PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sterowanie impedancyjne w robocie skaczącym

Identyfikatory
Warianty tytułu
EN
Impedance control for hopping robot
Języki publikacji
PL
Abstrakty
PL
Artykuł przedstawia prace projektowe związane z konstrukcją i sterowaniem robota skaczącego. Rozważany jest prosty robot o napędzie pneumatycznym oraz możliwość regulacji częstotliwości jego skoków poprzez zmianę impedancji mechanicznej napędu. Okazuje się, że zmiana sztywności cylindra pneumatycznego w sposób naturalny zmienia częstość cyklicznych skoków robota w dość szerokim zakresie. Ponadto podtrzymanie tego cyklu wymaga później dostarczania niewielkich porcji energii.
EN
The main idea of the paper is to control the frequency of jumps of a hopping robot by regulation the drive's impedance in the phase of preparation to landing. It could be done easily when the robot is equipped with the pneumatic drive system. The stiffness of the pneumatic actuator is nearly proportional to the sum of pressures in both chambers, while the generated force depends on the difference of both pressures. There are evident similarities between such an actuator and a simple electrical system in which the level of the source as well as its impedance could be controlled independently. The paper contains also the results of experiments performed on a real laboratory 1-DOF hopping robot.
Rocznik
Strony
185--194
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] Granosik G., Jezierski E.: Application of a maximum stiffness rule for pneumatically driven legs of a walking robot. Proc. of the 2nd Int. Conference on Climbing and Walking Robots CLAWAR 99, Portsmouth, 1999, pp. 213-218.
  • [2] Hale E., Schara N., Burdick J., Fiorini P.A.: Minimally Actuated Hopping Rover for Exploration of Celestial Bodies, International Conference on Robotics & Automation, pp. 420-427, San Francisco, CA, April 2000.
  • [3] Hogan N.: Adaptive control of mechanical impedance by coactivation of antagonist muscles, IEEE Trans. on Automatic Control 1984, Vol. 29, pp. 681-690.
  • [4] Hogan N.: Impedance control: An approach to manipulation, Part I, II, III, ASME Journal of Dynamic Systems, Measurements, and Control 1985, Vol. 107, pp. 1-23.
  • [5] Jezierski E.: "On electrical analogues of mechanical systems and their using in analysis of robot dynamics", in Robot Motion and Control - Recent Developments, K.R. Kozłowski Ed. Berlin: Springer, 2006, pp. 391-404.
  • [6] Jezierski E. and G. Granosik, "Modelling and control of jumping robot with pneumatic drive", in Proc. 13th IEEE/IFAC Int. Conf. on Methods and Models in Automation and Robotics MMAR 2007, pp. 941-945.
  • [7] Kazeroni W.: "Design and analysis of pneumatic force generators for mobile robotic systems", IEEE/ASME Trans. of Mechatronics, vol. 10, pp. 411-418, 2005.
  • [8] Keda T., Iwatani Y., Suse K., and Mita T.: Analysis and Design of Running Robots in Touchdown Phase, Proc. of the IEEE International Conference on Control Applications, pp. 496-501, Hawai, USA August 22-27, 1999.
  • [9] Matsuoka K.: A model of repetitive hopping movements in man. Proceedings of Fifth World Congress on Theory of Machines and Mechanisms. International Federation for Information Processing, 1979.
  • [10] Park J.H.: Impedance control for biped robot locomotion. IEEE Trans. on Robotics and Automation 2001, Vol. 17, pp. 870-882.
  • [11] Pratt, J.: Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots. Ph.D. Thesis, Computer Science Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2000.
  • [12] Raibert M.H.: Legged robots that balance, The MIT Press, 1986.
  • [13] Sang-Ho H., Mita T.: Development of a Biologically Inspired Hopping Robot - "Kenken", Proc. of the 2002 IEEE Int. Conference on Robotics & Automation Washington, DC, (2002).
  • [14] Saranli U., Buehler M., and Koditschek D.E.: Rhex: A simple and highly mobile hexapod robot. International Journal of Robotics Research, 20(7): pp. 616-631, July 2001.
  • [15] Won J., Stramigioli S., Hogan N.: Comment on the equivalence of second-order impedance control and proportional gain explicit force control. Int. J. of Robotics Research, vol. 16, 1997, pp. 873-875.
  • [16] Uno K., Ohmori M., Kondo R.: A hopping robot with impulsive actuator, Proc. of SICE Conference, pp. 2831-2832, Aug. 5-7, 2002, Osaka.
  • [17] Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Lefeber, D., Meira Y Duran, B., Beyl, P.: Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. The Int. Journal of Robotics Research. 25(4): 343-358, (2006).
  • [18] Zeglin G.J.: Uniroo: A one legged dynamic hopping robot. B.S. thesis, MIT Dept. of Mechanical Engineering, 1991.
  • [19] Zeglin G.: The Bow Leg Hopping Robot. PhD thesis, Carnegie Mellon University, October 1999. CMU-RI-TR-99-33.
  • [20] Zeglin G., Brown, H.B. Jr.: First hops of the 3D Bow Leg. Proceedings of the 5th International Conference on Climbing and Walking Robots, pages 357-364, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0030-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.