PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the influence of carbides on tool wear

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The complex mechanisms of tool wear in metal cutting have not been possible to investigate in detail by the experimental methods traditionally employed. However, as a result of both the continuous development of numerical methods, such as the Finite Element Method (FEM) and the development of ever more powerful computers, the evaluation of the chip formation process and the evolution of tool wear is now possible. Design/methodology/approach: In the work presented in this paper, numerical methods are employed to study the effect of a single embedded hard carbide particle on tool wear and tool tip deformation. An important advantage of this approach is that particle size and position can easily be changed, thus making it possible to investigate the influence of these parameters on tool wear. Findings: The results reveal that the position, and in particular the size of carbide particles, have a dramatic impact on tool wear. In particular, particles larger than a certain size (about 5μm) cause significant plastic deformation of the tool tip, when passing in sufficient proximity. Research limitations/implications: An effort has been made to obtain the corrected version of the stability polynomial, the corresponding stability region and the range of Re(z) for the RK-Butcher algorithm. Originality/value: The present article sheds some light on different numerical integration algorithms involved in robot arm model problem.
Rocznik
Strony
29--37
Opis fizyczny
Bibliogr. 26 poz., tab., rys., wykr.
Twórcy
autor
autor
  • Department of Technology, Mathematics and Computer Science, University West, Trollhättan, Sweden, john.lorentzon@hv.se
Bibliografia
  • [1] N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Analysis of material response to ultrasonic vibration in turning Inconel 718, International Journal of Materials Science and Engineering 424 (2006) 318-325.
  • [2] E. Ceretti, P. Fallböhmer, W.T. Wu, T. Altan, Application of 2D FEM to chip formation in orthogonal cutting, Journal of Materials Processing Technology 59 (1996) 169-180.
  • [3] L. Chuzhoy, R.E. DeVor, S.G. Kapoor, D.J. Bammann, Microstructure-level modelling of ductile iron machining, Journal of Manufacturing Science and Engineering ASME 124 (2002) 162-169.
  • [4] L. Chuzhoy, R.E. DeVor, S.G. Kapoor, A.J. Beaudoin, D.J. Bammann, Machining simulation of ductile iron and its constituents, part 1: Estimation of material model parameters and their validation, Journal of Manufacturing Science and Engineering ASME 125 (2003) 181-191.
  • [5] L. Chuzhoy, R.E. DeVor, S.G. Kapoor, Machining simulation of ductile iron and its constituents, part 2: Numerical simulation and experimental validation of machining, Journal of Manufacturing Science and Engineering ASME 125 (2003) 192-201.
  • [6] N. Fang, A new quantitative sensitivity analysis of the flow stress of 18 engineering materials in machining, Proceedings of the ASME International Mechanical Engineering Congress “Manufacturing Engineering Division”, Washington, 2003, vol. 14, 23-32.
  • [7] L. Filice, D. Umbrello, F. Micari, L. Setteneri, On the finite element simulation of thermal phenomena in machining process, Proceedings of the 8th Keynote International ESAFORM Conference, Cluj-Napoca, 2005, 729-732.
  • [8] L. Filice, F. Micari, L. Settineri, D. Umbrello, Wear modelling in mild steel orthogonal cutting when using uncoated carbide tools, Wear 262 (2007) 545-554.
  • [9] A.E. Focke, F.E. Westerman, J. Kemphaus, W.T. Shin, M. Hoch, Wear of superhard materials when cutting superalloys, Wear 46 (1978) 65-79.
  • [10] F. Klocke, H.W. Raedt, S. Hoppe, 2D-FEM Simulation of the orthogonal high speed cutting process, Machining Science and Technology 5/3 (2001) 323-340.
  • [11] T. Kitagawa, K. Maekawa, T. Shirakhashi, E. Usui, Analytical prediction of flank wear of carbide tools in turning plain carbon steels. Part 1. Characteristic equation of flank wear, Bulletin of the Japan Society of Precision Engineering 22/4 (1988) 263-269.
  • [12] T. Kitagawa, K. Maekawa, T. Shirakhashi, E. Usui, Analytical prediction of flank wear of carbide tools in turning plain carbon steels. Part 2. Prediction of flank wear, Bulletin of the Japan Society of Precision Engineering 23/2 (1989) 126-134.
  • [13] M. Krook, V. Recina, B. Karlsson, Material properties affecting the machinability of Inconel 718, Proceedings of the 6th International Special Emphasis Symposium “Superalloys 718, 625, 706 and Derivates”, Pittsburgh, 2005, 613-627.
  • [14] J. Lorentzon, N. Järvstråt, Tool wear geometry updating in Inconel 718 turning simulations, Proceedings of the 9th CIRP International Workshop “Modeling of Machining Operations”, Bled, 2006, 491-498.
  • [15] T. MacGinley, J. Monaghan, Modelling the orthogonal machining process using coated cemented carbide cutting tools, Journal of Materials Processing Technology 118 (2001) 293-300.
  • [16] K.E. Petersen, Silicon as a Mechanical Material, Proceedings of the IEEE 70/5 (1982) 420-457.
  • [17] R. Sievert, A.H. Hamann, D. Noack, P. Löwe, K.N. Singh, G. Künecke, Simulation of thermal softening, damage and chip segmentation in a nickel super-alloy, in: H.K. Tönshoff, F. Hollmann: Hochgeschwindigkeitspannen, Wiley-vch, 2005, 446-469.
  • [18] A. Simoneau, E. Ng, M.A. Elbestawi, Modelling the effects of microstructure in metal cutting, International Journal of Machine Tools and Manufacture 47 (2007) 368-375.
  • [19] E.M. Trent, Metal cutting, Butterwort, London, 2000.
  • [20] E. Usui, A. Hirota, M. Masuka, Analytical prediction of three dimensional cutting process. Part 3. Cutting temperature and crater wear of carbide tool, Journal of Engineering for Industry: Transactions of the ASME 100 (1978) 222-228.
  • [21] L.J. Xie, J. Schmidt, C. Schmidt, F. Biesinger, 2D FEM estimation of tool wear in turning operation, Journal of Materials Processing Technology 146 (2004) 82-91.
  • [22] Y.C. Yen, J. Anurag, T. Altan, A finite element analysis of orthogonal machining of different tool edge geometries, Journal of Materials Processing Technology 146 (2004) 72-81.
  • [23] Y.C. Yen, J. Söhner, B. Lilly, T. Altan, Estimation of tool wear in orthogonal cutting using the finite element analysis, Journal of Materials Processing Technology 146 (2004) 82-91.
  • [24] W.J. Zhang, B.V. Reddy, S.C. Deevi, Physical properties of TiAl-base alloys, Scripta Materialia 45 (2001) 645-651.
  • [25] CRC Material Science and Engineering handbook, 1994, ISBN 0-8493-4250-3.
  • [26] M. Johansson, V. Recina, B. Karlsson, Material properties affecting the machinability of Inconel 718, Proceedings of the 6th International Special Emphasis Symposium “Superalloys 718, 625, 706 and Derivates”, Pittsburgh, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.