induced crosstalk in the presence of polarization scrambling, IEEE Photonics Technology Letters, Vol. 16, No 11, pp. 2580-2582, 2004.
  • [113] Perlicki K., Pomiary w optycznych systemach telekomunikacyjnych, Wydawnictwa Komunikacji i Łączności, Warszawa 2002.
  • [114] Perlicki K., Evaluation of the spatial distribution of birefringence in an optical-fiber link, Microwave and Optical Technology Letters, Vol. 42, No 2, pp. 147-149, 2004.
  • [115] Perlicki K., Statystyczny symulator zjawisk polaryzacyjnych, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr 8-9, pp. 1862-1867, 2009.
  • [116] Perlicki K., Analysis of the SOPs distribution on the Poincaré sphere using the spherical radial distribution function, Proceedings Photonics 2004, paper FBR P13, Cochin, India, 2004.
  • [117] Perlicki K., Analysis of distribution of partially polarized light, Optical and Quantum Electronics, Vol. 36, No 15, pp. 1353-1360, 2004.
  • [118] Perlicki K., Investigation of the distribution of the states of polarization on the Poincaré sphere using the spherical radial distribution function, Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2005, paper OME25, pp. 97-99, Anaheim, USA, 2005.
  • [119] Perlicki K., Investigation of the state of polarization distribution generated by polarization scramblers on the Poincaré sphere, Optics Communications, Vol. 252, No 1-3, pp. 58-63, 2005.
  • [120] Perlicki K., Calculation of birefringence distribution in optical fiber based on analysis of angle between states of polarization, Optical and Quantum Electronics, Vol. 37, No 12, pp. 1141-1148, 2005.
  • [121] Perlicki K., Analysis of clusters and uniformity of distribution of states of polarization on the Poincaré sphere, Applied Optics, Vol. 44, No 21, pp. 4533-4537, 2005.
  • [122] Perlicki K., Polarization mode dispersion characterization based on backscattering analysis in optical single-mode fiber, Journal of Optical Communications, 27, 995, online 81, 2006.
  • [123] Perlicki K., Impact of beat and coupling length on the transmission power penalty in optical fibers with polarization mode dispersion, Journal of Optical Communications, 27, 996, online 78, 2006.
  • [124] Perlicki K., Polarization configuration recognition based on analysis of torsion and curvature, Optics Communications, Vol. 264, No 1, pp. 70-73, 2006.
  • [125] Perlicki K., Identification of polarization configuration based on torsion and curvature calculation, WSEAS Transactions on Communications, Vol. 5, No 4, pp. 631-633, 2006.
  • [126] Perlicki K., Calculation of circular birefringence based on analysis of Stokes curve curvature, Microwave and Optical Technology Letters, Vol. 48, No 5, pp. 854-856, 2006.
  • [127] Perlicki K., Polarization tracking based on Stokes curve analysis, Asia Optical Fiber Communication & Optoelectronics Exposition & Conference, article no. 4100066, Shanghai, China, 2006.
  • [128] Perlicki K., Simple analysis of the distribution of birefringence in fiber optics links, Asia Optical Fiber Communication & Optoelectronics Exposition & Conference, article no. 4100065, Shanghai, China, 2006.
  • [129] Perlicki K., Sposób i system do równoczesnej transmisji światłowodem jednomodowym trzech sygnałów optycznych z wykorzystaniem zwielokrotnienia polaryzacyjnego, o różnych stanach polaryzacji światła, numer zgłoszeniowy patentu P386010.
  • [130] Perlicki K., Analysis of crosstalk degradation in polarization division multiplexing system due to polarization dependence loss and gain, Microwave and Optical Technology Letters, Vol. 49, No 12, pp. 2915-2918, 2007.
  • [131] Perlicki K., A simplified analytical model of crosstalk in polarization division multiplexing system, Topics in Applied Electromagnetics and Communications, Proceedings of the 5th WSEAS International Conference on Electroscience'07, pp. 7-10, Puerto de la Cruz, Spain, 2007.
  • [132] Perlicki K., Systemy transmisji optycznej WDM, Wydawnictwa Komunikacji i Łączności, Warszawa 2007.
  • [133] Perlicki K., 3x2.5 Gbit/s polarization division multiplexing transmission, New Aspects of Communication, Proceedings of the 12th WSEAS International Conference on Communications, pp. 263-265, Heraklion, Greece, 2008.
  • [134] Perlicki K., Three channels optical transmission based on polarization multiplexing technique, Microwave and Optical Technology Letters, Vol. 51, No 3, pp. 626-627, 2009.
  • [135] Perlicki K., Statistical PMD and PDL effects emulator based on polarization maintaining optical fiber segments, Optical and Quantum Electronics, Vol. 41, No 1, pp. 1-10, 2009.
  • [136] Perlicki K., Wpływ zjawisk polaryzacyjnych na jakość pracy systemu ze zwielokrotnieniem polaryzacyjnym, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, nr 89, pp. 1099-1105, 2009.
  • [137] Perlicki K., Czarnecki T., Polarization recovery for polarization shift keying transmission based on analysis of torsion and curvature of three dimensional curve segments, Optical Fiber Technology, Vol. 15, No 5-6, pp. 462-469, 2009.
  • [138] Petykiewicz J., Optyka falowa, Państwowe Wydawnictwo Naukowe, Warszawa 1986.
  • [139] Phua P.B., Ippen E.P., A deterministic broad-band polarization-dependent loss compensator, Journal of Lightwave Technology, Vol. 23, No 2, pp. 771-780, 2005.
  • [140] Pinto N.M.P., Frazăo O., Romero R., Costa A., PMD emulator/compensator device combine FBGs written in two different types of optical fibers, Conference on Transparent Optical Networks 2006, Vol. 4, pp. 18-22, Nottingham, UK, 2006.
  • [141] Pizurica A., Senk V., Pizurica V., An application of spherical codes to polarization shift keying modulation, Electronics and Energetics Facta Universitatis (NIS), Faculty of Electronic Engineering, Department of Electronics, Serbia, Vol. 11, No 2 pp. 207-221, 1998.
  • [142] Poole C.D., Wagner R.E., Phenomenological approach to polarisation dispersion in single mode fibres, Electronic Letters, Vol. 22, No 19, pp. 1029-1030, 1986.
  • [143] Poole C.D., Bergano N.S., Wagner R.E., Schulte H.J., Polarization dispersion and principal states in a 147-km undersea lightwave cable, Journal of Lightwave Technology, Vol. 6, No 7, pp. 1185-1190, 1988.
  • [144] Prola C.H., Pereira da Silva J.A., Dal Forno A.O., Passy R., von der Weid J.P., Gisin N., PMD emulators and signal distortion in 2.48-Gb/s IM-DD lightwave systems, IEEE Photonics Technology Letters, Vol. 9, No 6, pp. 842-844, 1997.
  • [145] Pye D., Polarised light in science and nature, Institute of Physics Publishing, Bristol 2001.
  • [146] Ratajczyk F., Dwójłomność i polaryzacja optyczna, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2000.
  • [147] Renedetto S., Olmo G., Poggiolini P., Trellis coded polarization shift keying modulation for digital optical communications, IEEE Transactions on Communications, Vol. 43, No 2, 3, 4, pp. 1591-1602, 1995.
  • [148] Reyes P., Fishteyn M., Wielandy S., Westbrook P., A tunable PDL element using twisted tilted fiber gratings, Proceedings of Optical Fiber Communication Conference 2003, Vol. 2, pp. 641-642, Atlanta, USA, 2003.
  • [149] Rochat E., Walker S.D., C-band polarisation orthogonality preservation in 5 Gb/s, 50 μm multimode fibre links up to 3 km, Optics Express, Vol. 11, No 6, pp. 508-514, 2003.
  • [150] Rochat E., Walker S.D., Parker M.C., Polarisation and wavelength division multiplexing at 1.55 μm for bandwidth enhancement of multimode fibre based access networks, Optics Express, Vol. 12, No 10, pp. 2280-2292, 2004.
  • [151] Saff E.B., Kuijlaars A.B.J., Distributing many points on a sphere, Mathematical Intelligencer, Vol. 19, No 1, pp. 5-11, 1997.
  • [152] Sandel D., Wüst F., Mirvoda V., Noé R., PMD compensation in a 2x40 Gbit/s, 212 km, CS-RZ polarization multiplexed transmission experiment, Proceedings of European Conference on Optical Communication 2001, postdeadline paper PD.4.10, Amsterdam, Holland, 2001.
  • [153] Sandel D., Mirvoda V, Bhandare S., Wüst F., Noé R., Some enabling techniques for polarization mode dispersion compensation, Journal of Lightwave Technology, Vol. 21, No 5, pp. 1198-1210, 2003.
  • [154] Shieh W., Accelerated outage probability testing for PMD induced impairment, IEEE Photonics Technology Letters, Vol. 12, No 10, pp. 1364-1366, 2000.
  • [155] Shtaif M., The Brownian-bridge method for simulating polarization mode dispersion in optical communications systems, IEEE Photonics Technology Letters, Vol. 15, No 1, pp. 51-53, 2003.
  • [156] Shurcliff W.A., Ballard S.S., Światło spolaryzowane, Państwowe Wydawnictwo Naukowe, Warszawa 1964.
  • [157] Simon A., Ulrich R., Evolution of polarization along a single mode fiber, Applied Physics Letters, Vol. 31, No 8, pp. 517-520, 1977.
  • [158] Siuzdak J., Wstęp do współczesnej telekomunikacji światłowodowej, Wydawnictwa Komunikacji i Łączności, Warszawa 1997.
  • [159] Smith M.H., Chipman R.A., Comparison of different PMD compensator configurations based on outage probability, Proceedings of Optical Fiber Communication Conference 2002, pp. 233-234, San Jose, USA, 2002.
  • [160] Stępniak G., Zastosowanie zwielokrotnienia grup modowych do transmisji danych w światłowodach wielomodowych, Rozprawa doktorska, Wydział Elektroniki i Technik Informacyjnych, Politechnika Warszawska, 2009.
  • [161] Sunnerud H., Xie C., Karlsson M., Samuelsson R., Andrekson P.A., A comparison between different PMD compensation techniques, Journal of Lightwave Technology, Vol. 20, No 3, pp. 368-378, 2002.
  • [162] Szustakowski M., Elementy techniki światłowodowej, Wydawnictwa Naukowo-Techniczne, Warszawa 1992.
  • [163] Tsalamanis I., Rochat E., Parker M.C., Walker S.D., Polarization dependent loss and temperature fluctuations effect on degree of orthogonality in polarization multiplexed arrayed waveguide grating based distribution networks, IEEE Journal of Quantum Electronics, Vol. 41, No 7, pp. 945-950, 2005.
  • [164] Tsckrekos C.P., de Boer M., Martinez A., Willems F.M.J., Koonen A.M.J., Demonstration of a transparent 2-input 2-output mode group diversity multiplexing link, Proceedings of European Conference on Optical Communication 2006, paper We3.P.145, Cannes, France, 2006.
  • [165] Tuft V.L., Bjørnstad S., Hjelme D.R, Time interleaved polarization multiplexing for polarization labelling, Conference on Transparent Optical Networks 2006, Vol. 1, pp. 47-51, Barcelona, Spain, 2005.
  • [166] Tuft V.L., Hjelme D.R., The effect of PDL in a polarization and time division multiplexed scheme for all-optical class of service segregation, Conference on Transparent Optical Networks 2006, Vol. 3, pp. 91-96, Nottingham, UK, 2006.
  • [167] Wai P.K.A., Menyuk C.R., Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence, Journal of Lightwave Technology, Vol. 14, No 2, pp. 148-157, 1996.
  • [168] Walraven R.L., Polarization by a tilted absorbing glass plate, Review of Scientific Instruments, Vol. 49, No 4, pp. 537-541, 1978.
  • [169] Wang D., Menyuk C.R., Polarization evolution due to the kerr nonlinearity and chromatic dispersion, Journal of Lightwave Technology, Vol. 17, No 12, pp. 2520-2529, 1999.
  • [170] Wang Q., Rajan G., Wang P., Polarization dependence of bend loss for a standard singlemode fiber, Optics Express, Vol. 15, No 8, pp. 4909-4919, 2007.
  • [171] Winzer P.J., Gnauck A.H., 112-Gb/s Polarization-Multiplexed 16-QAM on a 25-GHz WDM Grid, Proceedings of European Conference on Optical Communication 2008, paper Th.3.E.5, Brussels, Belgium, 2008.
  • [172] Wuilpart M., Megret P., Blondel M., Rogers A.J., Defosse Y., Measurement of the spatial distribution of birefringence in optical fibers, IEEE Photonics Technology Letters, Vol. 13, No 8, pp. 836-838, 2001.
  • [173] Xie C., Kang I., Gnauck A.H., Moller L., Mollenauer L.F., Grant A.R., Suppression of intrachannel nonlinear penalties in high-speed transmissions with alternate polarization formats, Proceedings of Optical Fiber Communication Conference 2004, Vol. 2, page 3, Los Angeles, USA, 2004.
  • [174] Yan L.S., Yu Q., Willner A.E., Demonstration of in-line monitoring and compensation of polarization-dependent loss for multiple channels, IEEE Photonics Technology Letters, Vol. 14, No 69, pp. 864-866, 2002.
  • [175] Yan L., Yeh C., Yang G., Lin L., Chen Z., Shi Y.Q., Willner A.E., Yao X.S., Programmable group-delay module using binary polarization switching, Journal of Lightwave Technology, Vol. 21, No 7, pp. 1676-1684, 2003.
  • [176] Yan L.S., Hauer M.C., Shi Y., Yao X.S., Ebrahimi P., Wang Y., Willner A.E., Kath W.L., Polarization mode dispersion emulator using variable differential-group-delay elements and its use for experimental importance sampling, Journal of Lightwave Technology, Vol. 22, No 4, pp. 1051-1058, 2004.
  • [177] Yan L., Yao X.S., Hauer M.C., Willner A.E., Practical solutions to polarization-mode-dispersion emulation and compensation, Journal of Lightwave Technology, Vol. 24, No 11, pp. 3992-4005, 2006.
  • [178] Yao S., Yan L.S., Zhang B., Willner A.E., Jiang J., All-optic scheme for automatic polarization division demultiplexing, Optics Express, Vol. 15, No 12, pp. 7407-7414, 2007.
  • [179] Yevick D., Multicanonical communication system modeling-application to PMD statistics, IEEE Photonics Technology Letters, Vol. 14, No 11, pp. 1512-1514, 2002.
  • [180] Yu Q., Shanbhag A., Electronic data processing for error and dispersion compensation, Journal of Lightwave Technology, Vol. 24, No 12, pp. 4514-4525, 2006.
  • [181] Zalecenie ITU-T G. 650.2, Definitions and test methods for statistical and non-linear related attributes of single-mode fibre and cable, Geneva, Switzerland, 2005.
  • [182] Materiały firmy Acterna, ANT-20, ANT-20E, Advanced Network Tester SDH Version, Operating Manual, 2002.
  • [183] Materiały firmy Acterna, ANT-20SE, ANT-10Gig Advanced Network Tester SDH Version, Operating Manual, 2002.
  • [184] Materiały firmy Agilent Technologies, Polarization-dependent loss measurements using modular test system configurations, Product Note 11896-2, 2000.
  • [185] Materiały firmy Agilent Technologies, A Random PMD Emulator Based on the Agilent 11896A Polarization Controller, Product Note 11896-3, 2002.
  • [186] Materiały firmy Agilent Technologies, PDL Measurements using the Agilent 118169A Polarization Controller, Product Note Christian Hentschel, Siegmar Schmidt, 2002.
  • [187] Materiały firmy GAP Optique, DOP Polarization-OTDR: localization of high PMD fibers, P-OTDR Technical Note 1.0, Geneva, Switzerland, 2002.
  • [188] Materiały firmy General Photonics Corporation, PMD Emulator Platform, PMDE-301, 2005.
  • [189] Materiały firmy JDSU Uniphase, PMD Emulator, 2008.
  • [190] Materiały firmy OzOptics, Polarization Dependent Loss Emulator, Data Sheet, 2009.
  • [191] Materiały firmy Photonics GmbH, H. Rosenfeldt, Enabling high-speed, high-capacity dynamic optical networks: overcoming the dispersion impairments, 2005.
  • [192] Materiały firmy Thorlabs, Telecom Compatible Polarization Maintaining Fiber, 2009.
  • [193] pl.wikipedia.org
  • [194] http://office.microsoft.com
  • [195] www.mathworks.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.