PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of syndiotactic polystyrene / carbon nanofiber composites through X-ray diffraction using adaptive neuro-fuzzy interference system and artificial neural network

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to characterize of syndiotactic polystyrene/carbon nanofiber composites through X-ray diffraction using adaptive neuro-fuzzy interference system and artificial neural network. Owing to their interesting mechanical, electrical and thermal properties, syndiotactic polystyrene (s-PS)/carbon nanofiber (CNF) composites have gained adequate importance in the scientific and industrial communities and as a result, characterization of s-PS/CNF is an issue of major interest to the researchers. Design/methodology/approach: In the present paper, two quantitative models, based on adaptive neuro-fuzzy interference system (ANFIS) and artificial neural network (ANN), are developed and compared with a goal of accurately predicting the intensity values from the scattering angle values in X-ray Diffraction (XRD) of syndiotactic polystyrene (s-PS)/carbon nanofiber (CNF) composites. Findings: Results demonstrate that both the proposed models are highly effective in estimating intensity from scattering angle. However, more accurate results are obtained with the ANFIS model as compared to the ANN model. Research limitations/implications: The results of the investigations carried out in this study is suggestive of the fact that both ANFIS and ANN can be used quite effectively for prediction of intensity from scattering angle values in XRD of s-PS/CNF composites. Originality/value: The proposed ANFIS and ANN model-predicted intensity values are in very good agreement with the experimental intensity values. However, it is seen that, irrespective of the type of composite sample, the proposed ANFIS models outperform the proposed ANN models in terms of prediction accuracy.
Rocznik
Strony
197--204
Opis fizyczny
Bibliogr. 20 poz., tab., rys., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] A.R. Bhattacharyya, P. Potschke, H. Liane, D. Fischer, Reactive compatibilization of Melt Mixed PA6/SWNT Composites: mechanical properties and morphology, Macromolecular Chemistry and Physics 206 (2005) 2084-2095.
  • [2] F.D. Foresee, M.T. Hagan, Gauss-Newton approximation to bayesian regularization, Proceedings of the International Joint Conference “Neural Networks”, 1997, 1930-1935.
  • [3] M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design, MA: PWS Publishing, Boston, 1996.
  • [4] M.T. Hagan, M. Menhaj, Training feed forward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks 5 (1994) 989-993.
  • [5] S. Haykin, Neural Network - a comprehensive foundation; a computational approach to learning and machine intelligence, Macmillan, New York, 1994.
  • [6] M. Hessami, F. Anctil, A.A. Viau, Selection of an Artificial Neural Network Model for the Post-calibration of Weather Radar Rainfall Estimation, Journal of Data Science 2 (2004) 107-124.
  • [7] S. Jeong, Z. Changchun, L.J. Lee, Synthesis of polystyrene - carbonnanofibers nanocomposite foams, Polymer 46 (2005) 5218-5224.
  • [8] S.B. Kessler, A.E. Sherif, E. Douglas, D.E. Smith, Incorporating Neural Network Material Models Within Finite Element Analysis for Rheological Behavior Prediction, Transactions of the ASME 129 (2007) 211-214.
  • [9] A. Kulkarni, Artificial Neural Network for Image Understanding, Van Nostrand Reinhold, New York, 1994.
  • [10] S. Kumar, T. Rath, R.N. Mahaling, C.S. Reddy, C.K. Das, K.N. Pandey, R.B. Srivastava, S.B. Yadaw, Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites, Materials Science and Engineering B 141/1-2 (2007) 61-70.
  • [11] S. Kumar, T. Rath, R.N. Mahaling, C.K. Das, Processing and characterization of carbonnanofiber/syndiotactic polystyrene composites in the absence and presence of liquid crystalline polymer, Composites: Part A 38/5 (2007) 1304-1317.
  • [12] Z.C. Lin, C.Y. Liu, Analysis and application of the adaptive neuro-fuzzy inference system in prediction of CMP machining parameters, International Journal of Computer Applications in Technology 17/2 (2003) 80-89.
  • [13] A. Oonsivilai, M.E. Hawary, Power System Dynamic Load Modeling using Adaptive-Network-Based Fuzzy Inference System, Proceedings of the IEEE Canadian Conference “Electrical and Computer Engineering”, Shaw Conference Center, Edmonton, Alberta, Canada, 1999.
  • [14] T. Ozel, Y. Karpat, Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks, International Journal of Machine Tools and Manufacture 45 (2005) 467-479.
  • [15] S. Rajasekharan, S.A.V. Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms, Prentice-Hall, India, 2003.
  • [16] J.S. Roger, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man and Cybernetics 23/3 (1993) 665-685.
  • [17] J.S. Roger, C.T. Sun, Neuro-fuzzy modelling and control, Proceedings of the IEEE 83/3 (1995) 378-406.
  • [18] K.W. Sandler, S. Pegel, M. Cadek, F. Gojny, E.M. Van, J. Lohmar, Comparative study of melt spun Polyamide12 fibers reinforced with carbon nanotubes and nanofibers, Polymer 45 (2004) 2001-2015.
  • [19] T. Takagi, M. Sugeno, Derivation of fuzzy control rules from human operator’s control actions, Proceedings of the IFAC Symposium “Fuzzy Information, Knowledge Representation and Decision Analysis”, Marseilles, France, 1983, 55-60.
  • [20] E.D. Ubeyli, I. Guler, Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of microshield lines with practical cavity
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.