PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examination and simulation of composite materials Al-Al2O3 tribological properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this paper is examination and simulation of tribological properties of composite materials based on porous ceramic preforms infiltrated by eutectic aluminium alloy. Design/methodology/approach: The material for investigations was fabricated by pressure infiltration method of ceramic porous preforms. The eutectic aluminium alloy EN AC - AlSi12 was use as a matrix while as reinforcement were used ceramic preforms fabricated by sintering of Al2O3 Alcoa CL 2500 powder with addition of pore forming agents as carbon fibres Sigrafil C10 M250 UNS manufactured by SGL Carbon Group company. The wear resistance was measured by the use of device designed in the Institute of Engineering Materials and Biomaterials. The device realize dry friction wear mechanism of reciprocating movement condition. The simulation of influence of load and number of cycles on tribological properties was by the use of neural networks made. Findings: The developed technology of manufacturing of composite materials with the pore ceramic Al2O3 infiltration ensures expected tribological properties moreover those properties can by simulated by the use of neural network. Practical implications: The composite materials made by the developed method can find application as the alternative material for elements fabricated from light metal matrix composite material reinforced with ceramic fibrous preforms. Originality/value: The obtained results show the possibility of manufacturing the composite materials with expected tribological properties by the pressure infiltration method of porous preforms based on the ceramic particles with liquid aluminium alloy.
Rocznik
Strony
205--212
Opis fizyczny
Bibliogr. 21 poz., tab., rys., wykr.
Twórcy
autor
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] A. Albiter, A. Contreras, M. Salazar, J.G. Gonzalez-Rodriguez, Corrosion behavior of aluminium metal matrix composites reinforced with TiC processed by pressureless infiltration, Journal of Applied Electrochemistry 36 (2006) 303-308.
  • [2] H.S. Chu, K.S. Liu, J.W. Yeh, Aging behavior and tensile properties of 6061Al-0.3μm Al2O3 particle composites produced by reciprocating extrusion, Scripta Materialia 45 (2001) 541-546.
  • [3] L.A. Dobrzański, A. Włodarczyk-Fligier, M. Adamiak, Properties and corrosion resistance of PM composite materials based on EN AW-Al Cu4Mg1(A) aluminum alloy reinforced with the Ti(C,N) particles, Proceedings of the 11th International Scientific Conference “Contemporary Achievements in Mechanics, Manufacturing and Materials Science” CAM3S’2005, Gliwice-Zakopane, 2005, (CD-ROM).
  • [4] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, Structure, properties and corrosion resistance of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the Al2O3 ceramic particles, Journal of Materials Processing Technology 162-163 (2005) 27-32.
  • [5] A. Włodarczyk-Fligier, L.A Dobrzański, M. Adamiak, Influence of the heat treatment on properties and corrosion resistance of Al-composite, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 55-58.
  • [6] N. Altinkok, A. Demir, I. Ozsert, Processing of Al2O3/SiC ceramic cake preforms and their liquid metal infiltration, Composites 34 (2003) 577-582.
  • [7] L.A. Dobrzański, M. Kremzer, A. Nagel, B. Huchler, Fabrication of ceramic preforms based on Al2O3 CL 2500 powder, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 71-74.
  • [8] L.A. Dobrzański, M. Kremzer, A. Nagel, B. Huchler, Structure and properties of porous preforms manufactured on the base of Al2O3 powder, Archives of Foundry 21/1-2 (2006) 149-154.
  • [9] G.G. Kang, Y.H. Seo, The influence of fabrication parameters on the deformation behavior of the preform of metal-matrix composites during the squeeze-casting processes, Journal of Materials Processing Technology 61 (1996) 241-249.
  • [10] A. Mattern, B. Huchler, D. Staudenecker, R. Oberacker, A. Nagel, M.J. Hofmann, Preparation of interpenetrating ceramic-metal composites, Journal of the European Ceramic Society 24 (2004) 3399-3408.
  • [11] L.M. Peng, J.W. Cao, K. Noda, K.S. Han, Mechanical properties of ceramic-metal composites by pressure infiltration of metal into porous ceramics, Materials Science and Engineering A374 (2004) 1-9.
  • [12] E. Carreno-Morelli, T. Cutart, R. Schaller, C. Bonjour, Processing and characterization of aluminium-based MMCs produced by gas pressure infiltration, Materials Science and Engineering A251 (1998) 48-57.
  • [13] S. Basavarajappa, G. Chandramochan, Dry sliding wear behavior of metal matrix composites: a statistical approach, Journal of Materials Engineering and Performance 15/6 (2006) 656-659.
  • [14] A. Daoud, T. El-Bitar, A. Abd El-Azim, Tensile and wear properties of rolled Al5Mg-Al2O3 or C particulate composites, Journal of Materials Engineering and Performance 12/4 (2003) 390-397.
  • [15] C.K. Fang, C.C. Huang, T.H. Chuang, Synergistic Effects of wear and corrosion for Al2O3 particulate reinforced 6061 aluminium matrix composites, Metallurgical and Materials Transactions A 30 (1999) 643-646.
  • [16] A. Posmyk, Modeling of tribological properties of aluminium matrix composite materials, Materials Engineering 2 (2006) 69-74 (in Polish).
  • [17] Y. Sahin, M. Acilar, Production and properties of SiCp-reinforced aluminium alloy composites, Composites A34 (2003) 709-718.
  • [18] M. Nałęcz, Biocybernetics and biomedical engineering, 6 Neural networks, EXIT, Warsaw, 2000 (in Polish).
  • [19] H.K.D.H. Bhadeshia, Neural networks in materials science, International Journal of Iron and Steel Institute of Japan 39 (1999) 966-1000.
  • [20] L.A. Dobrzański, J. Trzaska, Application of neural network for the prediction of continuous cooling transformation diagrams, Computational Materials Science 30/3-4 (2004) 251-259.
  • [21] W. Sitek, J. Trzaska, L.A. Dobrzański, An artificial intelligence approach in designing new materials, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 277-280.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.