PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and computer simulation of reagents diffusion in high temperature diffusion controlled heterogeneous reactions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this paper a computational method which takes into account convection in the melting metal and slag phases is discussed. Design/methodology/approach: A deterministic computational model of high-temperature heterogeneous reaction between metal and oxide melts has been developed. Findings: Transport of reagents and products of reaction occur simultaneously both by diffusion and by laminar natural convection of the melting metal and oxide fluxes. The convection-diffusion equations have been numerically solved by a finite-differences time-implicit discretization scheme. The model was implemented by program which had been written in C# language. The computations have been performed for desulfurization reaction between liquid metal and slag phases. Research limitations/implications: To verify the reliability of the model, the computed results have been compared with experimental data. The good agreement has been obtained. The numerical results agree well with the results which were found by two independent experiments. Originality/value: This computational model enables to obtain results, for example sulfur concentration changes along the x axis, which is very difficult, almost impossible, to get by experiment. Using this mathematical model allows to predict the distribution of elements in the metal during the refining process and to reduce expenses in selection of optimum process' conditions, which provide the metal with required composition. This model can be used for quantitative analysis of the diffusion stage of the heterogeneous reactions.
Rocznik
Strony
225--231
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
autor
autor
autor
autor
  • Faculty of Natural Sciences, Ariel University Center of Samaria, c/Ariel 40700, Israel, assous@ariel.ac.il
Bibliografia
  • [1] S. Johansen, Mathematical Modeling Of Metallurgical Processes, Proceedings of the 3rd International Conference “CFD in the Minerals and Process Industries” CSIRO, Melbourne, 2003, 5-12.
  • [2] T. Matsumiya, A. Nogami, Y. Fukuda, Effect of reflected wave from the wall of a vessel and end effect of the plate in the oscillating-plate method, ISIJ International 33/1 (1993) 217-223.
  • [3] V. Boronenkov, M. Zhadkevich, B. Statnikov, A. Salamatov, N. Zalomov, Mathematical modeling of the physical-chemical processes of the evaporation and degassing in electron-beam remelting of alloys, Le Vide, les couches minces: théorie, pratique et applications industrielles 261 (1992) 74-76.
  • [4] S. Shanchurov, V. Boronenkov, The determination of mass transfer parameters between the metal and slag by physical modeling methods and in the real process, Le Vide, les couches minces: théorie, pratique et applications industrielles 261 (1992) 77-79.
  • [5] T. Matsumiya, Mathematical analysis of segregation and chemical compositional changes of nonmetallic inclusions during solidification of steels, Materials Transactions 33/9 (1992) 783-794.
  • [6] R. Ducharme, P. Kapadia, J. Dowden, K. Williams, W. Steen, An integrated mathematical model for the welding of thick sheets of metal with a continuous CO2 laser, Proceedings of the International Congress “Applications of Lasers & Electro-Optics” ICALEO’93, Orlando, 77, 1994, 97.
  • [7] V. Boronenkov, M. Zhadkevich, S. Shanchurov, A. Yanishevskaya, Mathematical model of chemical processes in centrifugal electroslag casting, Russian Metallurgy 5 (1993) 35-42.
  • [8] Yu. Davydov, V. Boronenkov, A. Salamatov, Prediction of the weld formation of variable composition based on modeling of metallurgical processes, Avtomaticeskaja Svarka 7-8 (1992) 23-26.
  • [9] J. Norrish, D. Gray, Computer simulation and off-line programming in integrated welding systems,Welding and Metal Fabrication 60/3 (1992) 119-122.
  • [10] S. Kozlovsky, Modeling of the interaction of parts in the contact area in spot welding, Izvestiya Vuzov USSR, Mashinostr 9 (1990) 89-94.
  • [11] A. Pelton, Modeling the thermodynamic properties of slags, Proceedings of the 4th International Conference “Molten Slags and Fluxes”, Sendai, 1992, 122.
  • [12] W. Yamada, T. Matsumiya, Calculation of phase diagrams for oxide slags by thermodynamic models, Proceedings of the 4th International Conference “Molten Slags and Fluxes”, Sendai, 1992, 133.
  • [13] V. Boronenkov, M. Shalimov, S. Shanchurov, Method for analysis of the kinetics of simultaneously occurring electrode reactions under nonsteady-conditions, Rasplavy 5 (1994) 12-17.
  • [14] N. Zalomov, V. Boronenkov, Calculation of activities and ionic composition of multicomponent silicate melts, Rasplavy 3 (1991) 39-42.
  • [15] H. Gaye, J. Lehman, T. Matsumiya, W. Yamada, A statistical thermodynamics model of slags: application to systems containing S, F, P2 O5 and Cr-oxides, Proceedings of the 4th International Conference “Molten Slags and Fluxes”, Sendai, 1992, 126.
  • [16] N. Zalomov, V. Boronenkov, A. Lyudmilin, Application of the polymer theory to multicomponent silicate and alumino-silicate melts, Proceedings of the 4th “Molten Slags and Fluxes” International Conference, Sendai, 1992, 144.
  • [17] T. Iida, Y. Kita, Z. Morita, Estimation of the Enthalpy of Evaporation of molten slags and fluxes based on a harmonic oscillator model, Proceedings of the 4th International Conference “Molten Slags and Fluxes”, Sendai, 1992, 147.
  • [18] T. Matsumiya, A. Nogami, Y. Fukuda, Applicability of molecular dynamics simulation to analysis of slags, Proceedings of the 4th International Conference “Molten Slags and Fluxes”, Sendai, 1992, 128.
  • [19] B. Shakmatkin, N. Vedishcheva, M. Shultz, Simulation of thermodynamic properties of slag melts, Proceedings of the 4th International Conference “Molten Slags and Fluxes”, Sendai, 1992, 120.
  • [20] A. Zaitsev, B. Mogutnov, The theory of associated solutions in thermodynamics of metallurgical slags, Proceedings of the 4th International Conference “Molten Slags and Fluxes”, Sendai, 1992, 121.
  • [21] V. Grigorenko, O. Kiselev, G. Chernyshov, Mathematical model and its practical evaluation for weld formation, Svar. Proizvod. 2 (1994) 30-32.
  • [22] G. Tsybulkin, Mathematical models in adaptive control of arc welding, Avtomaticeskaja Svarka 1 (1994) 24-27.
  • [23] H. Cerjak, K.E. Easterling, Mathematical modeling of weld phenomena, The Institute of Materials, London, 1993, 369.
  • [24] O. Esin, P. Geld, Physical chemistry of the pyrometallurgy processes. Part I., Mashinostroenie, Moscow, 1962.
  • [25] O. Esin, P. Geld, Physical chemistry of the pyrometallurgy processes. Part II. Mashinostroenie, Moscow, 1966.
  • [26] A. Pelton, P. Talley, R. Shama, Thermodynamic evaluation of phase equilibria in the calcium chloride-magnesium chloride-calcium fluoride-magnesium fluoride system, Journal of Phase Equilibrium 13/4 (1992) 384-390.
  • [27] L. Panphilova, M. Zinigrad, L. Barmin, Quick stage kinetics of oxygen ion discharge on the boundary of sulfide melts and liquid oxides, Electrohimiya 17/9 (1981) 1346-1349.
  • [28] V. Boronenkov, S. Shanchurov, M. Zinigrad, Kinetics of the interaction of multicomponent metal with slag under diffusion conditions, Izvestiya Ac. Nauk USSR. Metal 6 (1979) 21-27.
  • [29] E.A. Kapustin, A.V. Sushchenko, Development of the theory and the mathematical Model of the Coverter Smelt. In: Problems of the Theory and Practice of Steelmaking Processing in Moscow Metallurgical Institute, Moscow, Metallurgiya, 1991, 57-73.
  • [30] Z. Asaki, F. Qjerch, J.M. Toguri, Oxidation of molten ferrous sulphide, Metallurgical and Materials Transactions B 5/8 (1974) 1753-1759.
  • [31] A. Sotnikov, O. Esin, Yu. Nikitin, Electrochemical Study of the decarbonation reaction in the kinetic regime, Izvestiya Vuzov USSR, Chernaya Metallurgiya 8 (1963) 19-23.
  • [32] M. Zinigrad, L. Barmin, A. Sotnikov, Kinetics and mechanism of sulfides oxidation by slag melts, Electrohimiya i rasplavy, Moscow, Nauka (1974) 228-235.
  • [33] M. Goldshmit, S. Ferro, R. Prhncipe, A. Coppola Owen, On the modelling of liquid steel processes, Latin American Applied Research 32/3 Bahia Blanca (2002).
  • [34] R. Fruehan, S. Mirsa, Hydrogen and Nitrogen Control in Ladle and Casting Operations, Materials Science and Engineering Department Carnegy Mellon University Pitsburg, PA, 2005.
  • [35] S. Banya, M. Hino, T. Nagasaka, Estimation of Hydroxyl Capacity of Molten Silicates by Quadratic Formalism Based on the Regular Solution Model, Tetsu to Hagane (1993) 26-33.
  • [36] T. Iita, Y. Kita, H. Okano, I. Katayama, T. Tanaka, An Equation for the Vapor Pressure of Liquid Metals and Calculation of Their Enthalpies of Evaporation, High Temperature Materials and Processes 10/4 (1992) 199-207.
  • [37] Y. Zuo, Y. Chang, Calculation of Phase Diagram and Solidification Paths of Aluminium-Rich aluminium- Magnesium-Copper Ternary Alloys, Light Metals (1993) 935-942.
  • [38] B. Deo, P. Grieveson, Desulfurization of Molten Pig Iron Containing Aluminum by Powder Injection, Steel Research (1998) 263-268.
  • [39] H. Sandburg, Delsfurization of Hot Metal, Iron and Steel Making (1977) 280-284.
  • [40] G.D. Hassal, P. Jackaman, R. Hawkins, Phosphorous and Sulphur Removal from Liquid Steel in Ladle Steemaking Processes, Ironmaking and Steelmaking 18/5 (1991) 359-369.
  • [41] M. Andersson, M. Hallberg, L. Jonsson, P. Jonsson, Slag - Metal Reactions during Ladle Treatment with Focus on Desulphurisation, Ironmaking and Steelmaking 29/3 (2002) 224-232.
  • [42] M. Nzotta, Du. Sichen, S. Seetharaman, A Study of the Sulfide Capacities of Iron-Oxide Containing Slags, Metallurgical and Materials Transactions B 30/5 (1999) 909-920.
  • [43] H. Gaye, J. Welfringer, Modelling of the thermodynamic properties of complex metallurgical slags, Proceedings of the 2nd International Symposium ” Metallurgical Slags and Fluxes”, Lake Tahoe, Nevada, 1984, 357-375.
  • [44] H. Ohta, H. Suito, Activities of SiO2 and Al2O3 and activity coefficients of FetO and MnO in CaO-SiO2-Al2O3-MgO slags, Metallurgical and Materials Transactions B 29/1 (1998) 119-129.
  • [45] S.W. Robinson, R.W. Bartram, G.M. Houghton, Kinetic model for predicting hot metal desulfurizer consumption, Proceedings of the “Steel Making” Conference, 1989, 457-461.
  • [46] B. Deo, P. Grieveson, Kinetics of Desulfurization of Molten Pig Iron, Steel Research 57 (1986) 514-519.
  • [47] V. Seshadri, C. Silva, I. Silva, P. Kruger, A Kinetic Model Applied to the Molten Pig Iron Desulfurization by Injection of Lime Based Powders, ISIJ international 37/1 (1997) 21-30.
  • [48] M. Zinigrad, Computational Methods for Development of New Welding Materials, Computational Materials Science 37/4 (2006) 417-424.
  • [49] M. Radune, D. Ophir, A. Lugovskoy, M. Zinigrad, D. Eliezer, A Sulfur Diffusion Investigation in Metal and Oxide Phases, Defect and Diffusion Forum 258-260 (2006) 433-440.
  • [50] P.G. Ciarlet, Introduction to Numerical Analysis, Vol. 1, 2002.
  • [51] M. Radune, Msc. Thesis, 2007.
  • [52] D.F. Elliott, M. Gleiser, W. Ramakrishna, Thermochemistry of steel-making processes, Metallurgiya, Moscow, 1969.
  • [53] R. Fruehan, Desulfurization of liquid steel containing aluminum or silicon with lime, Metallurgical and Materials Transactions B 9/3 (1978) 287-292.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.