PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element modelling of the fracture behaviour of surface treated Ti-6Al-4V alloy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Surface treatments of the titanium alloys are frequently applied in order to modify the surface layer microstructure and to improve tribological properties or resistance to high temperature oxidation of the alloy. Various surface engineering techniques can be used to increase the surface hardness, e.g. deposition of the coatings composed of metallic carbides, nitrides or more recently DLC. The stiffness and strength properties of the coating and substrate materials differ significantly. Cracking of the usually brittle coating leads to stress concentration and localized plastic deformation of the substrate which can facilitate propagation of microcracks into the substrate. This can result in premature failure of the hard coated component. In the paper the crack penetrating hard coating was analysed and the influence of coating and substrate properties on crack driving force was numerically investigated. Design/methodology/approach: Two dimensional finite element analysis of the four point bending test of surface modified titanium alloy with the crack penetrating hardened layer was carried out. Findings: The effect of the coating thickness and stiffness, residual stresses in the coating, yield strength of substrate material and yield properties of diffusion hardened layer on crack driving force was determined. Research limitations/implications: Some extension of the numerical model should be introduced in order to take into account the interactions of the crack with microstructure of the material. Practical implications: The results could be used for selection of parameters of surface layer with complex structure in the process of the design of load bearing components against fracture. Originality/value: The fracture behaviour of hard coated materials was most frequently studied for indentation and friction conditions and considerably less concern was devoted to coated systems under tension or compression.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 36 poz., tab., rys., wykr.
Twórcy
autor
  • Department of Materials Science, Rzeszow University of Technology, ul. W. Pola 2, 35-959 Rzeszów, Poland, wziaja@prz.edu.pl
Bibliografia
  • [1] C. Leyens, Titanium and Titanium Alloys, Wiley-VCH GmbH & Co. KGaA, 2003.
  • [2] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering 47 (2004) 49-121.
  • [3] R. Filip, Alloying of surface layer of the Ti-6Al-4V titanium alloy through the laser treatment, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 174-180.
  • [4] T. Wierzchoń, Structure and properties of multicomponent and composite layers produced by combined surface engineering methods, Surface and Coatings Technology 180-181 (2004) 458-464.
  • [5] L.A. Dobrzański, L. Wosińska, J. Mikuła, K. Gołombek, T. Gawarecki, Investigation of hard gradient PVD (Ti,Al,Si)N coating, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 59-62.
  • [6] A.J. Novinrooz, H. Seyedi, M.M. Larijani, Microhardness study of Ti(C, N) films deposited on S-316 by the Hollow Cathode Discharge gun, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 59-63.
  • [7] A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods, Surface and Coatings Technology 200 (2005) 2192-2207.
  • [8] S. Baragetti, G.M. La Vecchia, A. Terranova, Fatigue behaviour and FEM modelling of thin-coated components, International Journal of Fatigue 25 (2003) 1229-1238.
  • [9] E. Bemporad, M. Sebastiani, F. Casadei, F. Carassiti, Modelling, production and characterisation of duplex coatings (HVOF and PVD) on Ti-6Al-4V substrate for specific mechanical applications, Surface and Coatings Technology 201 (2007) 7652-7662.
  • [10] B.Q. Yang, K. Zhang, G.N. Chen, G.X. Luo, J.H. Xiao, Effect of a laser pre-quenched steel substrate surface on the crack driving force in a coating-steel substrate system, Acta Materialia 55 (2007) 4349-4358.
  • [11] B.S. Yilbas, M.S.J. Hashmi, Laser treatment of Ti-6Al-4V alloy prior to plasma nitriding, Journal of Materials Processing Technology 103 (2000) 304-309.
  • [12] T. Bell, H. Dong, Y. Sun, Realizing the potential of duplex surface engineering, Tribology International 31 (1998) 127-137.
  • [13] J.R. Sobiecki, T. Wierzchoń, Structure and properties of plasma carbonitrided Ti-6Al-2Cr-2Mo alloy, Surface and Coatings Technology 200 (2006) 4363-4367.
  • [14] M. Cłapa, D. Batory, Improving adhesion and wear resistance of carbon coatings using Ti:C gradient layers, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 415-418.
  • [15] J. Mikuła, L.A. Dobrzański, PVD and CVD coating systems on oxide tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 75-78.
  • [16] M. Hetmańczyk, L. Swadźba, B. Mendala, Advanced materials and protective coatings in aero-engines application, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 372-381.
  • [17] A. Zalounina, J. Andreasen, Theoretical analysis of fatigue crack growth in a coated substrate, International Journal of Fracture 133 (2005) L3-L10.
  • [18] M.K. Apalak, A. Tasdemirci, Non-linear elastic stresses in a thin hard coating/an elastic substrate system subjected to a surface pressure distribution, Journal of Materials Processing Technology 190 (2007) 263-281.
  • [19] P. Bansal, P.H. Shipway, S.B. Leen, Finite element modelling of the fracture behaviour of brittle coatings, Surface and Coatings Technology 200 (2006) 5318-5327.
  • [20] L.A. Dobrzański, A. Śliwa, W. Kwaśny, The computer simulation of stresses in the Ti+Ti(CxN1-x) coatings obtained in the PVD process, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 155-158.
  • [21] L.A Dobrzański, A. Śliwa, W. Sitek, W. Kwaśny, The computer simulation of critical compressive stresses on the PVD coatings, International Journal of Computational Materials Science and Surface Engineering 1 (2007) 28-39.
  • [22] A. Kierzkowska, M. Malinowski, E. Krasicka-Cydzik, Characteristics of anodic layer on Ti6Al4V ELI alloy after bending, International Journal of Computational Materials Science and Surface Engineering 1 (2007) 320-334.
  • [23] G.A. Smith, N. Jennett, J. Housden, Adhesion of thin coatings-the VAMAS (TWA 22-2) interlaboratory exercise, Surface and Coatings Technology 197 (2005) 336-344.
  • [24] C. Xie, W. Tong, Cracking and decohesion of a thin Al2O3 film on a ductile Al-5%Mg substrate, Acta Materialia 53 (2005) 477-485.
  • [25] A. Romeo, Ballarini, A crack very close to a bimaterial interface, Journal of Applied Mechanics 62 (1995) 614-619.
  • [26] S.S. Chakravarthy, E.H. Jordan, W.K.S. Chiu, Thin film and substrate cracking under the influence of externally applied loads, Engineering Fracture Mechanics 72 (2005) 1286-1298.
  • [27] W. Ziaja, J. Sieniawski, Tensile deformation behaviour of the titanium alloy with hard elastic coating, Advanced Engineering Materials 8 (2006) 205-208.
  • [28] L.A. Dobrzański, K. Łukaszkowicz, A. Zarychta, Mechanical properties of monolayer coatings deposited by PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 423-426.
  • [29] A. Rouzaud, E. Barbier, J. Ernoult, E. Quesnel, A method for elastic modulus measurements of magnetron sputtered thin films dedicated to mechanical applications, Thin Solid Films 270 (1995) 70-274.
  • [30] J. Gunnars, U. Wiklund, Determination of growth-induced strain and thermo-elastic properties of coatings by curvature measurements, Materials Science and Engineering A 336 (2002) 7-21.
  • [31] M. Gołębiewski, G. Krużel, R. Major, W. Mróz, T. Wierzchoń, R. Ebner, B. Major, Morphology of titanium nitride produced using glow discharge nitriding, laser remelting and pulsed laser deposition, Materials Chemistry and Physics 81 (2003) 315-318.
  • [32] Y. Zhao, R. Tryon, Automatic 3-D simulation and micro-stress distribution of polycrystalline metallic materials, Computer Methods in Applied Mechanics and Engineering 193 (2004) 3919-3934.
  • [33] O. Kolednik, The yield stress gradient effect in inhomogeneous materials, International Journal of Solids and Structures 37 (2000) 781-808.
  • [34] Y.T. Cheng, C.M. Cheng, Scaling relationships in conical indentation of elastic-perfectly plastic solids, International Journal of Solids and Structures 36 (1999) 1231-1243.
  • [35] M. Hepner, Development of surface properties of titanium and Ti-6Al-4V alloy by diffusion oxidation and nitriding, Ph.D. Thesis, Opole University of Technology, 2003 (in Polish).
  • [36] ADINA - Theory and Modeling Guide, ADINA R&D, Inc., Watertown MA, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.